

Aug 1st , 2015

RE: LFPCN41226

To: Our Valued Customers

From: Littelfuse Product Management Team

Subject : LFPCN41226- Commercial TVS Datasheet Characterization

The existing TVS Diode datasheets have been showed in pdf on Littelfuse website or in printed version for years.

To describe the product's electrical parameters and performance more precisely, Littelfuse lab spent efforts to characterize the products and now include more information frequently being enquired in our datasheets. The released High Reliability and Automotive TVS Diode are excluded from these updates.

This is only datasheet update, and there is no change in the product itself. Design, manufacturing, testing, packing and all stay identical to before.

Thus no any changes to fit, form, shape and function of the finished product itself

The updated datasheet will be published to website In Oct 1st

Form, fit, function changes: None Part number changes: None Effective date: Oct 1st 2015 Replacement products: N/A Last time buy: N/A

This notification is for your information and acknowledgement. If you have any other questions or concerns, please contact Meng Wang, Assistant Product Manager.

We value your business and look forward to assisting you

Best Regards, Meng Wang Assistant Product Marketing Manager, Tel: +86 510 85277701, extension 7955 <u>Mwang3@littelfuse.com</u>

Littelfuse Semiconductor (Wuxi) Co., Ltd. East 3# Zhen Fa 6 Road Shuo Fang Industrial Park Wuxi, China Jiangsu 214142

PCN Report

Prepared By	: Changjun Tang, Production Engineer, Littelfuse Wuxi
Date	: July 10, 2015
Device	: All Commercial TVS product (except AK1, AK3, AK6, AK10)

1.0 Objective:

Re- characterizes the TVS products and update datasheet accordingly (Note: the products themselves do not have any change).

2.0 <u>Scope:</u>

TVS	Package	Product series
	SOD-123	SMF,
Surface Mount	DO-214AC	SMAJ,P4SMA,SMA6J
TVS	DO-221AC	SMA6L
103	DO-214AA	SMBJ,P6SMB,1KSMB,SACB
	DO-214AB	SMCJ,1.5SMC,SMDJ,3.0SMC,4.0SMDJ,5.0SMDJ,
Axial Leads TVS	DO-41	P4KE,
	DO-15	SA,SAC,P6KE
	DO-201	1.5KE,LCE
	P600	3KP,5KP,15KPA,20KPA,30KPA
		AK15

3.0 Update Description:

There are no any changes on TVS products themselves, just characterize the products and update the datasheet.

4.0 Electrical Characteristic Update Summary:

4.1 Parameter verification

Current Maximum Ratings and Thermal Characteristics {T _A =25°C unless otherwise noted}					New			
					Maximum Ratings and Thermal Characteristics (T _A =25°C unless otherwise noted)			
Parameter	Symbol	Value	Unit		Parameter	Symbol	Value	Unit
Peak Pulse Power Dissipation at T _A =25°C by 10/1000µs Waveform (Fig.2)(Note 1), (Note 2)	P _{ppm}	400	W	=(Peak Pulse Power Dissipation at T _L =25°C by 10/1000µs Waveform (Fig.2)(Note 1), (Note 2), (Note 5)	P _{PPM}	400	W
Power Dissipation on Infinite Heat Sink at T ₄ =50°C	P _{M(AV)}	3.3	w		Power Dissipation on Infinite Heat Sink at T_L =50°C	P _D	3.3	W
Peak Forward Surge Current, 8.3ms	I _{FSM}	40	A	⇒(Peak Forward Surge Current, 8.3ms Single Half Sine Wave (Note 3)	I _{FSM}	60	А
Single Half Sine Wave (Note 3) Maximum Instantaneous Forward Voltage at 25A for Unidirectional	V _F	3.5V/6.5			Maximum Instantaneous Forward Voltage at 25A for Unidirectional Only (Note 4)	V _F	3.5 <mark>/5.0</mark>	V
Only (Note 4)					Operating Temperature Range	Tj	-65 to 150	°C
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C]	=	Storage Temperature Range	T _{STG}	-65 to 175	°C
Typical Thermal Resistance Junction to Lead	R _{wL}	30	°C/W		Typical Thermal Resistance Junction to Lead	R _{uJL}	30	°C/W
Typical Thermal Resistance Junction	R _{UA}	120	°CAV		Typical Thermal Resistance Junction to Ambient	R _{uJA}	120	°C/W
to Ambient Non-repetitive current pulse, per Fig.4 and derat Mounted on 5.0x5.0mm copper pad to each terr Measured on 8.3ms single half sine wave or equidevice only.	l ed above T _a =2 ninal.	· ·	ectional	1 14 13	 Votes: Non-repetitive current pulse, per Fig.4 and derat Mounted on 5.0x5.0mm copper pad to each terr Measured on 8.3ms single half sine wave or equencies only. V, < 3.5V for single die parts and V,< 5.0V for st 	minal. uivalent squar	e wave for unidin	
. $\rm V_{p} < 3.5V$ for $\rm V_{BR} \leq 200V$ and $\rm V_{p} < 6.5V$ for $\rm V_{BR} \geq 100$	201 V.				5. The P _{PPM} of stacked-die parts is 600W and please stacked-die parts.	e contact littel	fuse [®] for the det	tail

