ACPL-W611/ACPL-P611

High CMR, High-Speed TTL Compatible Optocoupler

Data Sheet

Description

The ACPL-W611/ACPL-P611 is an optically coupled gate that combines a GaAsP light emitting diode and an integrated high gain photo detector. The output of the detector IC is an open collector Schottky clamped transistor. The internal shield provides a guaranteed common mode transient immunity specification of 10,000 V/µs for the ACPL-W611.

This unique design provides maximum AC and DC circuit isolation while achieving TTL compatibility. The optocoupler AC and DC operational parameters are guaranteed from -40°C to +100°C, allowing trouble-free system performance.

The ACPL-W611/ACPL-P611 is suitable for high-speed logic interfacing, input/output buffering, as line receivers in environments that conventional line receivers cannot tolerate and are recommended for use in extremely high ground or induced noise environments.

CAUTION It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. The components featured in this data sheet are not to be used in military or aerospace applications or environments.

Features

- 10 kV/µs minimum Common Mode Rejection (CMR) at VCM = 1000 V
- High speed: 10 MBd typical
- LSTTL/TTL compatible
- Low input current capability: 5 mA
- Guaranteed ac and dc performance over temperature: 40°C to +100°C
- Stretched SO-6 package
- Safety Approval:
 - UL Recognized:
 5000Vrms for 1 minute for ACPL-W611 and ACPL-P611-020E per UL1577
 - CSA
 - IEC/EN/DIN EN 60747-5-5

Applications

- Isolated line receiver
- Computer-peripheral interfaces
- Microprocessor system interfaces
- Digital isolation for A/D, D/A conversion
- Switching power supply
- Instrument input/output isolation
- Ground loop elimination
- Pulse transformer replacement
- Power transistor isolation in motor drives
- Isolation of high speed logic systems

Functional Diagram

TRUTH TABLE (POSITIVE LOGIC) LED OUTPUT ON L OFF H

NOTE Bypassing of the power supply line is required with a 0.-µF ceramic disc capacitor adjacent to each optocoupler. The total lead length between both ends of the capacitor and the isolator pins should not exceed 10 mm.

Schematic Diagram

Ordering Information

ACPL-P611 is UL Recognized with 3750Vrms for 1 minute and ACPL-W611 is UL recognized with 5000Vrms for 1 minute per UL1577. They are approved under CSA Component Acceptance Notice #5, File CA 88324.

	Option				UL 5000 Vrms/	IEC/EN/DIN EN	Quantity	
Part Number	RoHS Compliant	Package	Surface Mount	Tape and Reel	1 Minute Rating	60747-5-5		
ACPL-P611	-000E	Stretched SO-6	Х				100 per tube	
	-020E		Х		Х		100 per tube	
	-060E		Х			Х	100 per tube	
	-500E		Х	Х			1000 per reel	
	-520E		Х	Х	Х		1000 per reel	
	-560E		Х	Х		Х	1000 per reel	
ACPL-W611	-000E	Stretched S0-6	Х		Х		100 per tube	
	-060E		Х		Х	Х	100 per tube	
	-500E	1	Х	Х	Х		1000 per reel	
	-560E	1	Х	Х	Х	Х	1000 per reel	

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry. Combination of Option 020 and Option 060 is not available.

Example 1:

ACPL-P611-500E to order product of Surface Mount Stretched SO-6 package in Tape and Reel packaging with RoHS compliant.

Option data sheets are available. Contact your Broadcom sales representative or authorized distributor for information.

Package Outline Drawings

ACPL-W611 Stretched SO-6 Package

ACPL-P611 Stretched SO-6 Package

LAND PATTERN RECOMMENDATION

DIMENSIONS IN MILLIMETERS AND (INCHES). COPLANARITY = 0.10 mm (0.004 INCHES).

Reflow Soldering Profile

The recommended reflow soldering conditions are per JEDEC Standard J-STD-020 (latest revision). Non-halide flux should be used.

Regulatory Information

The ACPL-W611 and ACPL-P611 is approved/pending approval by the following organizations:

IEC/EN/DIN EN 60747-5-5 (Option 060 only)	Approval
UL	Approval under UL 1577, component recognition program up to $V_{ISO} = 5000 V_{RMS}$. File E55361.
CSA	Approval under CSA Component Acceptance Notice #5, File CA 88324.

