Quad Line EIA-232D Driver The MC1488 is a monolithic quad line driver designed to interface data terminal equipment with data communications equipment in conformance with the specifications of EIA Standard No. EIA-232D. #### **Features** - Current Limited Output ±10 mA typical - Power–Off Source Impedance 300 Ω minimum - Simple Slew Rate Control with External Capacitor - Flexible Operating Supply Range - Compatible with All ON Semiconductor DTL and TTL Logic Families - Pb-Free Packages are Available Figure 1. Simplified Application ### ON Semiconductor® http://onsemi.com SOIC-14 D SUFFIX CASE 751A PDIP-14 P SUFFIX CASE 646 SOEIAJ-14 M SUFFIX CASE 965 #### **PIN CONNECTIONS** #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet. #### **DEVICE MARKING INFORMATION** See general marking information in the device marking section on page 8 of this data sheet. Figure 2. Circuit Schematic (1/4 of Circuit Shown) ### **MAXIMUM RATINGS** ($T_A = +25^{\circ}C$, unless otherwise noted.) | Rating | Symbol | Value | Unit | |--|------------------------------------|------------------------------|-------------| | Power Supply Voltage | V _{CC}
V _{EE} | + 15
– 15 | Vdc | | Input Voltage Range | V _{IR} | - 15 ≤ V _{IR} ≤ 7.0 | Vdc | | Output Signal Voltage | Vo | ±15 | Vdc | | Power Derating (Package Limitation, SO-14 and Plastic Dual-In-Line Package) Derate above T _A = + 25°C | P_D 1/ $R_{\theta JA}$ | 1000
6.7 | mW
mW/°C | | Operating Ambient Temperature Range | T _A | 0 to + 75 | °C | | Storage Temperature Range | T _{stg} | – 65 to + 175 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. ### $\textbf{ELECTRICAL CHARACTERISTICS} \ (V_{CC} = +~9.0 \pm 1\% \ Vdc, \ V_{EE} = -9.0 \pm 1\% \ Vdc, \ T_{A} = 0 \ to \ 75^{\circ}C, \ unless \ otherwise \ noted.)$ | Characteristic | Symbol | Min | Тур | Max | Unit | |---|-------------------|-----------------------|-------------------------------------|---|----------------------------| | Input Current – Low Logic State (V _{IL} = 0) | I _{IL} | - | 1.0 | 1.6 | mA | | Input Current – High Logic State (V _{IH} = 5.0 V) | I _{IH} | - | - | 10 | μΑ | | Output Voltage – High Logic State $ \begin{array}{l} (\text{V}_{\text{IL}} = 0.8 \text{ Vdc}, \text{R}_{\text{L}} = 3.0 \text{ k}\Omega , \text{V}_{\text{CC}} = + 9.0 \text{ Vdc}, \text{V}_{\text{EE}} = - 9.0 \text{ Vdc}) \\ (\text{V}_{\text{IL}} = 0.8 \text{ Vdc}, \text{R}_{\text{L}} = 3.0 \text{ k}\Omega , \text{V}_{\text{CC}} = + 13.2 \text{ Vdc}, \text{V}_{\text{EE}} = - 13.2 \text{ Vdc}) \end{array} $ | V _{OH} | + 6.0
+ 9.0 | + 7.0
+ 10.5 | -
- | Vdc | | Output Voltage – Low Logic State $ (V_{IH}=1.9~\text{Vdc},~R_L=3.0~\text{k}\Omega~,~V_{CC}=+9.0~\text{Vdc},~V_{EE}=-9.0~\text{Vdc}) $ $ (V_{IH}=1.9~\text{Vdc},~R_L=3.0~\text{k}\Omega~,~V_{CC}=+13.2~\text{Vdc},~V_{EE}=-13.2~\text{Vdc}) $ | V _{OL} | - 6.0
- 9.0 | - 7.0
- 10.5 | - | Vdc | | Positive Output Short–Circuit Current, Note 1 | I _{OS+} | + 6.0 | + 10 | + 12 | mA | | Negative Output Short-Circuit Current, Note 1 | I _{OS} - | - 6.0 | - 10 | - 12 | mA | | Output Resistance ($V_{CC} = V_{EE} = 0$, $ V_O = \pm 2.0 \text{ V}$) | r _o | 300 | - | - | Ohms | | Positive Supply Current ($R_I = \infty$)
($V_{IH} = 1.9 \text{ Vdc}, V_{CC} = +9.0 \text{ Vdc}$)
($V_{IL} = 0.8 \text{ Vdc}, V_{CC} = +9.0 \text{ Vdc}$)
($V_{IH} = 1.9 \text{ Vdc}, V_{CC} = +12 \text{ Vdc}$)
($V_{IL} = 0.8 \text{ Vdc}, V_{CC} = +12 \text{ Vdc}$)
