5V ECL Dual Differential Data and Clock D Flip-Flop With Set and Reset #### Description The MC100EL29 is a dual master-slave flip flop. The device features fully differential Data and Clock inputs as well as outputs. Data enters the master latch when the clock is LOW and transfers to the slave upon a positive transition on the clock input. The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open. The differential inputs have special circuitry which ensures device stability under open input conditions. When both differential inputs are left open the D input will pull down to V_{EE} and the \overline{D} input will bias around $V_{CC}/2$. The outputs will go to a defined state, however the state will be random based on how the flip flop powers up. Both flip flops feature asynchronous, overriding Set and Reset inputs. Note that the Set and Reset inputs cannot both be HIGH simultaneously. The 100 Series Contains Temperature Compensation #### **Features** - 1100 MHz Flip-Flop Toggle Frequency - 580 ps Propagation Delays - Q Output will Default LOW with Inputs Open or at V_{EE} - PECL Mode Operating Range: V_{CC} = 4.2 V to 5.7 V with V_{EE} = 0 V - NECL Mode Operating Range: V_{CC} = 0 V with V_{FE} = -4.2 V to -5.7 V - Internal Input Pulldown Resistors on D(s), CLK(s), S(s), and R(s). - ESD Protection: Human Body Model; > 2 kV, Machine Model; > 100 V - Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test - Moisture Sensitivity Level: Pb = 1 Pb-Free = 3 For Additional Information, see Application Note AND8003/D - Flammability Rating: UL 94 V-0 @ 1.125 in, Oxygen Index: 28 to 34 - Transistor Count = 313 devices - Pb-Free Package is Available* ### ON Semiconductor® http://onsemi.com SO-20 WB SUFFIX CASE 751D #### **MARKING DIAGRAM*** A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package *For additional marking information, refer to Application Note AND8002/D. #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. * All V_{CC} pins are tied together on the die. Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. Logic Diagram and Pinout: 20-Lead SOIC (Top View) **Table 1. PIN DESCRIPTION** | PIN | FUNCTION | |---------------------------------------|-------------------------------| | D0, D0 ; D1, D1 | ECL Differential Data Inputs | | R0-R1 | ECL Reset Inputs | | CLK0, CLK0; CLK1, CLK1 | ECL Differential Clock Inputs | | S0-S1 | ECL Set Inputs | | Q0, Q0 ; Q1, Q1 | ECL Differential Data Outputs | | V_{BB} | Reference Voltage Output | | V _{CC} | Positive Supply | | V _{EE} | Negative Supply | **Table 2. TRUTH TABLE** | R* | S* | D* | CLK* | Q | Q | |----|----|----|------|-------|-------| | L | L | L | Z | L | Н | | L | L | Н | Z | Н | L | | Н | L | X | Х | L | Н | | L | Н | X | Х | Н | L | | Н | Н | X | Х | Undef | Undef | Z = LOW to HIGH Transition **Table 3. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |-------------------|--|--|---|-------------|--------------| | V _{CC} | PECL Mode Power Supply | V _{EE} = 0 V | | 8 | V | | V _{EE} | NECL Mode Power Supply | V _{CC} = 0 V | | -8 | V | | VI | PECL Mode Input Voltage
NECL Mode Input Voltage | V _{EE} = 0 V
V _{CC} = 0 V | $\begin{array}{c} V_I \! \leq \! V_{CC} \\ V_I \! \geq \! V_{EE} \end{array}$ | 6
-6 | V
V | | I _{out} | Output Current | Continuous
Surge | | 50
100 | mA
mA | | I _{BB} | V _{BB} Sink/Source | | | ± 0.5 | mA | | T _A | Operating Temperature Range | | | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | −65 to +150 | °C | | θ_{JA} | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | SOIC-20
SOIC-20 | 90
60 | °C/W
°C/W | | $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case) | Standard Board | SOIC-20 | 30 to 35 | °C/W | | T _{sol} | Wave Solder Pb Pb-Free | | | 265
265 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. ^{*} Pins will default LOW when left open. Table 4. 100EL SERIES PECL DC CHARACTERISTICS V_{CC} = 5.0 V; V_{EE} = 0.0 V (Note 1) | | | | -40°C | | 25°C | | 85°C | | | | | |--------------------|--|------------|-------|------------|------------|------|------------|------------|------|------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 130 | 156 | | 130 | 156 | | 130 | 156 | mA | | I _{EE} | Power Supply Current | | 35 | 50 | | 35 | 50 | | 35 | 50 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | 3915 | 3995 | 4120 | 3975 | 4045 | 4120 | 3975 | 4050 | 4120 | mV | | V _{OL} | Output LOW Voltage (Note 2) | 3170 | 3305 | 3445 | 3190 | 3295 | 3380 | 3190 | 3295 | 3380 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 3835 | | 4120 | 3835 | | 4120 | 3835 | | 4120 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 3190 | | 3525 | 3190 | | 3525 | 3190 | | 3525 | mV | | V _{BB} | Output Voltage Reference | 3.62 | | 3.74 | 3.62 | | 3.74 | 3.62 | | 3.74 | V | | V _{IHCMR} | Common Mode Range
