DPERICOM[®]

PI74AVC+16245

2.5V 16-Bit Bidirectional Transceiver with 3-State Outputs

Product Features

- PI74AVC+16245 is designed for low-voltage operation, $V_{CC} = 1.65V$ to 3.6V
- True ±24mA Balanced Drive @ 3.3V
- · Compatible with Philips and T.I. AVC Logic family
- IOFF supports partial power-down operation
- 3.6V I/O Tolerant inputs and outputs
- All outputs contain a patented DDC (Dynamic Drive Control) circuit that reduces noise without degrading propagation delay
- Industrial operation: -40° C to $+85^{\circ}$ C
- Available Packages:
 -48-pin 240-mil wide plastic TSSOP
 48 min 172 mil wide plastic TVSOP
 - -48-pin 173-mil wide plastic TVSOP

Product Description

Pericom Semiconductor's PI74AVC+ series of logic circuits are produced using the Company's advanced submicron CMOS technology, achieving industry leading speed.

The PI74AVC+16245 is a 16-bit bidirectional transceiver designed for asynchronous two-way communication between data buses. The direction control input pin (xDIR) determines the direction of data flow through the bidirectional transceiver. The Direction and Output Enable controls are designed to operate this device as either two independent 8-bit transceivers or one 16-bit transceiver. The output enable (\overline{OE}) input, when HIGH, disables both A and B ports by placing them in HIGH Z condition.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current sinking ability of the driver.

Logic Block Diagram

Maximum Ratings (Above which the useful life may be impaired. For user guidelines, not tested.)

Supply voltage range, V_{CC} 0.5V to +4.6V
Input voltage range, V _I –0.5V to+4.6V
Voltage range applied to any output in the
high-impedance or power-off state, $V_0^{(1)}$ 0.5V to +4.6V
Voltage range applied to any output in the
high or low state, $V_O^{(1,2)}$ 0.5V to V_{CC} +0.5V
Input clamp current, I_{IK} (V _I < 0)50mA
Output clamp current, $I_{OK}(V_O < 0)$
Continuous output current, I _O ±50mA
Continuous current through each V_{CC} or GND±100mA
Package thermal impedance, $\theta_{JA}^{(3)}$: package A 64°C/W
package K 48°C/W
Storage Temperature range, T _{stg} 65°C to 150°C

Product Pin Configuration

r		~ _		ı —
1DIR 🛛	1	\bigcirc	48	10E
1B0 🛛	2		47	1A0
1B1 🛛	3		46	D 1A1
GND	4		45	GND
1B2 🛛	5		44	1A2
1B3 🛛	6		43	1 A3
VCC 🛛	7		42	D vcc
1B4 🛛	8		41	1 1A4
1B5 🛛	9		40	1 1A5
GND 🛛	10	40 D:	39	GND
1B6 🛛	11	48-Pin A,V	38	1 1A6
1B7 🖸	12	Α, ν	37	D 1A7
2B0 🛛	13		36	2 A0
2B1 🛛	14		35	2 A1
GND 🛛	15		34	GND
2B2 🛛	16		33] 2B2
2B3 🛛	17		32	🛛 2A3
VCC 🛛	18		31	D vcc
2B4 🛛	19		30	D 2A4
2B5 🛛	20		29	1 2A5
GND 🛛	21		28	GND
2B6 🛛	22		27	2 A6
2B7 🛛	23		26	1 2A7
2DIR 🛛	24		25	20E

Notes:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

- 1. Input & output negative-voltage ratings may be exceeded if the input and output curent rating are observed.
- 2. Output positive-voltage rating may be exceeded up to 4.6V maximum if the output current rating is observed.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

Product Pin Description

Pin Name	Description
xOE	3-State Output Enable Inputs (Active LOW)
xDIR	Direction Control Input
xAx	Side A Inputs or 3-State Inputs
xBx	Side B Outputs or 3-State Outputs
GND	Ground
V _{CC}	Power

Truth Table⁽¹⁾

Inpu	uts ⁽¹⁾	Outputs ⁽¹⁾
xOE	xDIR	
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	Х	Z