A: Add new note to indicate the peak pulse power of stack dice parts. The affected product as below

TVS	Current	single	Stack	Example(400W SMAJ)
SMAJ/P4SMA	400	400	600	100
SMB/P6SMB	600	600	800	(M
SMC/1.5SMC	1500	1500	2000	10 Mer (1)
SMD	3000	3000	4000	stacked-die, 600W at 10x1000µs, 25°C
P4KE	400	400	600	I Single die,400W at 10x1000µs, 25°C
P6KE	600	600	800	stacked-die, 600W at 10x1000µs, 25°C Single die,400W at 10x1000µs, 25°C
1.5KE	1500	1500	2000	0.1 0.001 0.01 0.1 1 10
3KP	3000	3000	4000	t _a -Pulse Width (ms)

B: Update I_{FSM} level to 60A from 40A for SMA and P4KE.

Peak	Peak Forward Surge Current, 8.3ms Single Half Sine Wave					
TVS	Current datasheet Future datasheet					
SMA	40	60				
P4KE	40	60				

C: Update SMAJ/P4SMA VF to 3.5V/5V from 3.5V/6.5V

D: Separate surface mount products operating junction temperature and storage temperature (T_j:

TVS Series	Current Operating Temperature Range	Current Storage Temperature Range	New Operating Temperature Range	New Storage Temperature Range
SMF	-55~150°C	-55~150°C	-65~150°C	-65~175°C
SMAJ/P4SMA/SMA6J/SMA6L	-55~150°C	-55~150°C	-65~150°C	-65~175°C
SMBJ/P6SMB/SACB/1KSMB	-55~150°C	-55~150°C	-65~150°C	-65~175°C
SMCJ/1.5SMC/3.0SMC/4.0SMDJ	-55~150°C	-55~150°C	-65~150°C	-65~175℃
SMDJ	-55~150°C	-55~150°C	-65~150°C	-65~175℃
5.0SMDJ	-55~150°C	-55~150°C	-65~150°C	-65~175℃

-65C~150C, T_{STG} :-65C~175C), the affected products as below:

E: Update SMAJ/P4SMA series note "VF<3.5V for devices of VBR $\leq 200V$ and VF<6.5V for devices of VBR $\geq 201V$ " to "VF < 3.5V for single dice parts and VF< 5V for stacked dice parts"

Update the others series note "VF<3.5V for devices of VBR \leq 200V and VF<5V for devices of VBR \geq 201V " to "VF < 3.5V for single dice parts and VF< 5V for stacked dice parts"

4.2 Features

Cur	rent	New			
Features		Features			
 Excellent clamping capability Typical I_R less than 1µA above 12V For surface mounted applications to optimize board space Low profile package Typical failure mode is short from overspecified voltage or current Whisker test is conducted based on JEDEC JESD201A per its table 4a and 4c IEC-61000-4-2 ESD 15kV(Air), 8kV (Contact) ESD protection of data lines in accordance with IEC 61000-4-2 (IEC801-2) EFT protection of data lines in accordance with IEC 61000-4-4 (IEC801-4) Built-in strain relief 400W Peak pulsepower capability at 10/1000µs waveform, repetition rate (duty cycle): 0.01% 	 Fast response time: typically less than 1.0ps from 0 Volts to V_{BR} min Glass passivated junction Low inductance High temperature soldering: 260°C/40 seconds at terminals V_{BR} @T_J= V_{BR}@25°C × (1 + α T × (T_J-25)) (α T:Temperature Coefficient) Plastic package has underwriters laboratory flammability 94V-0 Meet MSL level1, per J-STD-020, LF maximun peak of 260°C Matte tin lead-free Plated Halogen free and RoHS compliant 2nd level interconnect is Pb-free per IPC/JEDEC J-STD-609A.01 	 Excellent clamping capability Low incremental surge resistance Typical I_R less than 1µA when V_{BR} min>12V For surface mounted applications to optimize board space Low profile package Typical failure mode is short from over-specified voltage or current Whisker test is conducted based on JEDEC JESD201A per its table 4a and 4c IEC-61000-4-2 ESD (30kV(Air), 30kV (Contact) ESD protection of data lines in accordance with IEC 61000-4-2 (IEC801-2) EFT protection of data lines in accordance with IEC 61000-4-4 (IEC801-4) Built-in strain relief 400W peak pulse power capability at 10/1000µs waveform, repetition rate (duty cycles):0.01% 	 Fast response time: typically less than 1.0ps from 0V to BV min High temperature to reflow soldering guaranteed: 260°C/40sec V_{BR} @ T_J = V_{BR}@25°C x (1+ a T x (T_J - 25)) (a T:Temperature Coefficient, typical value is 0.1%) Plastic package has underwriters laboratory flammability 94V-O Meet MSL level1, per J-STD-020, LF maximun peak of 260°C Matte tin lead-free Plated Halogen-free and RoHS compliant 2nd level interconnect is Pb-free per IPC/JEDEC J-STD-609A.01 		

Expertise Applied | Answers Delivered

5. Figures

Figure - Peak Pulse Power Rating Curve

5.1 Add one curve to specify stack-die parts pulse power.

TVS	Current	Future single Parts Power	Future Stack Parts Power	Example(SMAJ/P4SMA)
SMAJ/P4SMA	400	400	600	5
SMBJ/P6SMB	600	600	800	Current:
SMC/1.5SMC	1500	1500	2000	Current:
SMDJ	3000	3000	4000	0.1 0.00001 0.00001 0.00001 0.0001
P4KE	400	400	600	1,-Pulse Width (sec.)
P6KE	600	600	800	
1.5KE	1500	1500	2000	stacked-die, 600W at 10x1000µs, 25°C
3KP	3000	3000	4000	New:
1.5KE	1500	1500	2000	0.01 0.01 0.1 1 10 0.001 0.01 0.1 1 10 t_Pulse Width (ms)

5.2 Update SAC series peak pulse power rating curve

5.3 Update SA series peak pulse power rating curve.

> Figure - Pulse Derating Curve

5.4 Update the derating curve.

	Pulse Derating Curve					
	Current Power	New Power				
TVS	Rating@Tjmax	Rating@Tjmax		Example(SMAJ/P4SMA)		
SMAJ/P4SMA	0%	60%		~ 105		
SMA6J/SMA6L	0%	40%		1 I I I I I I I I I I I I I I I I I I I		
SACB	0%	60%	Currenti	C officer and the second secon		
SMBJ/P6SMB	0%	60%	Current:	a spoor of		
1KSMB	0%	60%		Data Fluide Plane (Fa.) or Charted (Inc.) Destings in Fernandige 5. 09 09 09		
SMCJ/1.5SMC	0%	60%		6. 0 25 50 75 100 125 150 175 T₂-Vinbienitemperature (°C)		
SMDJ	0%	50%		Manager and reading of the		
3.0SMC	0%	50%		(**))1 100		
4.0SMDJ	0%	50%		ar Curren Rage %		
5.0SMDJ	0%	50%	New:	o ("ed Jaw		
P4KE	0%	50%	New.	Presk Fulse Prese (P _a) to Current (L _a) Detecting in Percentage 4.		
SA	0%	50%		0		
SAC	0%	60%		0 25 50 75 100 125 150 175 T ₂ - Initial Junction Temperature (°C)		
P6KE	0%	50%				
1.5KE	0%	50%	1			
LCE	0%	60%	1			
3KP	0%	50%	1			
5KP	0%	50%	1			
15KP	0%	50%	1			
20KP	0%	50%	1			
30KP	0%	50%	1			

> Figure - Typical Junction Capacitance

5.5 Update capacitance curve

The affected TVS product list as below,

TVS	Package	Product series
	SOD-123	SMF,
Surface Mount	DO-214AC	SMAJ,P4SMA,SMA6J
TVS	DO-221AC	SMA6L
103	DO-214AA	SMBJ,P6SMB,1KSMB
	DO-214AB	SMCJ,1.5SMC,SMDJ,3.0SMC,5.0SMDJ,
	DO-41	P4KE,
Axial Leads	DO-15	SA,P6KE
TVS	DO-201	1.5KE,
	P600	3KP,5KP,15KPA,20KPA,30KPA

Examples as below:

5.6 Remove steady state power derating curve as the application is not recommended for TVS The affected TVS product list as below:

TVS	Package	Product series
	SOD-123	SMF,
Surface Mount	DO-214AC	SMAJ,P4SMA,SMA6J,
TVS	DO-221AC	SMA6L
105	DO-214AA	SMBJ,P6SMB,1KSMB
	DO-214AB	SMCJ,1.5SMC,SMDJ,3.0SMC,4.0SMDJ,5.0SMDJ,
	DO-41	P4KE,
Axial Leads TVS	DO-15	SA,P6KE
	DO-201	1.5KE,LCE
	P600	3KP,5KP,15KPA,20KPA,30KPA