Insulation and Safety-Related Specifications

Parameter	Symbol	ACPL-P611	ACPL-W611	Units	Conditions
Minimum External Air Gap (External Clearance)	L(101)	7	8	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (External Creepage)	L(102)	8	8	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.
Tracking Resistance (Comparative Tracking Index)	СТІ	175	175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		Illa	Illa		Material Group (DIN VDE 0110, 1/89, Table 1)

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics (option x60, See Note ^a)

Description	Symbol	ACPL-P611	ACPL-W611	Units
Installation classification per DIN VDE 0110/39, Table 1				
for rated mains voltage \leq 150 V _{rms}		I - IV	I - IV	
for rated mains voltage \leq 300 V _{rms}		I - IV	I - IV	
for rated mains voltage \leq 600 V _{rms}		1 - 111	1 - 111	
for rated mains voltage \leq 1000 _{Vrms}			1 - 111	
Climatic Classification		55/100/21	55/100/21	
Pollution Degree (DIN VDE 0110/39)		2	2	
Maximum Working Insulation Voltage	V _{IORM}	891	1140	V _{peak}
Input to Output Test Voltage, Method b ^a	V _{PR}	1671	2137	V _{peak}
$V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with t _m =1s, Partial discharge < 5 pC				
Input to Output Test Voltage, Method a ^a	V _{PR}	1426	1824	V _{peak}
$V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test, $t_m = 10s$, Partial discharge < 5 pC				
Highest Allowable Overvoltage (Transient Overvoltage t _{ini} = 60s)	V _{IOTM}	6000	8000	V _{peak}
Safety-limiting values - maximum values allowed in the event of a failure.				
Case Temperature	Τ _S	175	175	°C
Input Current ^b	I _{S, INPUT}	230	230	mA
Output Power ^b	P _{S, OUTPUT}	600	600	mW
Insulation Resistance at T_S , $V_{IO} = 500V$	R _S	>10 ⁹	> 10 ⁹	Ω

a. Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-2) for a detailed description of Method a and Method b partial discharge test profiles.

b. Refer to Figure 1 for dependence of P_{S} and I_{S} on ambient temperature.

NOTE These optocouplers are suitable for "safe electrical isolation" only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits.

Figure 1 Power Output vs. Case Temperature

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Note
Storage Temperature	Τ _S	-55	125	°C	
Operating Temperature	T _A	-40	100	°C	
Average Input Current	I _{F(AVG)}	—	20	mA	a
Reverse Input Voltage	V _R	—	5	V	
Input Power Dissipation	PI	—	45	mW	
Supply Voltage (1 Minute Maximum)	V _{CC}	_	7	V	
Output Collector Current	Ι _Ο	_	50	mA	
Output Collector Voltage	V _O	—	7	V	
Output Collector Power Dissipation	P _O	—	85	mW	
Lead Solder Temperature	T _{LS}	-	260°C for 10s,	1.6 mm below seating plane	3
Solder Reflow Temperature Profile	See Package Outli	ne Drawings section	on		

a. Peaking circuits may produce transient input currents up to 50 mA, 50-ns maximum pulse width, provided average current does not exceed 20 mA.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Input Current, Low Level	I _{FL}	0	250	μΑ
Input Current, High Level	I _{FH}	5	15	mA
Power Supply Voltage	V _{CC}	4.5	5.5	V
Operating Temperature	T _A	-40	100	°C
Fan Out (at $R_L = 1 \ k\Omega$)	N	_	5	TTL Loads
Output Pull-up Resistor	R _L	330	4k	Ω

Electrical Specifications (DC)

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Figure	Note
High Level Output Current	I _{OH}	—	5.5	100	μA	$V_{CC} = 5.5 \text{ V}, V_{O} = 5.5 \text{ V}, I_{F} = 250 \mu\text{A}$	2	
Input Threshold Current	I _{TH}	—	2.0	5.0	mA	$V_{CC} = 5.5V, V_{O} = 0.6V, I_{OL} > 13 \text{ mA}$	14	
Low Level Output Voltage	V _{OL}	—	0.35	0.6	V	$V_{CC} = 5.5V$, $I_F = 5 \text{ mA}$, $I_{OL(Sinking)} = 13 \text{ mA}$	3, 5, 6, 14	
High Level Supply Current	I _{CCH}	_	4	7.5	mA	$V_{CC} = 5.5V, I_F = 0 mA,$		
Low Level Supply Current	I _{CCL}	—	6	10.5	mA	$V_{CC} = 5.5V, I_F = 10 \text{ mA},$		
Input Forward Voltage	V _F	1.4	1.5	1.75	V	T _A = 25°C, I _F = 10 mA	4	
		1.3	—	1.8				
Input Reverse Breakdown Voltage	BV _R	5	—	—	V	I _R = 10 μA		
Input Capacitance	C _{IN}	_	60	—	pF	$f = 1 MHz, V_F = 0 V$		
Input Diode Temperature	$\Delta V_{\rm F} / \Delta T_{\rm A}$	_	-1.6	—	mV/°C	I _F = 10 mA	13	

Over recommended operating conditions unless otherwise specified. All typicals at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Switching Specifications (AC)

Over recommended operating conditions $T_A = -40^{\circ}$ C to 100° C, $V_{CC} = 5$ V, $I_F = 7.5$ mA unless otherwise specified.