Notes:

1. H = High Signal Level

L = Low Signal Level

- X = Don't Care or Irrelevant
- Z = High Impedance

Recommended Operating Conditions⁽¹⁾

		Min.	Max.	Units
V _{CC} Supply Voltage	Operating	1.4	3.6	
VCC Supply Voltage	Data retention only	1.2		
	$V_{CC} = 1.2V$	V _{CC}		
	$V_{CC} = 1.4V$ to 1.6V	0.65 x V _{CC}		
V _{IH} High-level Input Voltage	$V_{CC} = 1.65 V$ to $1.95 V$	0.65 x V _{CC}		
	$V_{CC} = 2.3 V$ to 2.7V	1.7		
	$V_{\rm CC} = 3V$ to 3.6V	2		
	$V_{\rm CC} = 1.2 V$		GND	V
	$V_{\rm CC} = 1.4 V$ to 1.6V		0.35 x V _{CC}	
V _{IL} Low-level Input Voltage	$V_{CC} = 1.65 V$ to $1.95 V$		0.35 x V _{CC}	
	$V_{CC} = 2.3 V$ to 2.7V		0.7	
	$V_{\rm CC} = 3V$ to 3.6V		0.8	
V _I Input Voltage	0	3.6		
V. Orderet Vale an	Active State	0	V _{CC}	
V _O Output Voltage	3-State	0	3.6	
	$V_{CC} = 1.4V$ to 1.6V		- 4	
I II is less less that any art	$V_{CC} = 1.65 V$ to $1.95 V$		- 6	
I _{OHS} High-level output current	$V_{CC} = 2.3 V$ to 2.7V		- 12	
	$V_{CC} = 3V$ to 3.6V		- 24	A
	$V_{CC} = 1.4V$ to 1.6V		4	mA
I I am level extent compart	$V_{CC} = 1.65 V$ to $1.95 V$		6	
I _{OLS} Low-level output current	$V_{CC} = 2.3 V$ to 2.7V		12	
	$V_{CC} = 3V$ to 3.6V		24	
$\Delta t \Delta v$ Input transition rise or fall rate	$V_{CC} = 1.4V$ to 3.6V		5	ns/V
T _A Operating free-air temperature		-40	85	°C

Notes:

1. All unused inputs must be held at V_{CC} or GND to ensure proper device operation.

P	Parameters	Test	Conditions ⁽¹⁾	V _{CC}	Min.	Тур.	Max.	Units	
		$I_{OH} = -100 \mu A$		1.4V to 3.6V	V _{CC} -0.2V				
		$I_{OHS} = -4mA$	$V_{IH} = 0.91 V$	1.4V	1.05				
	V _{OH}	$I_{OHS} = -6mA$	$V_{\mathrm{IH}} = 1.07 \mathrm{V}$	1.65V	1.2				
		$I_{OHS} = -12mA$	$V_{IH} = 1.7 V$	2.3V	1.75				
		$I_{OHS} = -24mA$	$V_{IH} = 2V$	3V	2.0			v	
		$I_{OLS} = 100 \mu A$		1.4V to 3.6V			0.2		
		$I_{OLS} = 4mA$	$V_{IL} = 0.49V$	1.4V			0.4		
	V _{OL}	$I_{OLS} = 6mA$	$V_{IL} = 0.57 V$	1.65V			0.45	-	
		$I_{OLS} = 12mA$	$V_{IL} = 0.7 V$	2.3V			0.55		
		$I_{OLS} = 24 \text{mA}$	$V_{IL} = 0.8V$	3V			0.8		
I_{I} $V_{I} = V_{CC}$ or GND		3.6V			±2.5				
I_{OFF} V_I or $V_O = 3.6V$		0			±10				
	I _{OZ}	$V_{\rm O} = V_{\rm CC}$ or GN	1D	3.6V			±10	- μΑ	
	I _{CC}	$V_{I} = V_{CC}$ or GN	$D I_0 = 0$	3.6V			40		
	Control Longeto	$V_{I} = V_{CC}$ or GND		2.5V		3.5			
C	Control Inputs			3.3V		3.5			
C_{I}	C _I Data Inputs			2.5V		6			
				3.3V		6		pF	
C	Outputs	Outputs $V_{O} = V_{CC}$ or GND		2.5V		6.5		1	
Co	Outputs			3.3V		6.5		1	