5.7 Add new figure - Typical Transient Thermal Impedance

The affected TVS product list as below:

TVS	Package	Product series
Surface Mount	DO-214AC	SMAJ,P4SMA,SMA6J,
	DO-214AA	SMBJ,P6SMB,1KSMB
TVS	DO-214AB	SMCJ,1.5SMC,SMDJ,3.0SMC,4.0SMDJ,5.0SMDJ,
Axial Leads TVS	DO-41	P4KE,
	DO-15	SA,P6KE
	DO-201	1.5KE,
	P600	3KP,5KP,15KPA,20KPA,30KPA

Examples as below:

> Figure - Maximum Non-Repetitive Forward Surge Current Uni-Directional Only

5.8 Update maximum forward surge current (uni-directional only)

The affected TVS product list as below:

TVS	Package	Product series				
Surface Mount TVS	SOD-123	SMF,				
	DO-214AC	SMAJ,P4SMA,SMA6J,				
	DO-214AB	SMCJ,1.5SMC,SMDJ,3.0SMC,4.0SMDJ,5.0SMDJ,				
Axial Leads TVS	DO-41	P4KE,				
	DO-15	SA,P6KE				
	DO-201	1.5KE,				
	P600	3KP,5KP,15KPA,20KPA,30KPA				

Examples as below:

> Figure - Peak forward voltage drop versus peak forward current(typical values)

5.9 Add new figure (only apply to uni-directional TVS)

The affected TVS product list as below,

TVS	Package	Product series				
	SOD-123	SMF,				
Surface Mount	DO-214AC	SMAJ,P4SMA,SMA6J				
TVS	DO-221AC	SMA6L				
172	DO-214AA	SMBJ,P6SMB,1KSMB				
	DO-214AB	SMCJ,1.5SMC,SMDJ,3.0SMC,4.0SMDJ,5.0SMDJ,				
	DO-41	P4KE,				
Avial Loada	DO-15	SA,P6KE				
Axial Leads TVS	DO-201	1.5KE				
1 1 1 3	P600	3KP,5KP,15KPA,20KPA,30KPA				
		AK15				

Examples as below:

<u>6. Environmental Specification</u>(Surface mount TVS RSH specification updated to JESD22-A111 from JESD22-B106.)

Environmental Specificatio	ns		Environmental Specifications						
High Temp. Storage	JESD22-A103		High Temp. Storage	JESD22-A103					
HTRB	JESD22-A108		HTRB	JESD22-A108					
Temperature Cycling	JESD22-A104		Temperature Cycling	JESD22-A104					
MSL	JEDEC-J-STD-020, Level 1	 →	MSL	JEDEC-J-STD-020, Level 1					
H3TRB	JESD22-A101		H3TRB	JESD22-A101					
RSH	JESD22-B106		RSH	JESD22-A111					

7. Add AK15 10x350us surge parameter

Part Numbers	Part Marking	Standoff Voltage (V _{so}) Volts	Max. Reverse Leakage (I _n) @V _{so} (µA)		Reverse Breakdown Voltage (V _{BR}) @ I _T		Test Current I _T	Max. Clamping Voltage V _{ct} @ Peak Pulse Current (I _{pp})		Max. Temp Coefficient of V _{BR}		Approval	
					Min Volts	Max Volts	(mA)	V _{cL} Volts	Ι _{ρρ} (8/20μS) (A)	Ι _ρ (10/350μS) (A)	(%/ºC)	(nF)	7 1°
AK15 - 058C	15 - 058C	58	10	15	64	70	10	110	15,000	2,000	0.1	12	Х
AK15 - 066C	15 - 066C	66	10	15	72	80	10	120	15,000	2,000	0.1	10	Х
AK15 - 076C	15 - 076C	76	10	15	85	95	10	150	15,000	2,000	0.1	10	Х

8. Approvals:

Changjun Tang TVS Product Engineer Littelfuse Semiconductor (Wuxi) Co., Ltd. Zhiwei Wang Product Engineering Manager Littelfuse Semiconductor (Wuxi) Co., Ltd.

LFPCN41226 Affected Parts List
Material Series
SMF
SMAJ
P4SMA
SMA6J
SMA6L
SMBJ
P6SMB
1KSMB
SACB
SMCJ
1.5SMC
SMDJ
3.0SMC
4.0SMDJ
5.0SMDJ
P4KE
SA
SAC
P6KE
1.5KE
LCE
3KP
5KP
15KPA
20KPA
30KPA
AK15