All typicals at $V_{CC} = 5V$, $T_A = 25$ °C.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Figure	Note
	t _{PLH}	20	48	75	ns	$T_A = 25^{\circ}C, R_L = 350 \Omega, C_L = 15 pF$		а
Output Level			—	100		$R_L = 350 \Omega$, $C_L = 15 pF$		
Propagation Delay Time to Low	t _{PHL}	25	50	75	ns	$T_A = 25^{\circ}C, R_L = 350 \Omega, C_L = 15 pF$		b
Output Level		—	—	100		$R_L = 350 \Omega$, $C_L = 15 pF$		
Pulse Width Distortion	t _{PHL} – t _{PLH}	-	3.5	35	ns	$R_L = 350 \Omega$, $C_L = 15 pF$		c
Propagation Delay Skew	t _{PSK}	—	—	40	ns			c, d
Output Rise Time (10%–90%)	t _R	—	24	—	ns			
Output Fall Time (10%–90%)	t _F	—	10	—	ns			
Output High Level Common Mode Transient Immunity	CM _H	10	15	_	kV/µs	$V_{CC} = 5 \text{ V}, I_F = 0 \text{ mA}, V_{O(MIN)} = 2V,$ $R_L = 350 \Omega, T_A = 25^{\circ}C, V_{CM} = 1000V$	8, 10	e
Output Low Level Common Mode Transient Immunity	CM _L	10	15	_	kV/µs			f g

a. The t_{PLH} propagation delay is measured from 3.75 mA point on the falling edge of the input pulse to the 1.5-V point on the rising edge of the output pulse.

b. The t_{PHL} propagation delay is measured from 3.75 mA point on the rising edge of the input pulse to the 1.5-V point on the falling edge of the output pulse.

c. See the application section, "Propagation Delay, Pulse-Width Distortion and Propagation Delay Skew," for more information.

d. t_{PSK} is equal to the worst case differ-ence in t_{PHL} and/or t_{PLH} that will be seen between units at any given temperature within the worst case operating condition range.

e. CM_H is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (that is, V_{OUT} > 2.0V).

f. CML is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (that is, V_{OUT} > 0.8V).

g. For sinusoidal voltages, $(|dV_{CM}|/dt)_{max} = \pi f_{CM}V_{CM(p-p)}$.

Package Characteristics

All typicals at $T_A = 25^{\circ}C$.

Parameter	Symbol	Device	Min.	Тур.	Max.	Units	Test Conditions	Figure	Note
Input-Output Insulation	V _{ISO}	ACPL-P611	3750	—	—	Vrms	RH < 50% for 1 min., T _A = 25°C		a, b, c
		ACPL-W611	5000						
Input-Output Resistance	R _{I-O}		_	10 ¹²	_	Ω	V _{I-O} = 500V		а
Input-Output Capacitance	C _{I-O}		_	0.6	_	pF	f = 1 MHz, T _A = 25°C		а

a. The device considered a two terminal device: pins 1, 2, and 3 shorted together, and pins 4, 5, and 6 shorted together.

b. In accordance with UL 1577, for V_{ISO} 3750 $V_{rms'}$ each optocoupler is proof-tested by applying an insulation test voltage \geq 4500 V_{RMS} for 1 second (leakage detection current limit, $I_{LO} \leq 5 \mu A$). For V_{ISO} 5000 $V_{rms'}$ each optocoupler is proof-tested by applying an insulation test voltage \geq 6000 V_{RMS} for 1 second (leakage detection current limit, $I_{LO} \leq 5 \mu A$).

c. ACPL- P611 (non -020E, -520E option) is UL Recognized 3750 V_{rms}. The -020E and -520E option is Recognized 5000 V_{rms}.

Figure 2 High Level Output Current vs. Temperature

Figure 4 Input Diode Forward Characteristic

Figure 6 Low Level Output Current vs. Temperature

Figure 3 Low Level Output Voltage vs. Temperature

Figure 5 Output Voltage vs. Forward Input Current

Figure 7 Test Circuit for t_{PHL} and t_{PLH}

Figure 8 Propagation Delay vs. Temperature

Figure 9 Propagation Delay vs. Pulse Input Current

Figure 10 Pulse Width Distortion vs. Temperature

Figure 11 Rise and Fall Time vs. Temperature

Figure 12 Test Circuit for Common Mode Transient Immunity and Typical Waveforms

Figure 13 Temperature Coefficient for Forward Voltage vs. Input Current

Figure 14 Input Threshold Current vs. Temperature

For product information and a complete list of distributors, please go to our web site: www.broadcom.com.

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries and/or the EU.

Copyright © 2011–2017 by Broadcom. All Rights Reserved.

The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design.

Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

AV02-0942EN – February 24, 2017

BROADCOM[°]