($V_{IH} = 1.9 \text{ Vdc}, V_{CC} = +15 \text{ Vdc}$)
($V_{IL} = 0.8 \text{ Vdc}, V_{CC} = +15 \text{ Vdc}$) | Icc | | + 15
+ 4.5
+ 19
+ 5.5
- | + 20
+ 6.0
+ 25
+ 7.0
+ 34
+ 12 | mA | | Negative Supply Current ($R_L = ∞$)
($V_{IH} = 1.9 \text{ Vdc}$, $V_{EE} = -9.0 \text{ Vdc}$)
($V_{IL} = 0.8 \text{ Vdc}$, $V_{EE} = -9.0 \text{ Vdc}$)
($V_{IH} = 1.9 \text{ Vdc}$, $V_{EE} = -12 \text{ Vdc}$)
($V_{IL} = 0.8 \text{ Vdc}$, $V_{EE} = -12 \text{ Vdc}$)
($V_{IH} = 1.9 \text{ Vdc}$, $V_{EE} = -15 \text{ Vdc}$)
($V_{IL} = 0.8 \text{ Vdc}$, $V_{EE} = -15 \text{ Vdc}$) | I _{EE} | -
-
-
-
- | - 13
-
- 18
-
- | - 17
- 500
- 23
- 500
- 34
- 2.5 | mA
μA
mA
μA
mA | | Power Consumption $ (V_{CC} = 9.0 \text{ Vdc}, V_{EE} = -9.0 \text{ Vdc}) $ $ (V_{CC} = 12 \text{ Vdc}, V_{EE} = -12 \text{ Vdc}) $ | P _C | -
- | -
- | 333
576 | mW | ### **SWITCHING CHARACTERISTICS** (V_{CC} = +9.0 \pm 1% Vdc, V_{EE} = -9.0 \pm 1% Vdc, T_A = +25°C.) | Propagation Delay Time (z _I = 3.0 k and 15 pF) | t _{PLH} | - | 275 | 350 | ns | |---|------------------|---|-----|-----|----| | Fall Time (z _I = 3.0 k and 15 pF) | t _{THL} | - | 45 | 75 | ns | | Propagation Delay Time (z _I = 3.0 k and 15 pF) | t _{PHL} | - | 110 | 175 | ns | | Rise Time $(z_l = 3.0 \text{ k and } 15 \text{ pF})$ | t _{TLH} | - | 55 | 100 | ns | ^{1.} Maximum Package Power Dissipation may be exceeded if all outputs are shorted simultaneously. ### **CHARACTERISTIC DEFINITIONS** Figure 3. Input Voltage Figure 4. Output Current Figure 5. Output Short-Circuit Current Figure 6. Output Resistance (Power Off) **Figure 7. Power Supply Currents** Figure 8. Switching Response ### TYPICAL CHARACTERISTICS $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ I_{SC}, SHORT CIRCUIT OUTPUT CURRENT (mA) 9.0 Ios+ 6.0 • V_{CC} = 9.0 V 1.9 V 3.0 -3.0 0.8 V V_{EE} = 9.0 V -6.0 los--9.0 -55 0 25 75 125 T, TEMPERATURE (°C) Figure 9. Transfer Characteristics versus Power Supply Voltage Figure 10. Short Circuit Output Current versus Temperature Figure 11. Output Slew Rate versus Load Capacitance Figure 12. Output Voltage and Current-Limiting Characteristics Figure 13. Maximum Operating Temperature versus Power Supply Voltage #### **APPLICATIONS INFORMATION** The Electronic Industries Association EIA-232D specification details the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leads, but also the voltage levels to be used. The MC1488 quad driver and its companion circuit, the MC1489 quad receiver, provide a complete interface system between DTL or TTL logic levels and the EIA-232D defined levels. The EIA-232D requirements as applied to drivers are discussed herein. The required driver voltages are defined as between 5.0 and 15 V in magnitude and are positive for a Logic "0" and negative for a Logic "1." These voltages are so defined when the drivers are terminated with a 3000 to 7000 Ω resistor. The MC1488 meets this voltage requirement by converting a DTL/TTL logic level into EIA–232D levels with one stage of inversion. The EIA–232D specification further requires that during transitions, the driver output slew rate must not exceed 30 V per microsecond. The inherent slew rate of the MC1488 is much too fast for this requirement. The current limited output of the device can be used to control this slew rate by connecting a capacitor to each driver output. The required capacitor can be easily determined by using the relationship $C = I_{OS} \times \Delta T/\Delta V$ from which Figure 14 is derived. Accordingly, a 330 pF capacitor on each output will guarantee a worst case slew rate of 30 V per microsecond. Figure 14. Slew Rate versus Capacitance for $I_{SC} = 10 \text{ mA}$ The interface driver is also required to withstand an accidental short to any other conductor in an interconnecting cable. The worst possible signal on any conductor would be another driver using a plus or minus 15 V, 500 mA source. The MC1488 is designed to indefinitely withstand such a short to all four outputs in a package as long as the power supply voltages are greater than 9.0 V (i.e., $V_{CC} \ge 9.0$ V; $V_{EE} \le -9.0$ V). In some power supply designs, a loss of system power causes a low impedance on the power supply outputs. When this occurs, a low impedance to ground would exist at the power inputs to the MC1488 effectively shorting the 300 Ω output resistors to ground. If all four outputs were then shorted to plus or minus 15 V, the power dissipation in these resistors would be excessive. Therefore, if the system is designed to permit low impedances to ground at the power supplies of the drivers, a diode should be placed in each power supply lead to prevent overheating in this fault condition. These two diodes, as shown in Figure 15, could be used to decouple all the driver packages in a system. (These same diodes will allow the MC1488 to withstand momentary shorts to the ±25 V limits specified in the earlier Standard EIA-232B.) The addition of the diodes also permits the MC1488 to withstand faults with power supplies of less than the 9.0 V stated above. Figure 15. Power Supply Protection to Meet Power Off Fault Conditions The maximum short circuit current allowable under fault conditions is more than guaranteed by the previously mentioned 10 mA output current limiting. #### **Other Applications** The MC1488 is an extremely versatile line driver with a myriad of possible applications. Several features of the drivers enhance this versatility: 1. Output Current Limiting – this enables the circuit designer to define the output voltage levels independent of power supplies and can be accomplished by diode clamping of the output pins. Figure 16 shows the MC1488 used as a DTL to MOS translator where the high level voltage output is clamped one diode above ground. The resistor divider shown is used to reduce the output voltage below the 300 mV above ground MOS input level limit. 2. Power Supply Range – as can be seen from the schematic drawing of the drivers, the positive and negative driving elements of the device are essentially independent and do not require matching power supplies. In fact, the positive supply can vary from a minimum 7.0 V (required for driving the negative pulldown section) to the maximum specified 15 V. The negative supply can vary from approximately – 2.5 V to the minimum specified – 15 V. The MC1488 will drive the output to within 2.0 V of the positive or negative supplies as long as the current output limits are not exceeded. The combination of the current limiting and supply voltage features allow a wide combination of possible outputs within the same quad package. Thus if only a portion of the four drivers are used for driving EIA–232D lines, the remainder could be used for DTL to MOS or even DTL to DTL translation. Figure 17 shows one such combination. Figure 16. DTL/TTL-to-MOS Translator Figure 17. Logic Translator Applications #### **ORDERING INFORMATION** | Device | Package | Operating Temperature Range | Shipping | |------------|------------------------|-----------------------------|------------------| | MC1488D | SOIC-14 | | | | MC1488DG | SOIC-14
