

RoHS

v06.0514

Typical Applications

The HMC346LC3B is ideal for:

- Test Instrumentation
- Fiber Optics & Broadband Telecom
- Microwave Radio & VSAT
- Military Radios, Radar, & ECM

Functional Diagram

HMC346LC3B

GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, DC - 18 GHz

Features

Wide Bandwidth: DC - 18 GHz Low Phase Shift vs. Attenuation 30 dB Attenuation Range Simplified Voltage Control RoHS Compliant 3 x 3 mm SMT Package

General Description

The HMC346LC3B is an absorptive Voltage Variable Attenuator (VVA) in a leadless "Pb free" RoHS compliant SMT mount ceramic package operating from DC - 18 GHz. It features an on-chip reference attenuator for use with an external op-amp to provide simple single voltage attenuation control, 0 to -3V. The device is ideal in designs where an analog DC control signal must control RF signal levels over a 30 dB amplitude range. The HMC346LC3B allows the use of surface mount manufacturing techniques.

Electrical Specifications, $T_{A} = +25^{\circ}$ C, 50 Ohm system

Parameter		Min	Typical	Max	Units
Insertion Loss	DC - 10 GHz DC - 14 GHz DC - 18 GHz		1.5 2.2 2.8	2.0 2.7 3.5	dB dB dB
Attenuation Range	DC - 12 GHz DC - 18 GHz	26 22	30 26		dB dB
Return Loss	DC - 18 GHz		10		dB
Input Power for 0.25 dB Compression (0.5 - 18 GHz)	Min. Atten: Atten. >2 dB:		+8 -4		dBm dBm
Input Third Order Intercept (0.5 - 18 GHz) (Two-tone Input Power = -8 dBm Each Tone)	Min. Atten: Atten. >2 dB:		+25 +10		dBm dBm
Switching Characteristics	tRISE, tFALL (10/90% RF): tON, tOFF (50% CTL to 10/90% RF):		2 8		ns ns

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v06.0514

Insertion Loss vs. Temperature

Return Loss vs. Attenuation

Relative Phase vs. Attenuation

*Two-tone input power = -8 dBm each tone, 1 MHz spacing.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Relative Attenuation

GaAs MMIC VOLTAGE-VARIABLE

ATTENUATOR, DC - 18 GHz

Relative Attenuation vs. Control Voltage @ 10 GHz

Input IP3 vs. Attenuation*

v06.0514

Input IP2 vs. Attenuation*

0.25 dB Compression vs. Attenuation

Second Harmonic vs. Attenuation, Pin = -8 dBm

GaAs MMIC VOLTAGE-VARIABLE

ATTENUATOR, DC - 18 GHz

20 15 INPUT P1dB (dBm) 10 5 0 dB (REF) C ... 6 dB -5 0 2 10 18 4 6 8 12 14 16 FREQUENCY (GHz)

1 dB Compression vs. Attenuation

*Two-tone input power = -8 dBm each tone, 1 MHz spacing.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v06.0514

GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, DC - 18 GHz

Absolute Maximum Ratings

RF Input Power	+18 dBm	
Control Voltage Range	+1 to -5V	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 1A	

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

NOTES:

1. PACKAGE BODY MATERIAL: ALUMINA

- 2. LEAD AND GROUND PADDLE PLATING: GOLD FLASH OVER Ni
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED
- TO PCB RF GROUND

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC346LC3B	Alumina, White	Gold over Nickel	MSL3 ^[1]	H346 XXXX

[1] Max peak reflow temperature of 260 $^\circ\text{C}$

[2] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v06.0514

GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, DC - 18 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 3, 7, 9	GND	Package bottom has exposed metal paddle that must also be connected to PCB RF ground.	
2, 8	RF1 RF2	This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required if the RF line potential is not equal to 0V.	
4, 6	V2, V1	Control input (master).	500
5	I	Control input (slave).	500
10, 11, 12	N/C	This pin may be connected to PCB RF/DC ground. Performance will not be affected.	

Single-Line Control Driver

External op-amp control circuit maintains impedance match while attenuation is varied. Input control ranges from 0 Volts (min. attenuation) to -3.0 Volts (max. attenuation.)

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v06.0514

GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, DC - 18 GHz

Evaluation PCB

List of Materials for Evaluation PCB 109741 [1]

Item	Description
J1 - J2	PCB Mount SMA RF Connector
J3 - J7	DC Pin
U1	HMC346LC3B VVA
PCB [2]	109739-1 Evaluation PCB

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Rogers 4350

The circuit board used in the application should be generated with proper RF circuit design techniques. Signal lines at the RF ports should be 50 Ohm impedance and the package ground leads and package bottom should be connected directly to the PCB RF ground plane, similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.