DC Electrical Characteristics (Over the Operating Range, $T_A = -40^{\circ}C + 85^{\circ}C$)

Note:

1. Typical values are measured at $T_A = 25^{\circ}C$.

Switching Characteristics

(Over recommended operating free-air temperature range, unless otherwise noted, see Figures 1 thru 4)

Parameters	From (Input)	To	$V_{CC} = 1.2V$	V _{CC} = ± 0	= 1.5V .1V		= 1.8V .15V		= 2.5V .2V	V _{CC} = ± 0		Units
	(Input)	(Output)	Тур.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{pd}	А	Y	3.9	0.8	4.0	0.7	3.0	0.6	1.9	0.5	1.7	
t _{en}	ŌĒ	Y	8.4	1.5	9.2	1.4	7.0	1.0	4.3	0.7	3.7	ns
t _{dis}	ŌĒ	Y	8.4	2.3	9.3	2.2	7.0	1.1	4.0	1.2	3.9	

Operating Characteristics, T_A=25°C

Parameters		Test Conditions	V _{CC} = 1.8V ±0.15V Typical	V _{CC} = 2.5V ±0.2V Typical	$V_{CC} = 3.3V$ $\pm 0.3V$ Typical	Units
C _{pd} Power Dissipation	Outputs Enabled	$C_L = 0 p F,$	35	38	44	πE
Capacitance	Outputs Disabled	f = 10 MHz	6	6	7	pF

PARAMETER MEASUREMENT INFORMATION V_{CC} = 1.2V and 1.5V ± 0.1V

Figure 1. Load Circuit and Voltage Waveforms

Notes:

A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

- C. All input impulses are supplied by generators having the following characteristics: $PRR \le 10$ MHz, $Z_O = 50\Omega$, $t_R \le 2.0$ ns, $t_F \le 2.0$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}
- F. t_{PZL} and t_{PZH} are the same as t_{en}
- G. t_{PLH} and t_{PHL} are the same as t_{pd}

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8V \pm 0.15V$

Figure 2. Load Circuit and Voltage Waveforms

Notes:

A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

- C. All input impulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, $Z_0 = 50\Omega$, $t_R \leq 2.0$ ns, $t_F \leq 2.0$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}
- F. t_{PZL} and t_{PZH} are the same as t_{en}
- G. t_{PLH} and t_{PHL} are the same as t_{pd}

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5V \pm 0.2V$

Figure 3. Load Circuit and Voltage Waveforms

Notes:

A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

- C. All input impulses are supplied by generators having the following characteristics: $PRR \le 10$ MHz, $Z_O = 50\Omega$, $t_R \le 2.0$ ns, $t_F \le 2.0$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}
- F. t_{PZL} and t_{PZH} are the same as t_{en}
- G. t_{PLH} and t_{PHL} are the same as t_{pd}

PARAMETER MEASUREMENT INFORMATION

Figure 4. Load Circuit and Voltage Waveforms

Notes:

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input impulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, $Z_{\rm O} = 50\Omega$, $t_{\rm R} \leq 2.0$ ns, $t_{\rm F} \leq 2.0$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}
- F. t_{PZL} and t_{PZH} are the same as t_{en}
- G. t_{PLH} and t_{PHL} are the same as t_{pd}

Packaging Mechanical - 48-pin TSSOP (A-package)

Packaging Mechanical - 48-pin TVSOP (TSSOP) (K-package)

Ordering Information

Ordering Code	Description
PI74AVC+16245A	48-pin, 240-mil wide plastic TSSOP
PI74AVC+16245K	48-pin, 173-mil wide plastic TVSOP

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com