(Pb-Free) | | 55 Units/Rail | | MC1488DR2 | SOIC-14 | 1 | | | MC1488DR2G | SOIC-14
(Pb-Free) | | 2500/Tape & Reel | | MC1488P | PDIP-14 | T _A = 0 to +75°C | | | MC1488PG | PDIP-14
(Pb-Free) | | 25 Units/Rail | | MC1488M | SOEIAJ-14 | 1 | | | MC1488MG | SOEIAJ-14
(Pb-Free) | | 50 Units/Rail | | MC1488MEL | SOEIAJ-14 | 1 | | | MC1488MELG | SOEIAJ-14
(Pb-Free) | | 2000/Tape & Reel | ### **MARKING DIAGRAMS** SOEIAJ-14 M SUFFIX CASE 965 A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G = Pb-Free Package **DATE 22 APR 2015** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3. 4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE - NOT TO EXCEED 0.10 INCH. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C. - DIMENSION 6B IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED. - DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE - CORNERS). | | INCHES | | MILLIM | ETERS | |-----|--------|-----------|--------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | | 0.210 | | 5.33 | | A1 | 0.015 | | 0.38 | | | A2 | 0.115 | 0.195 | 2.92 | 4.95 | | b | 0.014 | 0.022 | 0.35 | 0.56 | | b2 | 0.060 | 0.060 TYP | | TYP | | С | 0.008 | 0.014 | 0.20 | 0.36 | | D | 0.735 | 0.775 | 18.67 | 19.69 | | D1 | 0.005 | | 0.13 | | | E | 0.300 | 0.325 | 7.62 | 8.26 | | E1 | 0.240 | 0.280 | 6.10 | 7.11 | | е | 0.100 | 0.100 BSC | | BSC | | eB | | 0.430 | | 10.92 | | L | 0.115 | 0.150 | 2.92 | 3.81 | | M | | 10° | | 10° | #### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location WL = Wafer Lot YY = Year WW = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. # **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42428B | Electronic versions are uncontrolled except when accessed directly from the Document Reposito
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|--|-------------| | DESCRIPTION: | PDIP-14 | | PAGE 1 OF 2 | ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ### PDIP-14 CASE 646-06 ISSUE S ### **DATE 22 APR 2015** | STYLE 1: PIN 1. COLLECTOR 2. BASE 3. EMITTER 4. NO CONNECTION 5. EMITTER 6. BASE 7. COLLECTOR 8. COLLECTOR 9. BASE 10. EMITTER 11. NO CONNECTION 12. EMITTER 13. BASE 14. COLLECTOR | STYLE 2:
CANCELLED | STYLE 3:
CANCELLED | STYLE 4: PIN 1. DRAIN 2. SOURCE 3. GATE 4. NO CONNECTION 5. GATE 6. SOURCE 7. DRAIN 8. DRAIN 9. SOURCE 10. GATE 11. NO CONNECTION 12. GATE 13. SOURCE 14. DRAIN | |---|--|--|--| | STYLE 5: PIN 1. GATE 2. DRAIN 3. SOURCE 4. NO CONNECTION 5. SOURCE 6. DRAIN 7. GATE 8. GATE 9. DRAIN 10. SOURCE 11. NO CONNECTION 12. SOURCE 13. DRAIN 14. GATE | STYLE 6: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE | STYLE 7: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE | STYLE 8: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE | | STYLE 9: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE | STYLE 10: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE | STYLE 11: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE | STYLE 12: PIN 1. COMMON CATHODE 2. COMMON ANODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. COMMON ANODE 7. COMMON CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. ANODE/CATHODE 14. ANODE/CATHODE 14. ANODE/CATHODE | | DOCUMENT NUMBER: | 98ASB42428B | Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|--|-------------| | DESCRIPTION: | PDIP-14 | | PAGE 2 OF 2 | ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. △ 0.10 SOIC-14 NB CASE 751A-03 ISSUE L **DATE 03 FEB 2016** - NOTES: 1. DIMENSIONING AND TOLERANCING PER - ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. - DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT - MAXIMUM MATERIAL CONDITION. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. - 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE | | MILLIN | IETERS | INC | HES | |-----|--------|--------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 1.35 | 1.75 | 0.054 | 0.068 | | A1 | 0.10 | 0.25 | 0.004 | 0.010 | | АЗ | 0.19 | 0.25 | 0.008 | 0.010 | | b | 0.35 | 0.49 | 0.014 | 0.019 | | D | 8.55 | 8.75 | 0.337 | 0.344 | | Е | 3.80 | 4.00 | 0.150 | 0.157 | | е | 1.27 | BSC | 0.050 | BSC | | Н | 5.80 | 6.20 | 0.228 | 0.244 | | h | 0.25 | 0.50 | 0.010 | 0.019 | | L | 0.40 | 1.25 | 0.016 | 0.049 | | M | 0 ° | 7° | 0 ° | 7 ° | #### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code Α = Assembly Location WL = Wafer Lot Υ = Year = Work Week WW = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. ### **SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS C SEATING PLANE #### **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Reposit
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | SOIC-14 NB | | PAGE 1 OF 2 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### SOIC-14 CASE 751A-03 ISSUE L ### DATE 03 FEB 2016 | STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE | STYLE 2:
CANCELLED | STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE | STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE | |---|---|---|---| | STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE | STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE | STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE | STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE | | DOCUMENT NUMBER: | 98ASB42565B | PRASB42565B Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|---|-------------| | DESCRIPTION: | SOIC-14 NB | | PAGE 2 OF 2 | onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. SOEIAJ-14 CASE 965-01 **ISSUE B** **DATE 29 FEB 2008** - (OTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE - INCLUDE DAMBAR PHOTHUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER PARTIES OF THE FOOT MAINIMUM PACE DAMIBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018). | | MILLIN | IETERS | INC | HES | |----------------|----------|--------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | | 2.05 | | 0.081 | | A ₁ | 0.05 | 0.20 | 0.002 | 0.008 | | b | 0.35 | 0.50 | 0.014 | 0.020 | | C | 0.10 | 0.20 | 0.004 | 0.008 | | D | 9.90 | 10.50 | 0.390 | 0.413 | | Е | 5.10 | 5.45 | 0.201 | 0.215 | | е | 1.27 BSC | | 0.050 BSC | | | HE | 7.40 | 8.20 | 0.291 | 0.323 | | L | 0.50 | 0.85 | 0.020 | 0.033 | | LE | 1.10 | 1.50 | 0.043 | 0.059 | | M | 0 ° | 10 ° | 0 ° | 10 ° | | Q1 | 0.70 | 0.90 | 0.028 | 0.035 | | Z | | 1.42 | | 0.056 | | DOCUMENT NUMBER: | 98ASH70108A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|--------------|---|-------------|--| | DESCRIPTION: | 14 LD SOEIAJ | | PAGE 1 OF 1 | | ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com **TECHNICAL SUPPORT** North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative