www.vishay.com Vishay Semiconductors ## Standard Recovery Rectifier, High Voltage Surface-Mount #### **LINKS TO ADDITIONAL RESOURCES** #### **FEATURES** • For surface mounted applications · Ideal for automated placement Glass passivated High temperature soldering: 260 °C / 10 s at terminals RoHS COMPLIANT • Wave and reflow solderable - Compatible to SOD-123W package case outline or SOD-123F and SOD-123FL - Material categorization: for definitions of compliance please see www.vishay.com/doc?99912 #### **MECHANICAL DATA** Case: SMF (DO-219AB) Polarity: band denotes cathode end Weight: approx. 15 mg Packaging codes / options: GS18/10K per 13" reel (8 mm tape), MOQ = 50K GS08/3K per 7" reel (8 mm tape), MOQ = 30K Circuit configuration: single | PARTS TABLE | | | | | | | |-------------|--------------------------|---------|---------------|--|--|--| | PART | ORDERING CODE | MARKING | REMARKS | | | | | S1FLB | S1FLB-GS18 or S1FLB-GS08 | FB | Tape and reel | | | | | S1FLD | S1FLD-GS18 or S1FLD-GS08 | FD | Tape and reel | | | | | S1FLG | S1FLG-GS18 or S1FLG-GS08 | FG | Tape and reel | | | | | S1FLJ | S1FLJ-GS18 or S1FLJ-GS08 | FJ | Tape and reel | | | | | S1FLK | S1FLK-GS18 or S1FLK-GS08 | FK | Tape and reel | | | | | S1FLM | S1FLM-GS18 or S1FLM-GS08 | FM | Tape and reel | | | | | ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified) | | | | | | | | |--|-----------------------------|-------|--------------------|-------|------|--|--| | PARAMETER | TEST CONDITION | PART | SYMBOL | VALUE | UNIT | | | | Maximum repetitive peak reverse voltage | | S1FLB | V_{RRM} | 100 | V | | | | | | S1FLD | V_{RRM} | 200 | V | | | | | | S1FLG | V_{RRM} | 400 | V | | | | | | S1FLJ | V_{RRM} | 600 | V | | | | | | S1FLK | V_{RRM} | 800 | V | | | | | | S1FLM | V_{RRM} | 1000 | V | | | | Maximum RMS voltage | | S1FLB | V_{RMS} | 70 | V | | | | | | S1FLD | V_{RMS} | 140 | V | | | | | | S1FLG | V_{RMS} | 280 | V | | | | | | S1FLJ | V _{RMS} | 420 | V | | | | | | S1FLK | V_{RMS} | 560 | V | | | | | | S1FLM | V_{RMS} | 700 | V | | | | | | S1FLB | V_{DC} | 100 | V | | | | | | S1FLD | V_{DC} | 200 | V | | | | Maximum DC blocking voltage | | S1FLG | V_{DC} | 400 | V | | | | Maximum DC blocking voltage | | S1FLJ | V_{DC} | 600 | V | | | | | | S1FLK | V_{DC} | 800 | V | | | | | | S1FLM | V_{DC} | 1000 | V | | | | Manipulation and the state of t | T _L = 75 °C | | I _{F(AV)} | 1.5 | Α | | | | Maximum average forward rectified current | $T_A = 65 ^{\circ}C^{(1)}$ | | I _{F(AV)} | 0.7 | Α | | | | Peak forward surge current 8.3 ms single half sine-wave | T _L = 25 °C | | I _{FSM} | 22 | Α | | | #### Note (1) Averaged over any 20 ms period www.vishay.com ## Vishay Semiconductors | THERMAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified) | | | | | | | |--|----------------|----------------|-------------|------|--|--| | PARAMETER | TEST CONDITION | SYMBOL | VALUE | UNIT | | | | Thermal resistance junction to ambient air (1) | | R_{thJA} | 180 | K/W | | | | Operating junction and storage temperature range | | T_j, T_{stg} | -55 to +150 | °C | | | #### Note (1) Mounted on epoxy substrate with 3 mm x 3 mm Cu pads (\geq 40 μ m thick) | PARAMETER | TEST CONDITION | PART | SYMBOL | MIN. | TYP. | MAX. | UNIT | |-------------------------------------|--|-------|-----------------|------|------|------|------| | | 1 A ⁽¹⁾ | S1FLB | V _F | | | 1.1 | V | | | | S1FLD | V _F | | | 1.1 | V | | Maximum instantaneous forward | | S1FLG | V _F | | | 1.1 | V | | voltage | | S1FLJ | V _F | | | 1.1 | V | | | | S1FLK | V _F | | | 1.1 | V | | | | S1FLM | V _F | | | 1.1 | V | | | T _A = 25 °C | S1FLB | I _R | | | 10 | μΑ | | | | S1FLD | I _R | | | 10 | μΑ | | | | S1FLG | I _R | | | 10 | μΑ | | | | S1FLJ | I _R | | | 10 | μΑ | | | | S1FLK | I _R | | | 10 | μA | | Maximum DC reverse current at rated | | S1FLM | I _R | | | 10 | μΑ | | DC blocking voltage | T _A = 125 °C | S1FLB | I _R | | | 50 | μΑ | | | | S1FLD | I _R | | | 50 | μΑ | | | | S1FLG | I _R | | | 50 | μΑ | | | | S1FLJ | I _R | | | 50 | μΑ | | | | S1FLK | I _R | | | 50 | μΑ | | | | S1FLM | I _R | | | 50 | μΑ | | | I _F = 0.5 A, I _R = 1 A, I _{rr} = 0.25 A | S1FLB | t _{rr} | | | 1800 | ns | | | | S1FLD | t _{rr} | | | 1800 | ns | | D | | S1FLG | t _{rr} | | | 1800 | ns | | Reverse recovery time | | S1FLJ | t _{rr} | | | 1800 | ns | | | | S1FLK | t _{rr} | | | 1800 | ns | | | | S1FLM | t _{rr} | | | 1800 | ns | | | 4 V, 1 MHz | S1FLB | C _j | | 4 | | pF | | T. deal constitution | | S1FLD | Cj | | 4 | | pF | | | | S1FLG | Cj | | 4 | | pF | | Typical capacitance | | S1FLJ | Cj | | 4 | | pF | | | | S1FLK | C _j | | 4 | | pF | | | | S1FLM | Ci | | 4 | | pF | #### Note ⁽¹⁾ Pulse test: 300 µs pulse width, 1 % duty cycle Vishay Semiconductors ### TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified) www.vishay.com Fig. 1 - Forward Current Derating Curve Fig. 2 - Typical Instantaneous Forward Characteristics Fig. 3 - Typical Instantaneous Reverse Characteristics Fig. 4 - Capacitance vs. Reverse Voltage Vishay Semiconductors ### PACKAGE DIMENSIONS in millimeters (inches): SMF (DO-219AB) foot print recommendation: Created - Date: 15. February 2005 Rev. 6 - Date: 24.Feb.2021 Document no.: S8-V-3915.01-001 (4) 22989 Vishay Semiconductors ### **ORIENTATION IN CARRIER TAPE - SMF (DO-219AB)** Unreeling direction Cathode Top view Document no.: S8-V-3717.02-003 (4) Created - Date: 09. Feb. 2010 22670 ### **Legal Disclaimer Notice** Vishay ### **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.