

Monolithic Dual SPST CMOS Analog Switch

FEATURES

- ±15 V Input Signal Range
- 44-V Maximum Supply Ranges
- On-Resistance: 45 Ω
- TTL and CMOS Compatibility

BENEFITS

- Wide Dynamic Range
- Simple Interfacing
- Reduced External Component Count

APPLICATIONS

- Servo Control Switching
- Programmable Gain Amplifiers
- Audio Switching
- Programmable Filters

Each switch conducts equally well in both directions when on,

and blocks up to 30 V peak-to-peak when off. In the on

condition, this bi-directional switch introduces no offset

voltage of its own.

DESCRIPTION

The DG200A_MIL is a dual, single-pole, single-throw analog switch designed to provide general purpose switching of analog signals. This device is ideally suited for designs requiring a wide analog voltage range coupled with low on-resistance.

The DG200A_MIL is designed on Vishay Siliconix' improved PLUS-40 CMOS process. An epitaxial layer prevents latchup.

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE					
Logic	Switch				
0	ON				
1	OFF				

 $\begin{array}{l} \mbox{Logic "0"} \leq 0.8 \ \mbox{V} \\ \mbox{Logic "1"} \geq 2.4 \ \mbox{V} \end{array}$

Vishay Siliconix

ORDERING INFORMATION							
Temp Range	Package	Part Number					
–55 to 125°C		DG200AAK					
	14-Pin CerDIP	DG200AAK/883, JM38510/12301BCA, 5962-9562901QCA					
	10-Pin Metal Can	DG200AAA					
		DG200AAA/883, JM38510/12301BIC					
	14-Pin Sidebraze	JM38510/12301BCC					

ABSOLUTE MAXIMUM RATINGS

V+ to V	
GND to V-	
Digital Inputs ^a , V _S , V _D	–2 V to (V+) +2 V or vhichever occurs first
Current (Any Terminal) Continuous	30 mA
Current S or D (Pulsed at 1 ms, 10% Duty Cycle Max)	100 mA
Storage Temperature	–65 to 150°C

 Power Dissipation (Package)^b

 10-Pin Metal Can^c

 450 mW

 14-Pin CerDIP^d

 825 mW

Notes:

- a. Signals on S_X, D_X, or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC Board.
- c. Derate 6 mW/°C above 75°C
- d. Derate 11 mW/°C above $75^{\circ}C$

SCHEMATIC DIAGRAM (TYPICAL CHANNEL)

SPECIFICATION	Sa								
		Test Conditions Unless Otherwise Specified			Limits –55 to 125°C				
Parameter	Parameter Symbol V+ = 15 V, V- = -1 V _{IN} = 2.4 V, 0.8 V			Temp ^b	Min ^c	Typ ^d	Max ^c	Unit	
Analog Switch		•		-	•		•		
Analog Signal Range ^e	V _{ANALOG}			Full	-15		15	V	
Drain-Source On-Resistance	r _{DS(on)}	$V_D = \pm 10 \text{ V}, \text{ I}_S = -1 \text{ mA}$		Room Full		45	70 100	Ω	
Source Off Leakage Current	I _{S(off)}	$V_{S} = \pm 14 \text{ V}, V_{D} = \mp 14 \text{ V}$		Room Full	-2 -100	±0.01	2 100		
Drain Off Leakage Current	I _{D(off)}	$V_D = \pm 1$	4 V, V _S = ∓14 V	Room Full	-2 -100	±0.01	2 100	nA	
Channel On Leakage Current ^f	I _{D(on)}	V _S =	$V_D = \pm 14 V$	Room Full	-2 -200	±0.1	2 200		
Digital Control				1		<u> </u>		<u>.</u>	
Input Current with Input Voltage High	I _{INH}	V _{IN} = 2.4 V		Room Full	0.5 1	0.0009		μΑ	
		V _{IN} = 15 V		Room Full		0.005	0.5 1		
Input Current with Input Voltage Low	I _{INL}	V _{IN} = 0 V		Room Full	-0.5 -1	-0.0015			
Dynamic Characteris	stics						1		
Turn-On Time	t _{ON}	See Switching Time Test Circuit		Room		440	1000	ns	
Turn-Off Time	tOFF			Room		340	425		
Charge Injection	Q	$C_{L} = 1000 \text{ pF}, \text{ V}_{g} = 0 \text{ V}$ $R_{g} = 0 \Omega$		Room		-10		рС	
Source-Off Capacitance	C _{S(off)}	f = 140 kHz V _{IN} = 5 V	$V_{S} = 0 V$	Room		9			
Drain-Off Capacitance	C _{D(off)}		V _D = 0 V	Room		9		pF	
Channel-On Capacitance	C _{D(on)} + C _{S(On)}	$V_{\rm D} = V_{\rm S} = 0 \text{ V}, V_{\rm IN} = 0 \text{ V}$		Room		25			
Off Isolation	OIRR	$V_{\text{IN}} = 5 \text{ V}, \text{ R}_{\text{L}} = 75 \Omega$ $V_{\text{S}} = 2 \text{ V}, \text{ f} = 1 \text{ MHz}$		Room		75		dB	
Crosstalk (Channel-to-Channel)	X _{TALK}			Room		90			
Power Supplies					•				
Positive Supply Current	l+	Both Channels On or Off $V_{IN} = 0 \ V \text{ and } 2.4 \ V$		Room		0.8	2	mA	
Negative Supply Current	I–			Room	-1	-0.23			

Notes:

a.

b.

tes: Refer to PROCESS OPTION FLOWCHART. Room = 25°C, Full = as determined by the operating temperature suffix. The algebraic convention whereby the most negative value is aminimum and the most positive a maximum, is used in this data sheet. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. Guaranteed by design, not subject to production test. V_{IN} = input voltage to perform proper function. c.

d.

e. f.

DG200A_MIL

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Input Switching Threshold vs. V+ and V– Supply Voltages

2.5 V+ = 15 V 6 V - = -15 V2.0 Both logic inputs toggled simutaneously 5 1.5 I+, I- (mA) VT (V) 4 3 1.0 2 0.5 1+ 1 1-0 0 0 ± 5 ± 10 ± 15 ±20 100 k 1 k 10 k 1 M Toggle Frequency (Hz) V+, V- Positive and Negative Supplies (V)

Supply Currents vs. Toggle Frequency

www.vishay.com 4-4

DG200A_MIL Vishay Siliconix

TEST CIRCUITS

Vo is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

FIGURE 2. Switching Time

 ΔV_O = measured voltage error due to charge injection The charge injection in coulombs is ΔQ = C_L x ΔV_O

FIGURE 5. Channel-to-Channel Crosstalk

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.