(Differential Configuration) (Note 3)
V _{PP} < 500 mV
V _{PP} ≥ 500 mV | 1.3
1.5 | | 4.6
4.6 | 1.2
1.4 | | 4.6
4.6 | 1.2
1.4 | | 4.6
4.6 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.8 V / -0.5 V. 2. Outputs are terminated through a 50 Ω resistor to V_{CC} 2.0 V. - 3. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP} min and 1 V. Table 5. 100E SERIES NECL DC CHARACTERISTICS $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 4) | | | | -40°C | | 25°C | | 85°C | | | | | |-----------------|--|--------------|-------|--------------|--------------|-------|--------------|--------------|-------|--------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 35 | 50 | | 35 | 50 | | 35 | 50 | mA | | V _{OH} | Output HIGH Voltage (Note 5) | -1085 | -1005 | -880 | -1025 | -955 | -880 | -1025 | -955 | -880 | mV | | V _{OL} | Output LOW Voltage (Note 5) | -1830 | -1695 | -1555 | -1810 | -1705 | -1620 | -1810 | -1705 | -1620 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | -1165 | | -880 | -1165 | | -880 | -1165 | | -880 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | -1810 | | -1475 | -1810 | | -1475 | -1810 | | -1475 | mV | | V _{BB} | Output Voltage Reference | -1.38 | | -1.26 | -1.38 | | -1.26 | -1.38 | | -1.26 | ٧ | | VIHCMR | Common Mode Range
(Differential Configuration) (Note 6)
V _{PP} < 500 mV
V _{PP} ≥ 500 mV | -3.7
-3.5 | | -0.4
-0.4 | -3.8
-3.6 | | -0.4
-0.4 | -3.8
-3.6 | | -0.4
-0.4 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 4. Input and output parameters vary 1:1 with V $_{CC}$. V $_{EE}$ can vary +0.8 V / -0.5 V. 5. Outputs are terminated through a 50 Ω resistor to V $_{CC}$ 2.0 V. - V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP} min and 1 V. Table 6. AC CHARACTERISTICS $V_{CC} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 7) | | | | -40°C | | 25°C | | | 85°C | | | | |--------------------------------------|---|------------|-------|------------|------------|-----|------------|------------|-----|------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | fmax | Maximum Toggle Frequency | | TBD | | | TBD | | | TBD | | GHz | | t _{PLH}
t _{PHL} | Propagation Delay CLK to Output S, R | 480
480 | | 680
700 | 500
500 | | 700
720 | 520
520 | | 720
740 | ps | | t _S
t _H | Setup Time
Hold Time | 0
100 | | | 0
100 | | | 0
100 | | | ps | | t _{RR} | Set/Reset Recovery | 100 | | | 100 | | | 100 | | | ps | | t _{PW} | Minimum Pulse Width CLK, Set, Reset | 400 | | | 400 | | | 400 | | | ps | | t _{JITTER} | Cycle-to-Cycle Jitter | | TBD | | | TBD | | | TBD | | ps | | V _{PP} | Input Swing (Note 8) | 150 | | 1000 | 150 | | 1000 | 150 | | 1000 | mV | | t _r
t _f | Output Rise/Fall Times Q
(20% – 80%) | 280 | | 550 | 280 | | 550 | 280 | | 550 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 7. V_{EE} can vary vary +0.8 V / −0.5 V. 8. V_{PP} (min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈40. Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.) #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|----------------------|-----------------------| | MC100EL29DW | SOIC-20 | 38 Units / Rail | | MC100EL29DWG | SOIC-20
(Pb-Free) | 38 Units / Rail | | MC100EL29DWR2 | SOIC-20 | 1000 / Tape & Reel | | MC100EL29DWR2G | SOIC-20
(Pb-Free) | 1000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### **Resource Reference of Application Notes** AN1405/D - ECL Clock Distribution Techniques AN1406/D - Designing with PECL (ECL at +5.0 V) AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit AN1504/D - Metastability and the ECLinPS Family AN1568/D - Interfacing Between LVDS and ECL AN1672/D - The ECL Translator Guide AND8001/D - Odd Number Counters Design AND8002/D - Marking and Date Codes AND8020/D - Termination of ECL Logic Devices AND8066/D - Interfacing with ECLinPS AND8090/D - AC Characteristics of ECL Devices #### PACKAGE DIMENSIONS #### **SO-20 WB** CASE 751D-05 **ISSUE G** - NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. - DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. - PHOTHOSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIMETERS | | | | | | | |-----|-------------|-------|--|--|--|--|--| | DIM | MIN | MAX | | | | | | | Α | 2.35 | 2.65 | | | | | | | A1 | 0.10 | 0.25 | | | | | | | В | 0.35 | 0.49 | | | | | | | С | 0.23 | 0.32 | | | | | | | D | 12.65 | 12.95 | | | | | | | E | 7.40 | 7.60 | | | | | | | е | 1.27 | BSC | | | | | | | Н | 10.05 | 10.55 | | | | | | | h | 0.25 | 0.75 | | | | | | | L | 0.50 | 0.90 | | | | | | | θ | 0° | 7 ° | | | | | | ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC). ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative