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RM0380
Reference manual

STLUX and STNRG digital controllers designed for lighting and
power conversion

Introduction

This reference manual provides complete information for application developers on how to 
use the STLUX and STNRG family of digital controllers.

The STLUX™ family of controllers is a part of the STMicroelectronics® digital devices 
tailored for lighting applications. The STLUX controllers have been successfully integrated 
in a wide range of architectures and applications, starting from simple buck converters for 
driving multiple LED strings, boost for power factor corrections, half-bridge resonant 
converters for high power dimmable LED strings and up to full bridge controllers for HID 
lamp ballasts. STLUX natively supports the DALI via the internal DALI communication 
module (DCM). DALI is a serial communication standard used in the lighting industry.

STNRG devices are a part of the STNRG family of STMicroelectronics digital devices 
designed for advanced power conversion applications. The STNRG improves the design of 
the STLUX™ family to support industrial power conversion applications such as PFC+LLC, 
interleaved LC DC-DC, interleaved PFC for smart power supplies as well as the full bridge 
for pilot line drivers for electric vehicles.

The heart of the STLUX (and consequently STNRG where not differently specified) is the 
SMED (“State Machine, Event Driven”) technology which allows the device to operate 
several independently configurable PWM clocks with an up to 1.3 ns resolution. An SMED is 
a powerful autonomous state machine which is programmed to react to both external and 
internal events and may evolve without any software intervention. The SMED even reaction 
time can be as low as 10 ns, giving the STLUX the ability of operating in time critical 
applications.

The SMEDs are configured and programmed via the STLUX internal low-power 
microcontroller (STM8). The STM8 controller extends the STLUX reliability and guarantees 
more than 15 years of both operating lifetime and memory data retention to the program and 
data memory after cycling. The STM8 device also provides powerful processing while 
maintaining the advantages of the CISC architecture, a 24-bit linear addressing mode, an 8-
bit data bus and an optimized architecture for low power applications. 

The STLUX controller 1.8 V core voltage is provided by an internal power supply DC 
regulator in order to simplify and reduce the application design and cost. 

The STLUX device has an embedded low power, low voltage, single voltage Flash program 
memory designed for reliability. The same technology provides an embedded true RWW 
data EEPROM dedicated area and dedicated 128 byte data used for the IC configuration.

This manual describes how to program the SMED and the STM8 companion controller.

Refer to the product datasheets for ordering information, pin description, mechanical and 
electrical device characteristics, and for specific peripherals and implementation details.

www.st.com
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1 Reference documents

• For hardware information on the STLUX controller and product specific SMED 
configuration, please refer to the STLUX product datasheets for STLUX385A, 
STLUX383A, STLUX325A and STLUX285A.

• For hardware information of the STNRG controller and product specific SMED 
configuration, please refer to the STNRG product datasheets for STNRG388A, 
STNRG328A and STNRG288A.

• For information on programming, erasing and protection of the internal Flash memory 
please refer to the programming manual PM0051 - “How to program STM8S and 
STM8A Flash program memory and data EEPROM”.

• For information about the debug module and SWIM (single wire interface module) refer 
to the STM8 SWIM communication protocol and debug module user manual 
(UM0470).

• For information on the STM8 core and assembler instruction please refer to the STM8 
CPU programming manual (PM0044).

• For information on the development tools please refer to the UM1792.

2 Acronyms

The following is a list of acronyms used in this document:

         

Table 1. Acronym descriptions

Acronym Description

ACU Analog comparator unit

ADC Analog-to-digital converter

AWU Auto-wakeup unit

BL Bootloader - used to load the user program without the emulator

CKC Clock control unit

CPU Central processing unit

CSS Clock security system

DAC Digital-to-analog converter

DALI Digital addressable lighting interface

ECC Error Correction Code

FSM Finite state machine

FW Firmware loaded and running on the CPU

GPIO General purpose input/output

HSE High-speed external crystal - ceramic resonator

HSI High-speed internal RC oscillator
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I2C Inter-integrated circuit interface

IAP In-application programming

ICP In-circuit programming

ITC Interrupt controller

IWDG Independent watchdog

LSI Low-speed internal RC oscillator

MCU Microprocessor central unit

MSC Miscellaneous

PM Power management

RFU Reserved for future use

ROP Read-out protection

RST Reset control unit

RTC Real-time clock

SMED State machine, event driven

STMR System timer

SW Software is the firmware loaded and running on the CPU (synonymous of FW)

SWIM Single wire interface module

UART Universal asynchronous receiver transmitter

WWDG Window watchdog

Table 1. Acronym descriptions (continued)

Acronym Description
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3 Register model

Table 2 shows an outline picture of the register abbreviations used in this document.

         

Table 2. Register abbreviations

Abbreviation Description

read/write (rw) or (r/w) Software can read and write to these bits.

read only (r, ro) Software can only read these bits.

write only (w, wo)
Software can only write to this bit. Reading the bit returns a meaningless 
value.

read/write clear (r/wc) SW reads and writes clear.

read/write clear (r/w0) SW reads and writes clear when writing-bit 0.

read/write clear (r/w1) SW reads and writes clear when writing-bit 1.

read/write once (rwo)
Software can only write once to this bit and can also read it at any time. Only 
a reset can return the bit to its reset value.

read/clear (rc/w1)
Software can read as well as clear this bit by writing 1. Writing ‘0’ has no 
effect on the bit value.

read/clear (rc/w0)
Software can read as well as clear this bit by writing 0. Writing ‘1’ has no 
effect on the bit value.

read/set (rs)
Software can read as well as set this bit. Writing ‘0’ has no effect on the bit 
value.

read/write0 (r/w0)
Software can read and writing '0'. Writing '1' has to be avoiding for future 
product compatibility.
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4 Description

The STLUX and STNRG device families generate and control PWM signals by means of a 
state machine, called SMED (state machine event driven). Figure 1 gives an overview of the 
internal architecture.

Figure 1. STNRG high level view

The core of the device is the SMED unit: a hardware state machine driven by system 
events. The SMED includes 4 states (S0, S1, S2 and S3) available during running 
operations. A special HOLD state is provided as well. 

The SMED allows the user to configure, for every state, which system events will trigger a 
transaction to a new state.

During a transaction from one state to the other, the PWM output signal level can be 
updated.

Once a SMED is configured and running, it becomes an autonomous unit, so no interaction 
is required since the SMED automatically reacts to system events.

Thanks to the SMED's 96 MHz operating frequency and their automatic dithering function, 
the PWM maximum resolution is 1.3 ns.

The device has 6 SMEDs available. Multiple SMEDs can operate independently from each 
other or they can be grouped together to form a more powerful state machine.
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4.1 STLUX/STNRG feature comparison

The following table summarizes the differences between the STLUX and STNRG family of 
products

Table 3. STLUX/STNRG feature comparison

Feature
Device

STLUX STNRG

Max. pin count 38

SMED available 6

Max. SMED PWM output pins 6

Max. fast digital inputs pins 6

Max. positive comparator input pin 4

Max. negative comparator input pins 1 3

Comparator hysteresis No Yes

Internal DACs 4

Max. ADC input pins 8

Max. ADC gain x1 – x4

ADC hardware trigger No Yes

Max. GPIO port 0 pins 6

Communication

UART peripheral Yes

DALI peripheral Yes No

I2C peripheral Yes

HSE function Yes

Timers

System timer 1

Auxiliary timer 1

Basic timer No 2

Auto-wakeup timer 1

Watchdog
Window watchdog timer 1

Independent watchdog timer 1

Flash program memory 32 Kb

EEPROM data memory 1 Kb

RAM 2 Kb 6 Kb
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5 Central processing unit (CPU)

5.1 CPU introduction

The CPU is based on an 8-bit CISC architecture optimized for code efficiency and 
performance. The CPU is able to execute 80 basic instructions. It features 20 addressing 
modes and can address six internal registers. For the complete description of the instruction 
set, refer to the STM8 microcontroller family programming manual (PM0044).

5.2 CPU architecture overview

5.2.1 Architecture and registers

• Harvard architecture

• 3-stage pipeline

• 32-bit wide program memory bus - single cycle fetching for most instructions

• X and Y 16-bit index registers - enabling indexed addressing modes with or without 
offset and read-modify-write type data manipulations

• 8-bit accumulator

• 24-bit program counter - 16-Mbyte linear memory space

• 16-bit stack pointer - access to a 64-K-level stack

• 8-bit condition code register - 7 condition flags for the result of the last instruction

5.2.2 Addressing mode

• 20 addressing modes

• Indexed indirect addressing mode for look-up tables located anywhere in the address 
space

• Stack pointer relative addressing mode for local variables and parameter passing

5.2.3 Instruction set

• 80 instructions with 2-byte average instruction size

• Standard data movement and logic/arithmetic functions

• 8-bit by 8-bit multiplication

• 16-bit by 8-bit and 16-bit by 16-bit divisions

• Bit manipulation

• Data transfer between stack and accumulator (push/pop) with direct stack access

• Data transfer using the X and Y registers or direct memory-to-memory transfers

5.3 CPU registers description

The six CPU registers are shown in the programming model in Figure 2. Following an 
interrupt, the registers are pushed onto the stack in the order shown in Figure 2; they are 
popped from the stack in the reverse order.
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5.3.1 Accumulator (A)

The accumulator is an 8-bit general purpose register used to hold operands and the results 
of the arithmetic and logic calculations as well as data manipulations.

5.3.2 Index registers (X and Y)

These are 16-bit registers used to create effective addresses. They may also be used as 
a temporary storage area for data manipulations and have an inherent use for some 
instructions (multiplication/division). In most cases, the cross assembler generates 
a PRECODE instruction (PRE) to indicate that the following instruction refers to the 
Y register.

5.3.3 Program counter (PC)

The program counter is a 24-bit register used to store the address of the next instruction to 
be executed by the CPU. It is automatically refreshed after each processed instruction. As 
a result, the STM8 core can access up to 16 Mbytes of memory.

Figure 2. CPU register model

5.3.4 Stack pointer (SP)

The stack pointer is a 16-bit register. It contains the address of the next free location of the 
stack. The register initialization value is detailed in the product datasheet.

The stack is used to save the CPU context of subroutine calls or interrupts. The user can 
also directly use it through the POP and PUSH instructions. 

Note: The stack pointer can be initialized by the startup function provided with the C compiler. For 
applications written in C language, the initialization is then performed according to the 
address specified in the linker file. If you use your own linker file or the startup file, make 
sure the stack pointer is initialized properly (with the address given in the product 
datasheets). For applications written in other languages, be sure to properly initialize the 
stack pointer.
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The stack pointer is decremented after data has been pushed onto the stack and 
incremented after data are popped from the stack. It is up to the application ensuring that 
the lower limit is never exceeded.

A subroutine call occupies two or three byte locations. An interrupt occupies nine byte 
locations to store all the internal registers (except SP). For more details refer to Figure 3.

Note: The WFI/HALT instructions save the context in advance. If an interrupt occurs while the 
CPU is in one of these modes, the latency is reduced.

Figure 3. Stacking order
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5.3.5 Condition code register (CC)

The condition code register is an 8-bit register which indicates the result of the instruction 
just executed as well as the state of the processor. The 6th bit (MSB) of this register is 
reserved. These bits can be individually tested by a program and specified action taken as 
a result of their state. The following paragraphs describe each bit:

V: overflow

When set, V indicates that an overflow occurred during the last signed arithmetic 
operation on the MSB result bit. Refer to the INC, INCW, DEC, DECW, NEG, NEGW, 
ADD, ADDW, ADC, SUB, SUBW, SBC, CP, and CPW instructions.

I1: interrupt mask level 1

The I1 flag works in conjunction with the I0 flag to define the current interrupt level as 
shown in Table 4. These flags can be set and cleared by software through the RIM, 
SIM, HALT, WFI, IRET, TRAP, and POP instructions and are automatically set by 
hardware when CPU enters into an interrupt service routine (ISR).

         

H: half carry bit

The H bit is set to 1 when a carry occurs between the bits 3 and 4 of the ALU during an 
ADD or ADC instruction. The H bit is useful in BCD arithmetic subroutines.

I0: interrupt mask level 0

Refer to Flag I1 bit field description.

N: negative

When set to 1, this bit indicates that the result of the last arithmetic, logical or data 
manipulation is negative (i.e. the most significant bit is at logic 1).

Z: zero

When set to 1, this bit indicates that the result of the last arithmetic, logical or data 
manipulation is zero.

Table 4. Interrupt priority level

Interrupt Priority I1 I0

Interruptible level 0 (main)
Lowest

↓

Highest

1 0

Interruptible level 1 0 1

Interruptible level 2 0 0

Non interruptible level 3 1 1
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C: carry

When set, C indicates that a carry or borrow out of the ALU occurred during the last 
arithmetic operation on the MSB operation result bit. This bit is also affected during bit 
test, branch, shift, rotate and load instructions. Refer to the ADD, ADC, SUB, and SBC 
instructions.

In a division operation, C indicates if trouble occurred during execution (quotient 
overflow or zero division). See the DIV instruction.

In bit test operations, C is the copy of the tested bit. See the BTJF and BTJT 
instructions. In shift and rotate operations, the carry is updated. Refer to the RRC, RLC, 
SRL, SLL, and SRA instructions.

This bit can be set, reset or complemented by software using the SCF, RCF, and CCF 
instructions.

Figure 4. Addition example

5.4 Core registers description

5.4.1 A (accumulator)

Offset: 0x00

Default value: 0x00

         

Bit 7-0: A[7:0] accumulator

The accumulator is an 8-bit general purpose register used to hold operands and the 
results of the arithmetic and logical calculations as well as data manipulations.

7 6 5 4 3 2 1 0

A [7:0]

r/w
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5.4.2 PCE (program counter)

Offset: 0x01

Default value: 0x00

         

Bit 7-0: PC[23:16] program counter upper byte

This is the upper byte of the 24-bit register program counter used to store the address 
of the next instruction to be executed by the CPU. It's automatically refreshed after 
each processed instruction. As a result, the core can access up to 16-Mbyte of 
memory.

5.4.3 PCH (program counter)

Offset: 0x02

Default value: 0x60

         

Bit 7-0: PC[15:8] program counter middle byte

This is the middle byte of the 24-bit register program counter.

5.4.4 PCL (program counter)

Offset: 0x03

Default value: 0x00

         

Bit 7-0: PC[7:0] program counter lower byte

This is the lower byte of the 24-bit register program counter. 

5.4.5 XH (X-index)

Offset: 0x04

Default value: 0x00

         

7 6 5 4 3 2 1 0

PC [23:16]

r/w

7 6 5 4 3 2 1 0

PC [15:8]

r/w

7 6 5 4 3 2 1 0

PC [7:0]

r/w

7 6 5 4 3 2 1 0

X[15:8]

r/w
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Bit 7-0: X[15:8] index X upper byte

This is the upper byte of the index register used to create effective addresses or as 
a temporary storage area for data manipulations.

5.4.6 XL (X-index)

Offset: 0x05

Default value: 0x00

         

Bit 7-0: X[7:0] index X lower byte

This is the lower byte of the index register used to create effective addresses or as 
a temporary storage area for data manipulations.

5.4.7 YH (Y-index) 

Offset: 0x06

Default value: 0x00

         

Bit 7-0: Y[15:8] index Y upper byte

This is the upper byte of the index register used to create effective addresses or as 
a temporary storage area for data manipulations. In most of the cases the cross 
assembler generates a PRECODE instruction to indicate that the following instruction 
refers to the Y register.

5.4.8 YL (Y-index)

Offset: 0x07

Default value: 0x00

         

Bit 7-0: Y[7:0] index Y lower byte

This is the lower byte of the index register used to create effective addresses or as 
a temporary storage area for data manipulations. In most of the cases the cross 
assembler generates a PRECODE instruction to indicate that the following instruction 
refers to the Y register.

7 6 5 4 3 2 1 0

X[7:0]

r/w

7 6 5 4 3 2 1 0

Y[15:8]

r/w

7 6 5 4 3 2 1 0

Y[7:0]

r/w
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5.4.9 SPH (stack pointer)

Offset: 0x08

Default value: refer to the product datasheet

         

Bit 7-0: SP[15:8] stack pointer upper byte

This is the upper byte of the 16-bit register stack pointer used to point the address of 
the next free location of the stack. The stack is used to save the CPU context on 
subroutine calls or interrupts. The user can also directly use it through the POP and 
PUSH instructions. Two arithmetic operations (ADD/SUB) are also possible using the 
stack pointer.

5.4.10 SPL (stack pointer)

Offset: 0x09

Default value: refer to the product datasheet

         

Bit 7-0: SP[7:0] stack pointer lower byte

This is the lower byte of the 16-bit register stack pointer used to point the address of 
the next free location of the stack. The stack is used to save the CPU context on 
subroutine calls or interrupts. The user can also directly use it through the POP and 
PUSH instructions. Two arithmetic operations (ADD/SUB) are also possible using the 
stack pointer.

5.4.11 CC (code condition)

Offset: 0x0A

Default value: 0x28

         

The condition code register is an 8-bit register which indicates the result of the instruction 
just executed as well as the state of the processor. These bits can be individually tested by 
a program and specified action can be taken as a result of their state.

For bit detailed explanation refer to Section 5.3.5: Condition code register (CC) on page 29.

7 6 5 4 3 2 1 0

SP[15:8]

r/w

7 6 5 4 3 2 1 0

SP[7:0]

r/w

7 6 5 4 3 2 1 0

V 0 I1 H I0 N Z C

r r r r r r r r
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5.5 CPU register map

The CPU registers are mapped in the STLUX address space as shown in Table 5. These 
registers can only be accessed by the debug module but not by memory access instructions 
executed in the core; for detailed register description refer to Section 5.4.

         

5.6 Global configuration register description (CFG_GCR)

5.6.1 SWIM disable

By default, after a MCU reset, the SWIM pin is configured to allow communication with an 
external tool for debugging or Flash/EEPROM programming. This pin can be disabled from 
the user application by setting the SWD bit in the CFG_GCR register.

5.6.2 Global configuration descriptions

CFG_GCR (global configuration register)

Offset: 0x00

Default value: 0x00

         

Table 5. CPU register map

Registers overview

Name Description Offset Type(1)

1. The CPU registers are accessible only by the debug interface.

Reset value

A Accumulator register 0x00 R 0x00

PCE Program counter extend 0x01 R 0x00

PCH Program counter high 0x02 R 0x60

PCL Program counter low 0x03 R 0x00

XH X index register MSB 0x04 R 0x00

XL X index register LSB 0x05 R 0x00

YH Y index register MSB 0x06 R 0x00

YL Y index register LSB 0x07 R 0x00

SPH Stack pointer MSB 0x08 R (2)

2. For the register initialization and base address refer to the product datasheet.

SPL Stack pointer LSB 0x09 R (2)

CC Condition code register 0x0A R 0x28

7 6 5 4 3 2 1 0

HSIT RFU RFU RFU RFU RFU AL SWD

r/w r r r r r r/w r/w
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Bit 0: SWD SWIM I/O mode control

This bit is set and cleared by SW:

0: SWIM mode enable (this bit should be kept 0 in case of the debug phase).

1: SWIM mode disable (currently this selection simply disconnect the SWIM interface 
signal from the external pin).

Bit 1: AL activation level

0: main activation level, the IRET will cause the context to be retrieved from the stack 
and the main program will continue after the WFI instruction.

1: interrupt only activation level, the IRET will cause the CPU to go back to the 
WFI/HALT mode without restoring the context. The saved internal registers context will 
be marked as invalid in case of an event wakeup at a later moment.

Bit 6-2: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 7: HSIT high-speed oscillator trimmed

This bit is read/write. It indicates that the SWIM can work in the high-speed mode 
(when the HSI trimming is done by SW). It is reset by an external reset.

0: HSI not trimmed.

1: HSI trimmed. 



Debug architecture RM0380

36/335 DocID026249 Rev 1

6 Debug architecture

6.1 Introduction

The in-circuit debugging mode or the in-circuit programming mode are managed through a 
single wire hardware interface featuring ultrafast memory programming. Coupled with an in-
circuit debugging module, it also offers a non-intrusive emulation mode, making the in-circuit 
debugger extremely powerful, close in performance to a full-featured emulator.

The embedded in-circuit debug module consists of two major functional subblocks:

• SWIM: single wire interface

• DM: debug module

Figure 5. In-circuit debug block diagram

6.2 Single wire interface module (SWIM)

After a power-on reset, the SWIM is reset and enters the OFF mode.

1. OFF: default state after power-on reset. The SWIM pin cannot be used by the 
application as an I/O.

2. SWIM: this state is entered when a specific sequence is performed on the SWIM pin. In 
this state, the SWIM pin is used by the host tool to control the STLUX with 3 commands 
(SRST system reset, ROTF read on the fly, WOTF write on the fly).

Note: Refer to the STM8 SWIM communication protocol and debug module user manual for 
description of the SWIM protocol.
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6.3 SWIM main features

• Single wire communication based on an asynchronous open drain bidirectional line

• Non-intrusive read/writes to RAM and peripherals

• Interface enabled in the all IC operating mode

6.4 SWIM register description

This register is accessible only from the SWIM debug interface; the CPU cannot access this 
register space.

SWIM_CSR (SWIM control register)

Offset: 0x00

Default value: 0x00

         

Bit 0: SWIM_PRI SWIM direct memory access priority.

Usually the SWIM accesses to system resources are non-intrusive.

0: SWIM has the lowest priority.

1: SWIM has the highest priority.

Bit 1: OBL option byte loading done

0: option byte loading not done.

1: option byte loading done.

Bit 2: RST SWIM reset control bit

0: SWIM is not reset when an SRST command occurs.

1: SWIM is reset when an SRST command occurs. SWIM will re-enter the OFF mode.

Bit 3: OSCOFF oscillators control bit

0: 16 MHz oscillator remains ON in the Halt mode.

1: 16 MHz oscillator is not requested ON in the Halt mode.

Bit 4: HS high-speed.

The speed change occurs when the communication is IDLE.

0: slow speed bit format.

1: high-speed bit format.

Bit 5: SWIM_DM SWIM for debug module.

0: the SWIM module can access only the SWIM_CSR register. The SWIM reset 
command has no effect.

1: the whole memory range can be accessed with the ROTF and WOTF commands.

The SRST command generates a reset.

7 6 5 4 3 2 1 0

SAFE_MASK NO_ACCESS SWIM_DM HS OSCOFF RST OBL SWIM_PRI

r/w r r/w r/w r/w r/w r r/w
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Bit 6: NO_ACCESS bus not accessible

0: the bus is accessible.

1: the device is in the HALT/WFI mode, or the readout protection is set.

Bit 7: SAFE_MASK: mask internal RESET sources.

0: internal reset sources are not masked.

1: internal reset sources are masked.

6.5 SWIM register map

Table 6 shows the SWIM internal register; for a detailed register description refer to 
Section 6.4: SWIM register description.

         

Note: This register is accessible only by the SWIM debug interface; the CPU cannot configure this 
register space.

6.6 Debug module

The debug module (DM) allows the developer to perform certain debugging tasks without 
using an emulator. For example, the DM can interrupt the MCU to break infinite loops or 
output the core context (stack) at a given point. The debug module is mainly used for the IC 
in-circuit debugging.

6.7 DM main features

• Two conditional breakpoints (break on instruction fetch, data read or write, stack 
access, etc.).

• Step-by-step mode

• External abort capability through SWIM

• Watchdog and peripherals control

• Monitor, RESET and abort status flags

• DM version identification capability

• IT vector table selection

• Multi debug module configuration capability

Some peripherals can be frozen (clock gate) when the CPU enters into the debug mode 
through the DM_ENFCT register (for details refer to register program model in 
Section 6.8.11: DM_ENFCT (DM enable function register) on page 44).

Table 6. SWIM internal register overview

Register overview

Name Description Offset Type Reset value

SWIM_CSR Control status register. 0x00 R/W 0x00
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6.8 Internal registers description

Note: These registers are accessible only by the SWIM debug interface; the CPU cannot 
configure this register space.

6.8.1 DM_BK1E (DM breakpoint 1 ext. byte)

Offset: 0x00

Default value: 0xFF

         

Bit 7-0: BK1[23:16] DM breakpoint 1 upper byte.

6.8.2 DM_BK1H (DM breakpoint 1 high byte)

Offset: 0x01

Default value: 0xFF

         

Bit 7-0: BK1[15:8] DM breakpoint 1 middle byte.

6.8.3 DM_BK1L (DM breakpoint 1 low byte)

Offset: 0x02

Default value: 0xFF

         

Bit 7-0: BK1[7:0] DM breakpoint 1 lower byte.

6.8.4 DM_BK2E (DM breakpoint 2 ext. byte)

Offset: 0x03

Default value: 0xFF 

         

Bit 7-0: BK2[23:16] DM breakpoint 2 upper byte.

7 6 5 4 3 2 1 0

BK1 [23:16]

r/w

7 6 5 4 3 2 1 0

BK1 [15:8]

r/w

7 6 5 4 3 2 1 0

BK1 [7:0]

r/w

7 6 5 4 3 2 1 0

BK2 [23:16]

r/w
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6.8.5 DM_BK2H (DM breakpoint 2 high byte)

Offset: 0x04

Default value: 0xFF

         

Bit 7-0: BK2[15:8] DM breakpoint 2 middle byte.

6.8.6 DM_BK2L (DM breakpoint 2 low byte)

Offset: 0x05

Default value: 0xFF

         

Bit 7-0: BK2[7:0] DM breakpoint 2 lower byte.

6.8.7 DM_CR (DM control register)

Offset: 0x06

Default value: 0x00

         

Bit 0: BKEE break external enable

This bit is set and cleared by SWIM software. When set, it enables external break 

sources (product dependent) to generate a DM break.

0: external break disabled.

1: external break enabled.

Bit 1: BIW break on write control

This bit enables a breakpoint on a data write operation. It is set and cleared by 

software.

0: no break on data write.

1: break on data write.

7 6 5 4 3 2 1 0

BK2 [15:8]

r/w

7 6 5 4 3 2 1 0

BK2 [7:0]

r/w

7 6 5 4 3 2 1 0

WDGOFF RFU BC [2:0] BIR BIW BKEE

r/w r r/w r/w r/w r/w
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Bit 2: BIR break on read control

This bit enables a breakpoint on a data read operation. It is set and cleared by 

software.

0: no break on data read.

1: break on data read.

Bit 5-3: BC[2:0] break on read control

These bits are set and cleared by software, they are used to configure the 

breakpoints.

Bit 6: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 7: WDGOFF watchdog control enable

This bit must be set or cleared by software before the watchdog is activated. 

This bit has no effect if the hardware watchdog option is selected.

0: watchdog counter is not stopped while CPU is stalled by DM.

1: watchdog counter is stopped while CPU is stalled by DM.

6.8.8 DM_CR2 (DM control register 2)

Offset: 0x07

Default value: 0x00

         

Bit 0: FVEC forces vector table in RAM

This bit is set or cleared by software. It forces vector table to the RAM location instead 
of program memory (usually 8000h).

0: vector table is in the program memory area (8000h).

1: vector table is in the RAM memory area (depends of the product).

Bit 1: DEA disable external abort

This bit is set or cleared by software. It disables the external abort, this external 

abort source is product dependent.

0: external abort enable.

1: disable external abort.

Bit 7-2: RFU reserved; must be kept 0 during register writing for future compatibility.

6.8.9 DM_CSR (DM status/control register 1)

Offset: 0x08

Default value: 0x10

7 6 5 4 3 2 1 0

RFU RFU RFU RFU RFU RFU DEA FVEC

r r r r r r r/w r/w
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Bit 0: BKEF external breakpoint flag

This bit indicates that the DM break was generated by an external event - break event 
(product dependent). It is cleared by hardware when the DMCSR2.STALL bit is 
cleared. Writing to this bit does not change the bit value.

0: external breakpoint did not occur.

1: external breakpoint occurred.

Bit 1: BK1F breakpoint 1 flag

This bit indicates that the DM break was generated by the breakpoint 1. It is set by 
hardware depending on the control conditions and is cleared by hardware when the 
DMCSR2.STALL bit is cleared. Writing to this bit does not change the bit value.

0: breakpoint 1 did not occur.

1: breakpoint 1 occurred.

Bit 2: BK2F breakpoint 2 flag

This bit indicates that the DM break was generated by the breakpoint 2. It is set by 
hardware depending on the control conditions and is cleared by hardware when exiting 
the ICC monitor. Writing to this bit does not change the bit value.

0: breakpoint 2 did not occur.

1: breakpoint 2 occurred.

Bit 3: BRW break on read/write flag

This bit gives the value of the read/write signal when a break occurs. Its value is not 
significant for instruction fetch breaks. It is set by hardware depending on the 
breakpoint conditions and is cleared by hardware depending on the next breakpoint 
conditions. Writing to this bit does not change the bit value.

0: breakpoint on write.

1: breakpoint on read.

Bit 4: RST reset flag

This bit is set by hardware when a RESET occurs. It is cleared by hardware when the 
DMCSR2.STALL bit is cleared. Writing to this bit does not change the bit value. It 
indicates whether the CPU was stalled, by DM, just after RESET.

0: no RESET occurred.

1: a RESET occurred.

Bit 5: STF Step-by-step flag

This bit indicates that the DM break was generated by the step-by-step capability. It is 
set by hardware depending on the control conditions and is cleared by hardware when 
the DMCSR2.STALL bit is cleared. Writing to this bit does not change the bit value.

0: step-by-step interrupt did not occur.

1: step-by-step interrupt occurred.

7 6 5 4 3 2 1 0

RFU STE STF RST BRW BK2F BK1F BKEF

r r/w r r r r r r
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Bit 6: STE step-by-step enable

This bit is set and cleared by software. It enables the step-by-step break capability.

0: step-by-step break disabled.

1: step-by-step break enabled.

Bit 7: RFU reserved; must be kept 0 during register writing for future compatibility.

6.8.10 DM_CSR2 (DM status/control register 2)

Offset: 0x09

Default value: 0x00

         

Bit 0: FLUSH FLUSH decode stage

Set by the WOTF command in order to flush the decode stage. It needs to be set when 
the PC was updated, before clearing the STALL bit (< Go_to_new context> command).

It is reset when the STALL bit is cleared.

Bit 2-1: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 3: STALL CPU STALL control bit

This bit is used to stall the CPU. This bit is kept cleared if the device is not in the SWIM 
mode. After RESET, this bit is set if the the SWIM is active. This will cause the CPU to 
be stalled after the reset vector fetch. Set by the WOTF command to generate an 
ABORT equivalent command or by SW when the CPU decodes a BREAK instruction. 
This bit is cleared by the WOTF command to restart the CPU; the clearing it's seen as 
a “exit” of the monitor routine by the DM (clearing of the flag).

0: CPU runs normally.

1: CPU is stalled.

Bit 4: SWBKF SW breakpoints status bit

This flag is set when the CPU executes the SW break instruction.

0: no SW break instruction detected (in decode stage).

1: SW break instruction detected. This bit is cleared when the STALL (SWIM) bit is 
cleared.

Bit 5: SWBKE SW breakpoint control bit

This bit is used to enable/disable the software breakpoint capability with the BREAK 
instruction.

0: DM does not generate any event when the BREAK instruction is fetched by the CPU.

1: DM generates an event (CPU stalled) when the S/W break instruction is fetched by 
the CPU.

7 6 5 4 3 2 1 0

TRACE2 TRACE1 SWBKE SWBKF STALL RFU RFU FLUSH

r/w r/w r/w r r/w r r r
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Bit 6: TRACE1 start trace 1 control bit (read/write)

This bit is used to enable/disable the TRACE start capability on the DM break1 event. 
The recording is started from the next instruction.

0 : the break1 condition is managed as a standard break event.

1: when the break1 condition is reached, the trace is triggered. The break event is not 
generated and the application is not stopped.

Bit 7: TRACE2 start trace 2 control bit (read/write)

This bit is used to enable/disable the TRACE start capability on the DM break2 event. 
The recording is started from the next instruction.

0: the break2 condition is managed as a standard break event.

1: when the break2 condition is reached, the trace is triggered. The break event is not 
generated and the application is not stopped.

6.8.11 DM_ENFCT (DM enable function register)

Offset: 0x0A

Default value: 0xFF

         

This register field configurable by SWIM software is used to freeze the clocks of some 
peripherals when the IC enters in the debug mode.

Bit 0: ENFCT0 system timer peripheral

0: peripheral frozen.

1: peripheral enabled.

Bit 1: ENFCT1 reserved for future use.

Bit 2: ENFCT2 reserved for future use.

Bit 3: ENFCT3 SMED (SMED0 to SMED5) peripherals

0: peripheral frozen.

1: peripheral enabled.

Bit 4: ENFCT4 reserved for future use.

Bit 5: ENFCT5 reserved for future use.

Bit 6: ENFCT6 ADC peripheral

0: peripheral frozen.

1: peripheral enabled.

Bit 7: ENFCT7 I2C peripheral

0: peripheral frozen.

1: peripheral enabled.

7 6 5 4 3 2 1 0

ENFCT7 ENFCT6 ENFCT5 ENFCT4 ENFCT3 ENFCT2 ENFCT1 ENFCT0

r/w r/w r r r/w r r r/w
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6.8.12 DM_VER (DM version register)

Offset: 0x0B

Default value: debug module version

         

Bit 7-0: DM_VER[7:0] DM version 

6.9 Internal registers overview

Table 7 shows the debug module internal registers starting from base address reported in 
the corresponding device datasheet; for detailed register description refer to Section 6.8.

         

Note: These registers are accessible only from the SWIM debug interface; the CPU cannot 
configure these registers space.

7 6 5 4 3 2 1 0

DM_VER [7:0]

r

Table 7. DM internal registers overview

Name Description Offset Type Reset value

DM_BK1E Breakpoint 1 byte extend 0x00 R/W 0xFF

DM_BK1H Breakpoint 1 byte high 0x01 R/W 0xFF

DM_BK1L Breakpoint 1 byte low 0x02 R/W 0xFF

DM_BK2E Breakpoint 2 byte extend 0x03 R/W 0xFF

DM_BK2H Breakpoint 2 byte high 0x04 R/W 0xFF

DM_BK2L Breakpoint 2 byte low 0x05 R/W 0xFF

DM_CR Control register 0x06 R/W 0x00

DM_CR2 Control register2 0x07 R/W 0x00

DM_CSR Control and status register 0x08 R/W 0x10

DM_CSR2 Control and status register2 0x09 R/W 0x00

DM_ENFCT Enable function register 0x0A R/W 0xFF

DM_VER Version register 0x0B R DM - version number
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7 Boot ROM

The bootloader is stored inside the internal 2 Kbytes ROM, and its main task is to download 
the application program to the internal Flash memory through the UART peripherals 
interface without using the SWIM protocol or a dedicated programming tool; for the UART 
boot device configuration refer to the product datasheet.

The boot loader starts executing after reset. 

Refer to the STLUX bootloader application note (AN4656) for more details.
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8 Memory and register map

For details on the memory map, I/O port hardware register map and interrupt controller 
registers, refer to the product datasheets.

8.1 Memory layout

8.1.1 Memory map

Figure 6. Memory map overview

The RAM upper limit, data EEPROM upper and lower limit, option byte upper limit, hardware 
(HW) registers upper limit, and the program memory upper limit are specific to the device 
configuration. Please refer to the datasheets for quantitative information.
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8.1.2 Stack handling

Default stack model

The stack of the STLUX microcontrollers is implemented in the user RAM area. The default 
stack model is shown in Figure 7.

Figure 7. Default stack model

Note: The stack rollover limit is not implemented on all devices. Refer to the datasheets for 
detailed information.

Stack pointer initialization value

This is the default value of the stack pointer. The user must take care to initialize this pointer. 
Correct loading of this pointer is usually performed by the initialization code generated by 
the development tools (linker file). In the default stack model this pointer is initialized to the 
RAM end address.

Stack rollover limit

A stack rollover limit is implemented at a fixed address. If the stack pointer is decreased 
below the stack rollover limit, using a push operation or during context saving for 
subroutines or interrupt routines, it is reset to the RAM end address. The stack pointer does 
not rollover if the stack pointer arithmetic is used.

Such behavior of the stack pointer is of particular importance when developing software on 
a device with a different memory configuration than the target device. SW should avoid the 
stack rollover condition.

Customized stack model

STLUX stack pointer handling allows a customized stack model to be implemented. This 
permits a flexible stack size without restrictions due to the stack rollover limit. Implementing 
the customized stack also benefits portability of the software on products with different 
memory configurations. Figure 8 shows the customized stack model.
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Figure 8. Customized stack model

Note: The guard cells are RAM locations that have to be continuously polled by the application 
program to detect whether a stack overflow has taken place.

In this stack model, the initial stack pointer must be placed beyond the stack rollover limit. 
Consequently, the growing stack never reaches the stack rollover limit. It is clear that in this 
implementation the stack size is not limited by the rollover mechanism. Nevertheless, the 
user has to define the stack position and stack size in the link file, and he has to ensure that 
the stack pointer does not exceed the defined stack area (stack overflow or underrun).

The RAM locations above and below the customized stack can be regularly used as the 
RAM to store variables or other information. Guard cells can be implemented at the lower 
end of the stack to detect if the stack pointer exceeds the defined limit. These cells are 
standard RAM locations, initialized with fixed values that the stack overwrites if an overflow 
occurs. The user software can regularly poll these cells, detect the overflow condition, and 
put the application in a failsafe state.

During the software validation phase hardware breakpoints can be set at both limits of the 
stack to validate that neither a stack overflow nor an underrun happens.
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9 Flash program memory and data EEPROM

The embedded program Flash and data EEPROM memories are controlled by a common 
set of registers; through these registers the user can program or erase the memory 
contents, set the write protection features, configure specific low power modes and program 
the device option bytes memory fields which configure the IC functional operating mode 
after reset.

9.1 Main Flash memory features

• STLUX provide two memory areas:

– Flash: up to 32 Kbytes of the Flash program memory. The memory density differs 
according to the product device (refer to the product datasheet).

– EEPROM: up to 1 Kbytes of the data EEPROM including option bytes. The data 
EEPROM density differs according to the device (refer to the product datasheet).

• Read while write capability (RWW)

• ECC (Error Correction Code): 6 bits of the error correction for every 32 bits data word.

• Configurable low power mode:

– Memory power-down (when the MCU is in HALT or Active-halt mode)

• Supported operating mode:

– In-application programming (IAP)

– In-circuit programming (ICP)

• Programming modes:

– Byte programming and automatic fast byte programming (without erase operation)

– Word programming

– Block programming and fast block programming mode (without erase operation)

– Interrupt generation on end of program/erase operation and on illegal program 
operation

• Protection features:

– Memory readout protection (ROP)

– Program memory write protection with memory access security system (MASS 
keys)

– Data memory write protection with memory access security system (MASS keys)

– Programmable write-protected user boot code area (UBC).
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9.2 Flash memory organization

The memories consist of three logical areas:

• Flash: up to 32 Kbytes of the Flash program memory. Density differs according 
to the device product datasheet. The Flash program memory is based on 64 pages of 
512 bytes organized in 128 byte blocks.

• EEPROM: up to 1 Kbyte of the data EEPROM. Data EEPROM density differs 
according to the device product datasheet. The data EEPROM are based on 2 pages 
of 512 bytes organized in 128 byte blocks.

• EEPROM: up to 128bytes of the option byte data EEPROM.

The memories are organized in 32-bit data width protected by a 6 bit of ECC syndrome that 
improves the memory reliability.

The Error Correction Code (ECC) mechanism is able to detect and correct an exceptional 
single bit error in any word of data. 

An outline view of the internal Flash program memory and data EEPROM memory 
organization is shown in Figure 9.

Figure 9. Flash memory program and data EEPROM memory organization
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9.2.1 Memory access / wait state configuration

The program/data memory access time allows the device to run at up to 16 MHz without 
wait states.

9.2.2 Program memory

The Flash program memory is divided into 2 areas, the user boot code area (UBC), with size 
configurable through the option byte, and the main program memory area used to store the 
application code. The Flash program memory is mapped in the upper part of the STLUX 
addressing space and includes the reset and interrupt vector table.

User boot area (UBC)

The user boot area (UBC) contains the reset and the interrupt vectors. It can be used to 
store the IAP and communication routines. The UBC area has a second level of protection 
to prevent unintentional erasing or a modification during IAP programming. This means that 
it is always write-protected and the write protection cannot be unlocked using the MASS 
keys.

The size of the UBC area can be configured in the ICP mode (using the SWIM interface) 
through the UBC option byte. The UBC option byte specifies the number of pages allocated 
for the UBC area starting from the address 0x008000.

The size of the UBC area can be obtained by reading the UBC option byte. The UBC 
memory mapping area is shown in Figure 10.

Figure 10. UBC memory area definition

Note: 1. UBC[7:0] = 0x00 means no user boot code area protection is defined.

2. The first 2 pages (1 Kbyte) contain the interrupt vectors table; only the first 128 bytes 
(32 IT vectors) are used for this purpose.
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Program area

The Flash program area is used to store the user application SW program and static data 
(tables, and so on).

9.2.3 Data memory

The data EEPROM area can be used to store application data. By default, the DATA area is 
write-protected to prevent an unintentional modification when the main program is updated 
in the IAP mode. The write protection can be unlocked only using a specific MASS key 
sequence.

9.2.4 Option byte memory

The option bytes are used to configure device hardware features and memory protection. 
They are located in a dedicated memory array of one block.

The option bytes can be modified both in ICP/SWIM and in the IAP mode, with the OPT bit 
of the FLASH_CR2 register set to '1' and the nOPT bit of the FLASH_nCR2 register set to 
'0' (refer to Section 9.6.2 on page 60).

9.3 Memory protection mechanism

9.3.1 Readout protection (ROP)

Readout protection is enabled by programming the ROP option byte with the value 0xAA. 
When readout protection is enabled, reading or modifying the Flash program memory and 
DATA area in the ICP mode (using the SWIM interface) is forbidden, whatever the write 
protection settings. Even if no protection can be considered as totally unbreakable, the 
readout feature provides a very high level of protection for a general purpose 
microcontroller.

Disabling the readout protection

The readout protection involving the program and DATA areas can be disabled by resetting 
the ROP option byte in the ICP mode. In this case, the overall Flash program memory 
(including UBC area), the DATA area and the option bytes are automatically erased and the 
device can be reprogrammed.

9.3.2 Memory access security system (MASS)

After reset, the main program and DATA areas are protected against from unintentional 
write operations. They must be unlocked before attempting to modify their content. This 
unlock mechanism is managed by the memory access security system (MASS).

The UBC area specified in the UBC option byte is always writing protected. Once the 
memory has been modified, it is recommended to enable the write protection again to 
protect the memory content to prevent a possible data corruption.
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Enabling write access to the main program memory

After a device reset, it is possible to disable the main program memory write protection by 
writing consecutively two values called MASS keys to the FLASH_PUKR register. These 
programmed keys are then compared to two hardware key values:

• First hardware key: 0b0101 0110 (0x56)

• Second hardware key: 0b1010 1110 (0xAE)

The following steps are required to disable write protection on the main program area:

1. Write the first 8-bit key into the FLASH_PUKR register. When this register is written for 
the first time after a reset, the data bus content is not latched into the register, but 
compared to the first hardware key value (0x56).

2. If the first hardware key is incorrect, then the FLASH_PUKR register remains locked 
until the next reset. Any new write commands attempt to this address is discarded.

3. If the first hardware key is correct, when the FLASH_PUKR register is written for the 
second time, the data bus content is still not latched into the register, but compared to 
the second hardware key value (0xAE).

4. If the second hardware key is incorrect, then the write protection on program memory 
remains locked until the next reset. Any new write commands sent to this address will 
be discarded.

5. If the second hardware key is correct, the main program memory is write unprotected 
and the PUL bit of the FLASH_IAPSR register is set.

Before starting to program the Flash, the application must verify that PUL bit is effectively 
set. The application may choose at any time to disable again write access to the Flash 
program memory by clearing the PUL bit.

Enabling write access to the DATA area

After a device reset, it is possible to disable the DATA area write protection by writing 
consecutively two values called MASS keys to the FLASH_DUKR register. These 
programmed keys are then compared to two hardware key values:

• First hardware key: 0b1010 1110 (0xAE)

• Second hardware key: 0b0101 0110 (0x56)

The following steps are required to disable write protection on the DATA area:

1. Write a first 8-bit key into the FLASH_DUKR register. When this register is written for 
the first time after a reset, the data bus content is not latched into the register, but 
compared to the first hardware key value (0xAE).

2. If the first hardware key is incorrect, the application can re-enter two MASS keys to try 
unprotecting the DATA area.

3. If the first hardware key is correct, the FLASH_DUKR register is programmed with the 
second key. The data bus content is still not latched into the register, but compared to 
the second hardware key value (0x56).

4. If the second hardware key is incorrect, the data EEPROM area remains write-
protected until the next reset. Any new write command sent to this address is ignored.

5. If the second hardware key is correct, the DATA area is write unprotected and the DUL 
bit of the FLASH_IAPSR register is set.

Before starting to program the data area, the application must verify that the DATA area is 
not writing protected by checking that the DUL bit is effectively set. The application may 
choose at any time to disable again write access to the DATA area by clearing the DUL bit.
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Enabling write access to option bytes

The procedure for enabling write access to the option byte area is the same used for data 
EEPROM access; however there is an additional OPT bit in the Flash control register 2 
(FLASH_CR2) to be set and the corresponding nOPT bit in the Flash complementary 
control register 2 (FLASH_nCR2) to be cleared in order to enable write access to the option 
bytes.

9.4 Memory programming

The main program area and the data memory segment must be unlocked before attempting 
to perform any program sequences. For further detail refer to the Section 9.3.

9.4.1 Read-while-write (RWW)

The RWW feature provides the user the ability to perform write operation on data EEPROM 
while reading and executing the program memory. Execution time is therefore optimized. 
The opposite operation is not allowed: user cannot read data memory while writing program 
memory.

This RWW feature is enabled anytime without any specific operation required from the user. 
Writing to the Data EEPROM is controlled by the same control registers as for the program 
memory. Note that any access to the Flash control registers FLASH_CR1 and FLASH_CR2 
while writing to the memory stalls the CPU, making RWW not feasible.

9.4.2 Programming modes

The internal Flash and the EEPROM data memories can be programmed in one of the 
following modes:

Byte programming

The main program memory and the DATA area can be programmed at byte level. To 
program one byte, the application writes directly to the target address.

• In the main program memory:

• The application stops for the duration of the byte program operation.

• In DATA area:

– Devices with RWW capability: program execution does not stop, and the byte 
program operation is performed using the read-while-write (RWW) capability in the 
IAP mode.

– Devices without RWW capability: The application stops for the duration of the byte 
program operation.

To erase a byte, simply write 0x00 to the corresponding address. The application can read 
the FLASH_IAPSR register to verify that the programming or erasing operation has been 
correctly executed:

• EOP flag is set after a successful programming operation

• WR_PG_DIS is set when the software has tried to write to a protected page. In this 
case, the write procedure is not performed.

As soon as one of these flags is set, a Flash interrupt is generated if it has been previously 
enabled by setting the IE bit of the FLASH_CR1 register.
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Automatic fast byte programming

The programming duration can vary according to the initial content of the target address. If 
the word (4 bytes) containing the byte to be programmed is not empty, the whole word is 
automatically erased before the program operation. Otherwise if the word is empty, no erase 
operation is performed and the programming time is shorter (refer to tPROG parameter 
present in the product datasheet).

However, the programming time can be fixed by setting the FIX bit of the FLASH_CR1 
register to force the program operation to systematically erase the byte whatever its content 
(refer to Section 9.6.1: FLASH_CR1 (Flash control register1) on page 60). The 
programming times is consequently fixed and equal to the sum of the erase and write time 
(refer to tPROG parameter present in the product datasheet).

Note: To write a byte fast (no erase), the whole word (4 bytes) into which it is written must be 
erased beforehand. Consequently, it is not possible to do consecutively two fast writes to 
the same word (without an erase before the second write): The first write will be fast but the 
second write to the other byte will require an erase.

Word programming

A word write operation allows an entire 4-byte word to be programmed at once, thus 
minimizing the programming time. As for byte programming, word operation is available 
both for the main program memory and data EEPROM. On some devices, the read-while-
write (RWW) capability is also available when a word programming operation is performed 
on the data EEPROM. Refer to the datasheets for additional information.

• In the main program memory:
The application stops for the duration of the byte program operation.

• In DATA area

– Devices with RWW capability: program execution does not stop, and the byte 
program operation is performed using the read-while-write (RWW) capability in the 
IAP mode.

– Devices without RWW capability: the application stops for the duration of the byte 
program operation.

To program a word, the WPRG/NWPRG bits in the FLASH_CR2 and FLASH_nCR2 
registers must be previously set/cleared to enable the word programming mode (refer to 
Section 9.6.2: FLASH_CR2 (Flash control register2) on page 60). Then, the 4 bytes of the 
word to be programmed must be loaded starting with the first address. The programming 
cycle starts automatically when the 4 bytes have been written. As for byte operation, the 
EOP and the WR_PG_DIS control flags of FLASH_IAPSR, together with the Flash interrupt, 
can be used to determine if the operation has been correctly completed.
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Block programming

Block program operations are much faster than byte or word program operations. In a block 
program operation, a whole block is programmed or erased in a single programming cycle. 
Block operations can be performed both to the main program memory and DATA area:

• In the main program memory:
Block program operations to the main program memory have to be executed totally 
from RAM.

• In the DATA area

– Devices with RWW capability: DATA block operations can be executed from the 
main program memory. However, the data loading phase (see below) has to be 
executed from RAM.

– Devices without RWW capability: Block program operations must be executed 
totally from RAM.

There are three possible block operations:

• Block programming, also called standard block programming: the block is automatically 
erased before being programmed.

• Fast block programming: No previous erase operation is performed.

• Block erase

During block programming, interrupts are masked by hardware.

Standard block programming

A standard block program operation allows a whole block to be written at once. The block is 
automatically erased before being programmed. To program a whole block in the standard 
mode, the PRG/NPRG bits in the FLASH_CR2 and FLASH_nCR2 registers must be 
previously set/cleared to enable standard block programming (refer to Section 9.6.2: 
FLASH_CR2 (Flash control register2) on page 60). Then, the block of data to be 
programmed must be loaded sequentially to the destination addresses in the main program 
memory or DATA area. This causes all the data bytes to be latched. 

To start programming the whole block, all 128 data byte belonging to the block must be 
written. All bytes written in a programming sequence must be in the same block. This means 
that they must have the same high address: Only the six least significant bits of the address 
can change. When the last byte of the target block is loaded, the programming starts 
automatically. It is preceded by an automatic erase operation of the whole block.

When programming a block in the DATA area, the application can check the HVOFF bit in 
the Flash status register (FLASH_IAPSR). As soon the HVOFF flag is reset the actual 
programming phase starts and the application can return to main program memory. The 
EOP and the WR_PG_DIS control flags of the FLASH_IAPSR together with the Flash 
interrupt can be used to determine if the operation has been correctly completed.

Fast block programming

Fast block programming allows programming without first erasing the memory contents. 
Fast block programming is therefore twice as fast as standard programming. This mode is 
intended only for programming parts that have already been erased. It is very useful for 
programming blank parts with the complete application code, as the time saving is 
significant.
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Fast block programming is performed by using the same sequence as standard block 
programming. To enable the fast block programming mode, the FPRG/NFPRG bits of the 
FLASH_CR2 and FLASH_nCR2 registers must be previously set/cleared.

The HVOFF flag can also be polled by the application which can execute other instructions 
(RWW) during the actual programming phase of the DATA. The EOP and WR_PG_DIS bits 
of the FLASH_IAPSR register can be checked to determine if the fast block programming 
operation has been correctly completed.

Caution: The data programmed in the block are not guaranteed when the block is not blank prior to 
execute the fast block program operation.

Block erasing

A block erase allows a whole block to be erased. To erase a whole block, the 
ERASE/nERASE bits in the FLASH_CR2 and FLASH_nCR2 registers must be previously 
set/cleared to enable block erasing (refer to Section 9.6.2: FLASH_CR2 (Flash control 
register2) and Section 9.6.3: FLASH_nCR2 (Flash control register2 protection) 

The block is then erased by writing '0x00 00 00 00' to any word inside the block. The word 
start address must end with '0', '4', '8', or 'C'. The EOP and the WR_PG_DIS control flags of 
the FLASH_IAPSR together with the Flash interrupt can be used to determine if the 
operation has been correctly completed.

Note: All memory block program/erase sequences must be executed without any interruption.

Option byte programming

Option byte programming is very similar to data EEPROM byte programming. The 
application writes directly to the target address. The program does not stop and the write 
operation is performed using the RWW capability.

Refer to the product datasheet for details on the option byte contents.

9.5 ICP and IAP

The In-Circuit programming (ICP) method is used to update the memory contents through 
the SWIM interface loading the user application data inside the microcontroller. The ICP 
offers quick and efficient configurability method removing unnecessary package handling or 
device socketing. The SWIM interface (single wire interface module) uses the SWIM pin to 
interconnect to the programming/debugging tool.

In contrast to the ICP method, in-application programming (IAP) can use any 
communication interface supported by the microcontroller (I/Os, I2C, UART, etc.) to 
download the data to be programmed in memory. IAP allows reprogramming the EEPROM 
memory contents during the application execution.
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Table 8. Memory access versus programming method(1)

Flash and EEPROM memories access mode

Mode ROP Memory area Access(1)

User, IAP, and bootloader

Readout protection enabled

User boot code area (UBC) R/E

Main program R/W/E(2)

Data EEPROM area (DATA) R/W(3)

Option bytes R

Readout protection disabled

User boot code area (UBC) R/E(4)

Main program R/W/E(2)

Data EEPROM area (DATA) R/W(3)

Option bytes R/W(5)

ICP and SWIM

Readout protection enabled

User boot code area (UBC) P

Main program P

Data EEPROM area (DATA) P

Option bytes R/WROP(6)

Readout protection disabled

User boot code area (UBC) R/E(4)

Main program R/W/E(2)

Data EEPROM area (DATA) R/W(3)

Option bytes R/W(5)

1. Flash access type:

a) R/W/E: read; write and execute;

b) R/E: read and execute (write operation forbidden);

c) R: read (write and execute operations forbidden);

d) P = the area cannot be accessed (read, execute and write operations forbidden);

e) R/WROP = protected, write forbidden except for ROP option byte.

2. The Flash program memory is write-protected (locked) until the correct MASS key is written in the FLASH_PUKR. It is 
possible to lock the memory again by resetting the PUL bit in the FLASH_IAPSR register. If wrong keys are provided, the 
device must be reset and new keys programmed.

3. The data memory is write-protected (locked) until the correct MASS key is written in the FLASH_DUKR. It is possible to 
lock the memory again by resetting the DUL bit in the FLASH_IAPSR register. If wrong keys are provided, the device must 
be reset and new keys programmed.

4. To program the UBC area the application must first clear the UBC option byte.

5. The option bytes are write-protected (locked) until the correct MASS key is written in the FLASH_DUKR 
(with OPT set to '1'). It is possible to lock the memory again by resetting the DUL bit in the FLASH_IAPSR register. If wrong 
keys are provided, the device must be reset and new keys programmed.

6. When the ROP is removed, the whole memory is erased, including option bytes.
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9.6 Flash registers description

9.6.1 FLASH_CR1 (Flash control register1)

Offset: 0x00

Default value: 0x00

         

Bit 0: FIX fixed byte programming time

0: standard programming time of (1/2 tPROG) if the memory is already erased and 
tPROG otherwise

1: programming time fixed at tPROG. (refer to the product datasheet).

Bit 1: IE interrupt enable

0: Flash interrupt disable.

1: Flash interrupt enable. An interrupt is generated if the EOP or the WR_PG_DIS flag 
in the FLASH_IAPSR register is set.

Bit 2: AHALT power-down in Active-halt mode:

0: Flash operating when MCU is in Active-halt mode.

1: Flash power-down when MCU is in Active-halt mode.

Bit 3: HALT power-down in Halt mode

0: Flash in power-down when MCU is in Halt mode.

1: Flash in operating when MCU is in Halt mode.

Bit 7-4: RFU reserved; must be kept 0 during register writing for future compatibility.

9.6.2 FLASH_CR2 (Flash control register2)

Offset: 0x01

Default value: 0x00

         

Bit 0: PRG block programming

This field configures the memory block programming operations; it's set by SW and 
cleared by HW when the operation is completed.

0: standard block program operation disabled.

1: standard block program operation enabled (automatically memory erasing before 
programming).

Bit 1-3: RFU reserved; must be kept 0 during register writing for future compatibility.

7 6 5 4 3 2 1 0

RFU RFU RFU RFU HALT AHALT IE FIX

r r r r r/w r/w r/w r/w

7 6 5 4 3 2 1 0

OPT WPRG ERASE FPRG RFU RFU RFU PRG

r/w r/w r/w r/w r r r r/w
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Bit 4: FPRG(a) fast block programming

This bit is set by SW and cleared by HW when the operation is completed. This field 
configures the memories fast block program operations (no memory erasing).

0: fast block program operation disabled.

1: fast block program operation enabled.

Bit 5: ERASE(a) erase block operation

This bit is set by SW cleared by HW when the operation is completed.

0: erase block operation disabled.

1: erase block operation enabled.

Bit 6: WPRG word programming

This bit is set by SW cleared by HW when the operation is completed.

0: word programming operation disabled.

1: word programming operation enabled.

Bit 7: OPT option byte enable programming mode

This bit is set and cleared by SW.

0: option bytes write access disabled.

1: option bytes write access enabled.

9.6.3 FLASH_nCR2 (Flash control register2 protection)

Offset: 0x02

Default value: 0xFF

         

FLASH_nCR2: not(FLASH_CR2)

The configuration of the register FLASH_CR2 requires a back-to-back configuration of the 
same value complemented into the FLASH_nCR2 register to ensure the EMC protection 
mechanism. If the writing access of the FLASH_nCR2 register is delayed, the content value 
of the FLASH_CR2 register is cleared.

Caution: Between the configuration of the FLASH_CR2 and FLASH_nCR2 registers (above 
described) the interrupt request lines IRQ and NMI are masked by hardware to prevent an 
unwanted delay on the FLASH_nCR2 writing cycle.

9.6.4 FLASH_FPR (Flash write page protection)

Offset: 0x03

Default value: 0x00

a. The ERASE and FPRG bits are locked when the memory is busy.

7 6 5 4 3 2 1 0

nOPT nWPRG nERASE nFPRG RFU RFU RFU nPRG

r/w r/w r/w r/w r r r r/w
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Bit 7-0: WPB[7:0] user boot code area protection pages

These bits show the size of the boot code area. They are loaded at a startup with the 
content of the UBC option byte; for detailed register description refer to the 
corresponding option register information in the product datasheet.

9.6.5 FLASH_nFPRP (FLASH_FPR protection)

Offset: 0x04

Default value: 0xFF

         

FLASH_nFPRP: not (FLASH_FPR) EMC byte protection.

9.6.6 FLASH_IAPSR (Flash status register)

Offset: 0x05

Default value: 0x40

         

Bit 0: WR_PG_DIS write attempted to protected page flag

This field is set by hardware and cleared by software by reading the register:

0: normal operating mode.

1: a write attempt to a write-protected page occurred. An interrupt is generated if the IE 
bit is set in the FLASH_CR1 register.

Bit 1: PUL Flash program memory unlocked flag

This field is set by hardware and cleared by software by programming it to '0'.

0: write protection of the main program area enabled.

1: write protection of the main program area is disabled by writing the correct MASS 
keys.

Bit 2: EOP end of programming (write or erase operation) flag

This field is set by hardware and cleared by software by reading the register or when 
a new write/erase operation starts.

0: no EOP event occurred.

1: an EOP operation occurred. An interrupt is generated if the IE bit is set in the 
FLASH_CR1 register.

7 6 5 4 3 2 1 0

WPB [7:0]

r

7 6 5 4 3 2 1 0

nWPB [7:0]

r

7 6 5 4 3 2 1 0

RFU HVOFF RFU RFU DUL EOP PUL WR_PG_DIS

r r r r rc/w0 rc/r rc/w0 rc/r



DocID026249 Rev 1 63/335

RM0380 Flash program memory and data EEPROM

335

Bit 3: DUL data EEPROM area unlocked flag

This bit is set by hardware and cleared by software by programming it to '0'.

0: data EEPROM area write protection enabled.

1: data EEPROM area write protection is disabled by writing the correct MASS keys.

Bit 5-4: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 6: HVOFF end of high voltage.

This bit is set and cleared by HW.

0: HV ON, start of actual programming.

1: HV OFF, end of high voltage.

Bit 7: RFU reserved; must be kept 0 during register writing for future compatibility.

9.6.7 FLASH_PUKR (Flash program memory unprotection)

Offset: 0x08

Default value: 0x00

         

Bit 7-0: WP[7:0] program memory unprotection key bit.

1st MASS program key: 0101 0110 (0x56)

2nd MASS program key: 1010 1110 (0xAE)

This byte is written by software (all modes). It returns 0x00 when read. 

Refer to Enabling write access to the main program memory in Section 9.3.2 for the 
description of main program area write unprotecting mechanism.

9.6.8 FLASH_DUKR (Flash data memory unprotection)

Offset: 0x0A

Default value: 0x00

         

Bit 7-0: WD[7:0] data memory unprotect key bit.

1st MASS data key: 1010 1110 (0xAE).

2nd MASS data key: 0101 0110 (0x56).

This byte is written by software (all modes). It returns 0x00 when read.
Refer to Enabling write access to the DATA area in Section 9.3.2 for the description of DATA 
area write unprotecting mechanism.

7 6 5 4 3 2 1 0

WP [7:0]

r/w

7 6 5 4 3 2 1 0

WD [7:0]

r/w
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9.6.9 FLASH_WAIT (Flash wait state register)

Offset: 0x0D

Default value: 0x00

         

The Flash controls the access time (Ta) register.

Bit 1-0: WAIT[1:0] Flash time access cycle wait state number.

00: 0 wait states cycle number (default case fMASTER at 16 MHz).

01: 1 wait states cycle number.

10: 2 wait states cycle number.

11: 3 wait states cycle number.

Bit 7-2: RFU reserved for future use.

Note: 1. This register contains a read only copy of the two corresponding bits of the option byte 
WAITSTATE (0x480D). These bits are modifiable only reconfiguring the option byte. These 
bits are temporarily modifiable for debugging using the SWIM interface, and assume their 
default value (option byte value) at the next reset.

2. This register field has to be configured in accordance with the product datasheet 
requirement.

7 6 5 4 3 2 1 0

RFU WAIT[1:0]

r r



DocID026249 Rev 1 65/335

RM0380 Flash program memory and data EEPROM

335

9.7 Flash registers overview

Table 9 shows the Flash control registers overview starting from the base address specified 
on the proper databook; for detailed registers description refer to Section 9.6.

         

Table 9. Flash registers overview

Name Description Offset Type Reset value

FLASH_CR1 Flash control register1 0x00 R/W 0x00

FLASH_CR2 Flash control register2 0x01 R/W 0x00

FLASH_nCR2 Flash control register2 (protection) 0x02 R/W 0xFF

FLASH_FRP Flash UBC write protect register 0x03 R 0x00

FLASH_nFRP Flash UBC write protect register 0x04 R 0xFF

FLASH_IAPSR Flash status register 0x05 R/W 0x 40

RFU Reserved 0x06-07 - -

FLASH_PUKR Program unprotect register 0x08 R/W 0x00

RFU Reserved 0x09 - -

FLASH_DUKR Data unprotect register 0x0A R/W 0x00

RFU Reserved 0x0B-0C - -

FLASH_WAIT Wait state register 0x0D R 0x00
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10 Power supply

The MCU has two distinct power supply lines:

• VDD/VSS: main power supply and I/O power supply (3 V to 5.5 V)

• VDDA/VSSA: power supply for the analog functions

The VDD/VSS pins are used to supply the I/O pads, the internal main voltage regulator 
(MVR) and the internal low power voltage regulator (LPVR). The 2 regulator outputs are 
connected and provide the 1.8 V supply (V18) to the MCU core (CPU, Flash and RAM). In 
low power modes the system automatically switches from the MVR to the LPVR in order to 
reduce current consumption.

To stabilize the MVR, a capacitor must be connected to the VCAP pin (for more details refer 
to the product datasheet electrical characteristics section). 

The VDDA/VSSA is connected to the analog macros (ADC, DACs and comparators).

An outline view of the IC power supply interconnections scheme is shown in Figure 11.

Figure 11. Power supply internal scheme

For complete information about the IC device power supply refer to the product datasheet.
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11 Reset control unit (RST)

The reset control unit is the module which controls the internal reset generation to the 
overall system, starting from the following nine platform reset sources:

• External reset through the NRST pin

• Power-on reset (POR)

• Brownout (BOR)

• Independent watchdog reset (IWDG) opcode

• Window watchdog reset (WWD)

• Software reset

• SWIM reset

• Illegal opcode reset

• EMC reset: generated if critical registers are corrupted or badly loaded

These sources act on the RESET pin and it is always kept low during the delay phase. The 
RESET service routine vector is fixed at the address specified on the related product 
datasheet.

Figure 12. Reset circuit

11.1 Reset state and reset in progress definition

When a reset occurs, there is a reset phase from the external pin pull-down to the internal 
reset signal release. During this phase, the microcontroller sets some hardware 
configurations before going to the reset the vector. At the end of this phase, most of the 
registers are configured with their “reset state” values. During the reset phase, i.e. “under 
reset”, some pin configurations may be different from their “reset state” configuration.

11.2 Reset circuit description

The NRST pin is both an input and an open drain output with an integrated RPU weak pull-
up resistor.

The low pulse duration of tINFP(NRST) (refer to the product datasheet) on the NRST pin 
generates an external reset. The reset detection is asynchronous and therefore the MCU 
can enter reset even in the HALT mode. The NRST pin also acts as an open drain output for 
resetting external devices.
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An internal temporization maintains a pulse of at least tON(NRST) (refer to the product 
datasheet) whatever the internal reset source. An additional internal weak pull-up ensures 
a high level on the reset pin when the reset is not driven.

11.3 Internal reset sources

Each internal reset source is linked to a specific flag bit in the reset status register 
(RST_SR) except the POR/BOR which have no flag. 

These flags are set respectively at reset depending on the given reset source. So they are 
used to identify the last reset source event. These are cleared from software by writing the 
logic value “1” to the corresponding bit.

11.3.1 Power-on reset (POR) and brownout reset (BOR)

During power-on, the POR keeps the device under reset until the VDD supply voltage 
reaches the voltage level at which the BOR starts to function. At this point, the BOR reset 
replaces the POR, and the POR is automatically switched off. The BOR reset is maintained 
till the supply voltage reaches the operating voltage range.

The BOR also generates a reset when the supply voltage drops below the VIT- threshold 
(refer to the product datasheet). When this occurs, the POR is rearmed for the next power-
on phase. A hysteresis is implemented to ensure clean detection of the voltage rise and fall.

The BOR always remains active even when the MCU is put into the low power mode.

Figure 13. VDD voltage detection: POR/BOR threshold
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11.3.2 Watchdog reset

Refer to Section 16: Window watchdog (WWDG) on page 138 and Section 15: Independent 
watchdog (IWDG) on page 133 for details.

11.3.3 Software reset

The application software can trigger a reset by clearing the T6 bit in the WWDG_CR 
register. Refer to Section 16.

11.3.4 SWIM reset

An external tool connected to the SWIM interface can request the SWIM block to generate 
an MCU reset.

11.3.5 Illegal opcode reset

In order to provide enhanced robustness to the device against unexpected behavior, 
a system of illegal opcode detection is implemented. If a code to be executed does not 
correspond to any opcode or prebyte predefined value, a reset is generated. This, combined 
with the watchdog, allows recovery from an unexpected fault or interference noise.

Note: A valid prebyte associated with a valid opcode forming an unauthorized combination does 
not generate a reset.

11.3.6 EMC reset

To protect the application against spurious write access or a system hang-up, possibly 
caused by electromagnetic disturbance, the most critical registers (i.e.: EEPROM 
configuration registers and some CKC registers) are implemented as two-bit fields that must 
contain complementary values. Mismatches are automatically detected by this mechanism, 
triggering an EMC reset and allowing the application to cleanly recover normal operations.

11.4 RST register description

For the base address refer to the related product datasheet.

RST_SR (status register)

Offset: 0x03

Default value: 0x00 after POR only

         

Bit 0: WWDGF window watchdog reset flag.

The bit indicates that the last reset was generated by the window watchdog peripheral. 
It's set by hardware and cleared by software (writing one) or a POR reset.

0: no reset generated by the window watchdog.

1: reset asserted by the window watchdog.

7 6 5 4 3 2 1 0

RFU RFU RFU EMCF SWIMF ILLOPF IWDGF WWDGF

r r r rc_w1 rc_w1 rc_w1 rc_w1 rc_w1
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Bit 1: IWDGF independent watchdog reset flag.

The bit indicates that the last reset was generated by the independent watchdog 
peripheral. It is set by hardware and cleared by software (writing one) or a POR reset.

0: no reset generated by the independent watchdog.

1: reset asserted by the independent watchdog.

Bit 2: ILLOPF illegal opcode reset flag

The bit indicates that the last reset was generated by the CPU core. It is set by 
hardware (illegal opcode reset) and cleared by software (writing one) or a POR reset.

0: no reset generated by the CPU.

1: reset asserted by the CPU.

Bit 3:SWIMF SWIM reset flag

The bit indicates that the last reset was generated by the SWIM peripheral. It is set by 
hardware (SWIM reset) and cleared by software (writing one) or a POR reset.

0: no reset generated by the SWIM.

1: reset asserted by the SWIM.

Bit 4: EMCF EMC reset flag.

This bit indicates that the last reset was generated due to the EMC (protected register 
mismatch). It is set by hardware (comparison of protected registers) and cleared by 
software (writing one) or a POR reset.

0: no reset generated by the EMC.

1: reset asserted by an EMC error.

Bit 7-5: RFU reserved; must be kept 0 during register writing for future compatibility.

11.5 RST register overview

Table 10 shows the RST internal register starting from the base address specified on the 
corresponding device datasheet; for detailed register description refer to Section 11.4.

         

Note: The reset value is 0x00 after power-on reset.

Table 10. Reset controller register overview

Name Description Offset Type Reset value

RST_SR Reset status register 0x03 R/W1 0x00(1)



DocID026249 Rev 1 71/335

RM0380 Clock control unit (CKC)

335

12 Clock control unit (CKC)

The clock controller is the internal peripheral which generates and manages the clock 
signals feeding all the STLUX digital circuits.

The clock controller allows the user to configure the best performance and power reduction 
scheme for his application. The user can manage all the different clock sources 
independently and distribute them to the CPU and to the various peripherals.

A safe and glitch-free switch mechanism allows switching the system master clock on the fly 
from one clock source to another one and dividing it by means of the clock prescaler.

12.1 EMS - hardened clock configuration registers (optional)

To protect the application against spurious write access or a system hang-up, possibly 
caused by electromagnetic disturbance, the most critical CLK registers are equipped with 
two-bit fields that must contain complementary values. Mismatches are automatically 
detected by the CLK, triggering an EMS reset and allowing the application to cleanly recover 
normal operations. See the following paragraphs for more details.

12.2 Features overview

The clock controller is the system master module which performs the following 
functionalities:

• Oscillators on/off driving

• Oscillators stabilization

• Clock switch

• Low power modes

12.3 Master clock sources

Five different clock sources can be used to drive the master clock lines:

• HSI: 16 MHz high-speed internal RC oscillator

• LSI: 153.6 kHz low-speed internal RC oscillator

• PLL: internal PLL at 96 MHz (not used as the fMASTER source clock)

• HSE: up to 24 MHz auxiliary external OSC/crystal

• HSE: up to 24 MHz high-speed user external clock

Each clock source can be switched on or off independently when it's not used, to optimize 
the power consumption.
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12.3.1 HSI

The HSI is the default master clock line, generated from an internal RC oscillator with 
nominal frequency of 16 MHz; it has the following major features:

• RC architecture

• Glitch-free oscillation

• 3-bit user calibration circuit

Note: At a startup the master clock source is automatically selected as HSI RC clock output 
divided by 8 (fHSI/8).

The HSI RC oscillator offers the advantage of providing a 16 MHz master clock source with 
50% duty cycle at a low cost (no external components). It also has faster startup time than 
the HSE crystal oscillator. However, even with calibration, the frequency is less accurate 
than an external crystal oscillator or ceramic resonator. The HSIRDY flag in the internal 
clock register (CLK_ICKR) indicates if the HSI RC is stable or not. At a startup, the HSI RC 
output clock is not enabled until this bit is set by hardware. The HSI RC can be switched on 
and off using the HSIEN bit in the internal clock register (CLK_ICKR).

Backup source

The HSI/8 signal can also be used as a backup source (auxiliary clock) if the HSE crystal 
oscillator fails. Refer to Section 12.8: Clock security system (CSS) on page 84.

Calibration

Each device is factory calibrated by ST.

After reset, the factory calibration value is automatically loaded in an internal calibration 
register.

If the target application is subject to voltage or temperature variations, this may affect the 
RC oscillator speed. User can trim the HSI frequency in the application environment using 
the HSI clock calibration trimming register (CLK_HSITRIMR). In this register there are 3 bits 
providing an additional trimming value that is added to the internal HSI calibration register 
value. Each step corresponds to a mean frequency shift of 200 kHz.

         

12.3.2 LSI

The LSI is a low-speed clock line provided by an internal RC circuit. It's interconnected to 
the independent watchdog (IWDG) circuit, to the auto-wakeup unit (AWU); and it's also an 
alternative low power clock line for the master clock lines fMASTER, fSMED and fADC.

The LSI RC can be switched on and off using the LSIEN bit in the internal clock register 
(CLK_ICKR). The LSIRDY flag in the internal clock register (CLK_ICKR) indicates if the low-

Table 11. RC16 MHz oscillator user trimming

Trimming bit value Trimming steps Trimming bit value Trimming steps

0b011 +3 0b111 -1

0b010 +2 0b110 -2

0b001 +1 0b101 -3

0b000 0 0b100 -4
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speed internal oscillator is stable or not. At a startup, the clock is in the power-off state until 
the LSIEN bit is set by hardware (the LSI may be requested by HW at a startup in order to 
recognize the SWIM entry sequence).

Calibration

Like the HSI RC, the LSI RC device is factory calibrated by ST. However, it is not possible to 
perform further trimming.

Note: When using the independent watchdog with the LSI as a clock source, in order to guarantee 
that the CPU will never run on the same clock in case of a corruption, the LSI clock cannot 
be the master clock if the LSI_EN option bit is reset. Refer to the option bytes section in the 
datasheet.

12.3.3 PLL

The PLL provides a high frequency 96 MHz clock used to generate high frequency and 
accurate PWM waveforms from a 16 MHz input reference clock provided either by the 
internal HSI RC oscillator or by the external HSE auxiliary input clock line.

If the PLL is configured in the SSCG mode (CLK_PLLR register SCG_CTRL bit = '1'), the 
PLL generates an output clock modulated in frequency with a TRIANGULAR profile. The 
modulation frequency (1/Tmod) is 20 kHz and modulation depth (MD) is 0.5%. Center 
spread or down spread is set using the SPREAD_CTRL bit of the CLK_PLLR register.

Figure 14 shows the SSCG PLL output with time in the two spread modes:

Figure 14. PLL output clock in the two different spread modes
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12.3.4 HSE

The high-speed external clock (HSE) is an auxiliary clock source, selectable as a master 
clock on the fMASTER, fSMED and fADC clock chains interconnected to several IPs. It gives 
the user the ability to provide an external clock with the stability offered by oscillator circuits.

The HSE clock line supports two possible external sources:

• HSE external crystal/ceramic resonator

• HSE user external clock

The HSEOSCIN and HSEOSCOUT signals are multifunction pins configured through the 
I/O multiplex mechanism described in the product datasheet.

Figure 15 details the HSE different clock source configurations.

Figure 15. HSE clock source

Note: 1. When the HSE is configured as the fMASTER source clock, then the HSE input frequency 
cannot be higher than 16 MHz.

2. If the HSE is used as a PLL input reference clock, then the HSE input frequency must be 
equal to16 MHz.

3. If the HSE is an auxiliary clock line for the SMED or the ADC logic, then the input 
frequency can be configured up to 24 MHz.

4. The resonator and the load capacitors have to be placed as close as possible to the 
oscillator pins in order to minimize output distortion and startup stabilization time. The 
loading capacitance values must be adjusted according to the selected oscillator.
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External crystal/ceramic resonator (HSE crystal)

The external oscillator interconnected to the HSEOSCIN/HSEOSCOUT signal lines can be 
chosen in a range from 1 up to 24 MHz.

At a startup the clock signal produced by the oscillator is not stable and by default a delay of 
2048 oscillator cycles is inserted before the clock signal is released. The user can program 
a shorter stabilization time by configuring the HSECNT option byte. Refer to the product 
datasheet for the option byte description.

The HSERDY flag in the external clock register (CLK_ECKR) indicates if the high-speed 
external oscillator is stable or not. At a startup, the clock is not released until this bit is set by 
hardware.

The HSE crystal can be switched on and off using the HSEEN bit in the external clock 
register (CLK_ECKR).

External source (HSE user-ext)

In this mode, an external clock source must be provided. It can have a frequency of up to 
24 MHz. Users can select this mode by setting the EXTCLK option bit (refer to the option 
bytes section of the product datasheet). The external clock signal (square, sinus or triangle) 
with ~50% duty cycle has to drive the OSCIN pin while the OSCOUT pin is available as 
a standard I/O (refer to Figure 16).

Note: For clock frequencies above 16 MHz, Flash/Data EEPROM access must be configured with 
a 1 wait state. This is enabled by proper option byte. Refer to the datasheet option byte 
section.

12.3.5 Internal clock scheme

Figure 16 shows the internal clock tree based on the frequencies provided by the three 
oscillator circuits HSI, LSI, HSE and by the internal PLL running at 96 MHz. The main clock 
lines are divided through several clock dividers and controlled with a glitch-free clock gating 
logic.
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Figure 16. Main clock tree processor interfaces

1. The internal frequency fMASTER cannot be higher than 16 MHz in the current implementation.

2. For the SMED and ADC real-time clock dividers refer to Section 12.7.3 on page 83 and Section 12.7.2 on 
page 82.

3. For the PLL block refer to Section 12.7.1 on page 82.

4. For configurable clock output refer to Section 12.9 on page 85.
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12.4 Oscillators control

12.4.1 Oscillator enable control logic

The clock controller logic carries out the activation of the internal/external oscillator circuits, 
through the following resources:

• Oscillators on/off control switch (LSIEN, HSIEN and HSEEN bits).

• Flags to monitor oscillator line status (LSIRDY, HSIRDY and HSERDY bits). 

• Automatic oscillator activation when executing software commands (e.g.: clock switch, 
CCO, etc.).

• Hardware protections to secure clock availability.

Refer to Section 12.11.9: CLK_ICKR (internal clocks control) on page 92 and 
Section 12.11.10: CLK_ECKR (external clocks control) on page 94 for details about the 
oscillator management features.

12.4.2 Oscillator startup

The main issue about driving oscillators concerns the clock signal stabilization time. The 
CKC logic prevents to deliver the clock signals during the oscillators startup phase: from the 
clock activation (assertion of the xxxEN bit) until the clock stabilization time (xxxRDY 
assertion).

Where xxx is in the place of: the LSI or HSE or HSI source clock.

The CKC waits for stabilization time by directly counting the generic number of HSI/LSI 
cycles.

The high-speed external quartz (EXTCLK option bit reset) oscillator is stabilized by counting 
HSE cycles. Stabilization time can be trimmed by configuring the option byte HSESTAB: 
byte values are 0.5, 8, 128, 2048 HSE cycles. No stabilization time is waited for the user 
external clock (EXTCLK option bit set).

Table 12 details the oscillator circuit stabilization cycle numbers.

         

12.5 Master clock switch

12.5.1 Switch trigger

The application changes the system clock master by programming the contents of the 
CLK_SWR (clock switch) register. As soon as CLK_SWR and CLK_CMSR contents differ, 
the CKC asserts the SWBSY, switches on (if it was off) the target-clock source, checks the 

Table 12. Oscillators stabilization cycles

Oscillator Stabilization time configuration Stabilization cycles

HSI Fixed 2

LSI Fixed 0

HSE quartz (EXTCLK = '0') OPTION BYTE: HSESTAB 0.5, 8, 128, 2048

HSE ext (EXTCLK = '1') None None
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ready flag of the CLK_SWR oscillator and, as soon as it is true, then the clock switch is 
executed copying the CLK_SWR content to the CLK_CMSR register.

12.5.2 CPU clock during switch

Both CPU and peripheral clocks are not interrupted during the clock switching phase. The 
clock simply changes the duty cycle by stretching the low clock period according to both the 
current and the newer frequency. Note that the clock switch mechanism requires that the 
new source clock must be present, otherwise this operation is postponed until the new clock 
is available and the current source clock is maintained. 

12.5.3 Glitch filter

When the clock switching occurs, the transition to the new clock is delayed by latency due to 
glitch filtering synchronization stages. Worst case latency time is 2 clock cycles of the new 
clock periods.

All generated clocks and their enable signals are passed through two synchronization 
stages avoiding any possible spurious glitch event on the output clocks.

12.5.4 SWBSY utility

The SWBSY flag is used by the application to be aware that the clock switch process is 
ongoing. The SWBSY is automatically asserted as soon as the clock switch is triggered and 
automatically cleared after the conclusion of all clock switch operations, when the CKC is 
ready to perform successive clock changes. To protect the clock switch mechanism, when 
the SWBSY flag is active, the CLK_SWR register content is frozen.

In case the clock switch operation gets stuck, never ending or requiring too much long 
switch time, or in case it's needed to restore the previous clock, the software is able to reset 
the whole clock switch process by clearing the SWBSY flag register; as a consequence the 
CLK_SWR will be replaced by its previous content still present in the CLK_CMSR register 
field, then the previous source clock is restored.

Note: If the SW application is polling the SWBSY flag after the SWI register is written with a new 
value, a NOP instruction should be inserted before polling this flag to let the previous 
instruction to be completed. By not doing so, it may be possible that polling is not done at 
the right time.

12.5.5 Switch enable

The application can enable/disable the clock switch mechanism to effectively change the 
clock master. The SWEN bit is used for this purpose. Setting the SWEN bit enables the 
clock switch execution but, in case the CLK_SWR oscillator is not yet stable, CKC logic 
keeps active the previous clock for the stabilization time required by the new source clock.

In case the application attempts to both clear the SWBSY bit and set the SWEN bit within 
the same software step, the SWBSY action takes precedence resetting the newer switch 
operations.

12.5.6 Automatic vs. manual switch

Application achieves “full automatic” clock switch by keeping the SWEN bit enabled just 
from the beginning of the switch procedure. Ease of use (user only writes CLK_SWR) and 
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maximum speed are achieved. Otherwise starting with SWEN = '0' lets the application take 
explicit control of execution timing.

Automatic clock switch 

The automatic switching enables the user to launch a clock switch with a minimum number 
of instructions. The software can continue doing other operations without taking care of the 
switch event exact time. To enable automatic switching, follow the sequence below (refer to 
the flowchart in Figure 17):

1. Enable the switching mechanism by setting the SWEN bit in the switch control register 
(CLK_SWCR).

2. Write the 8-bit value used to select the target clock source in the clock master switch 
register (CLK_SWR). The SWBSY bit in the CLK_SWCR register is set by hardware, 
and the target source oscillator starts. The old clock source continues to drive the CPU 
and peripherals.

As soon as the target clock source is ready (stabilized), the content of the CLK_SWR 
register is copied to the clock master status register (CLK_CMSR). The SWBSY bit is 
cleared and the new clock source replaces the old one. The SWIF flag in the CLK_SWCR is 
set and an interrupt is generated if the SWIEN bit is set.

Figure 17. Automatic clock switch scheme

Manual clock switch scheme

The manual switching is not as immediate as the automatic switching but it offers the user 
a precise control of the switch event time. To enable manual switching, follow the sequence 
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below (refer to the flowchart in Figure 18):

1. Write the 8-bit value used to select the target clock source in the clock master switch 
register (CLK_SWR). Then the SWBSY bit is set by hardware and the target source 
oscillator starts. The old clock source continues to drive the CPU and peripherals.

2. The software has to wait until the target clock source is ready (stabilized). This is 
indicated by the SWIF flag in the CLK_SWCR register and by an interrupt if the SWIEN 
bit is set.

3. The final software action is to set, at the chosen time, the SWEN bit in the CLK_SWCR 
register to execute the switch.

In both manual and automatic switching modes, the old master clock source will not be 
powered off automatically in case it is required by other blocks (the LSI RC may be used to 
drive the independent watchdog for example). The clock source can be powered off by 
using the bits in the internal clock register (CLK_ICKR) and external clock register 
(CLK_ECKR).

If the clock switch does not work for any reason, software can reset the current switch 
operation by clearing the SWBSY flag. This will restore the CLK_SWR register to its 
previous content (old master clock).

Figure 18. Manual clock switch scheme
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12.5.7 Interrupts/flags for application

If clock switch execution is enabled (SWEN = '1') the SWIF flag is asserted by hardware 
soon after the clock change and, if the SWIE is set, an interrupt is also generated to mean 
the clock switch has been performed. If clock switch execution is disabled (SWEN = '0') the 
SWIF flag is asserted by hardware as soon as the new clock (SWR) is ready and, if the 
SWIE is set, an interrupt is also generated to mean the clock switch machine is ready to 
execute.

12.5.8 Old CKM after switch

The old clock master is never stopped after the clock switch execution since it can be used 
by other logic blocks. The application must explicitly switch it off, if this is needed.

12.5.9 Wait mode synchronization

The clock switch can be combined with the WAIT mode in order to synchronize the WAIT 
awakening interrupt with clock switch execution.

12.6 Peripheral clock gating

In order to limit the dynamic clock switching factor, saving power in the functional mode, the 
CKC unit provides up to 16 gated clock independently configurable peripheral control lines. 
The application must explicitly set the respective enable bits of the CLK_PCKENR1 and 
CLK_PCKENR2 registers to release the target clock. The clock enable is the preliminary 
step to enable the peripheral logic. The clock of the ITC interrupt controller unit is never 
gated.

After a device reset, all peripheral clocks are enabled. To enable or disable each peripheral 
clock, the corresponding PCKEN bit in the peripheral clock gating registers 
(CLK_PCKENR1 and CLK_PCKENR2) must be set or cleared. Each peripheral must be 
properly disabled, using the appropriate bit, before stopping the corresponding clock.

The AWU counter is clocked by a specific clock line (LSI or prescaled HSE), ensuring that it 
is operating during the CPU HALT phase, when the primary clock lines are gated.

Peripheral clocks that can be enabled or disabled are:

• I2C

• UART

• DALI

• System TIMER

• AWU

• ADC

• SMED5

• SMED4

• SMED3

• SMED2

• SMED1

• SMED0

• MISC
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12.7 Clock dividers

To reduce the dynamic power consumption, increasing the IC flexibility, the most important 
clock lines are individually configurable by clock divisor logic as shown below:

• CPU: fCPU = fMASTER / 2n 
where n is the value of CLK_CKDIVR[2:0] register.

• SMED<m>: fSMED<m> = fSMED_SOURCE<m> / 2n 
where m is the SMED instance number 5:0; n is the value of CLK_SMD<m>[6:4] 
registers.

• ADC: fADC = fADC_SOURCE / (n + 1) 
where n is the value of CLK_ADCR[7:4] register.

• CCO: fCCO = fCCO_SOURCE / n + 1 
where n is the value of CLK_CCODIVR[7:0] register.

• AWU: fAWU = fAWU_SOURCE / 2n 
where n is the value of CLK_AWUDIVR[3:0] register and fAWU_SOURCE clock is 
provided by the LSI or HSI prescaled (128 kHz) or by the HSE prescaled (128 kHz) 
clock lines.

• PLL: fPLL_PRESCALED_ = fPLL (96 MHz) / (CLK_PLLDIVR[1:0] 
(clock_divisor: 4, 5, 6, 7) * 2n) 
where n is the PLL clock prescaler provided by the CLK_PLLDIVR[4:3] register field.

12.7.1 PLL clock divider

The PLL output frequency can be prescaled through the CLK_PLLDIVR register to extend 
the range of frequencies that can be supplied by the CCO auxiliary source clock. Table 13 
summarizes the configurable frequency values.

         

12.7.2 ADC real-time clock divider

The ADC conversion frequency is configured by the CLK_ADCR CKC register; the bit fields 
1-0 select the ADC clock source, while the bit fields 7-4 configure the clock post divisor 
feature. Figure 19 shows an outline view of the ADC clock scheme.

Table 13. PLL output frequency divisor

PLL at 96 MHz output frequency divisor (MHz)

CLK_PLLDIVR[1:0] CLK_PLLDIVR[4:3]

00 (/1) 01 (/2) 10 (/4) 11 (/8)

00 (/4) 24 12 6 3

01 (/5) 19.2 9.6 4.8 2.4

10 (/6) 16 8 4 2

11 (/7) 13.71 6.85 3.42 1.71
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Figure 19. ADC real-time clock scheme

Note: 1. The fADC cannot be higher than 6 MHz.

2. The HSE auxiliary clock can be configured up to 24 MHz, but in this case the clock post 
divisor factor has to be configured in order to match the fADC maximum frequency.

3. If the HSI is the ADC default clock then it has to be divided by 3 (5.3 MHz).

4. The PLL frequency is pre-divided by 8 (12 MHz), then it must be post-divided by 2 to 
provide the 6 MHz. 

12.7.3 SMED real-time clock dividers

The SMED peripherals work with two asynchronous clock lines: a fMASTER system clock 
(synchronous with CPU clock - 16 MHz default value) used for the microcontroller interface, 
and a RTC clock (real-time clock) configurable up to 96 MHz used to control the SMED FSM 
(finite state machine) logic unit and the external input events. The RTC structure is shown in 
Figure 20.

The six SMEDs belong to different clock domains and each FSM can run with an 
independent clock; the FW application has to configure the clock frequency by programming 
the source clock and the post divider registers of every used SMEDs. The clock post divider 
logic scales the input clock from 1 up to 128 with steps of power of 2 (1, 2, 4, 8, 16, 32, 64 
and 128); while the RTC base clock can be chosen among four possible sources: fHSI 
(16 MHz; default source), fPLL (96 MHz functional sources), fHSE (expansion clock), fLSI (low 
frequency source). Each RTC root clock can be gated off when the relative SMED block is 
not used. Figure 20 shows an outline view of SMED clock structures.



Clock control unit (CKC) RM0380

84/335 DocID026249 Rev 1

Figure 20. SMED real-time clock scheme

Note: The HSE external clock line can be configured up to 24 MHz.

12.8 Clock security system (CSS)

The clock security system (CSS) monitors any possible HSE crystal clock source failure 
when fMASTER is provided by a HSE crystal oscillator. Whenever the HSE clock fails due to 
a broken or disconnected resonator or for any other fail reason, the clock controller activates 
a stall-safe recovery mechanism by automatically switching fMASTER to the auxiliary clock 
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source (HSI/8). Once selected, the auxiliary source clock remains enabled until the MCU is 
reset.

The user can enable the clock security system by setting the CSSEN bit in the clock security 
system register (CLK_CSSR). For safety reason, once the CSS is enabled it cannot be 
disabled until the next reset occurs.

The following conditions must be met so that the CSS can detect HSE quartz crystal 
failures:

• HSE crystal on: (HSEEN = '1' in the external clock register (CLK_ECKR))

• HSE oscillator in quartz crystal configuration (EXTCLK option bit is set)

• CSS function enabled: (CSSEN = '1' in the CLK_CSSR register)

If the HSE is the current clock master when a failure is detected, the CSS performs the 
following actions:

• The CSSD bit is set in the CLK_CSSR register and an interrupt is generated if the 
CSSIEN bit is set.

• The clock master status register (CLK_CMSR), the clock master switch register 
(CLK_SWR) register and the HSIDIV[1:0] bits in the clock divider register 
(CLK_CKDIVR) are set to their reset values (CKM[7:0] = SWI[7:0] = 0xE1). HSI/8 
becomes the master clock.

• The HSIEN bit in the internal clock register (CLK_ICKR) is set (HSI on).

• The HSEEN bit in the external clock register (CLK_ECKR) is cleared (HSE off).

• The AUX bit is set to indicate that the HSI/8 auxiliary clock source is forced.

The user can clear the CSSD bit by software but the AUX bit is cleared only by reset.

To select a faster clock speed, you can modify the HSIDIV[1:0] bits in the CLK_CKDIVR 
register after the CSSD bit in the CLK_CSSR register is cleared.

If the HSE is not the current clock master when a failure is detected, the master clock is not 
switched to the auxiliary clock and none of the above actions are performed except:

• The HSEEN bit is cleared in the CLK_ECKR register, the HSE is then switched OFF.

• The CSSD bit is set in the CLK_CSSR register and interrupt is generated if the 
CSSDIE is also set, it can be cleared by software.

If the HSE is not the current clock master and the master clock switch to HSE is ongoing, 
the SWBSY bit in the CLK_SWCR register must be cleared by software before clearing the 
CSSD bit.

If the HSE is selected by the CCOSEL to be in the output mode [see clock-out capability 
(CCO)] when a failure is detected, the selection is automatically changed to force HSI 
(HSIDIV) instead of HSE.

12.9 Configurable clock output

The configurable clock output (CCO) when selected provides an auxiliary clock line 
available on the CCO pin. Users have to select one of the following 14 sources clocks 
programming the CLK_CCOR register, then the selected frequency can be further reduced 
by a post divisor logic from 1 up to 256 division factors configuring the CLK_CCODIVR 
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register (refer to Section 12.11.22: CLK_CCODIVR (CCO divider) on page 104).

• fHSE

• fPLL (the clock has to be post divided at least by 0x03 in order to match the I/O buffer 
max. speed)

• fHSI

• fLSI

• fMASTER

• fCPU (current prescaled configuration)

• fSMED<n> (current prescaled configuration; where <n> = 5, 4, 3, 2, 1, 0)

• fADC (current prescaled configuration)

• fFLASH (ClkSmuOut output from Flash; clock traced for debug purpose)

Note: 50% duty cycle is not guaranteed for all possible prescaled values.

Figure 21 shows the CCO clock scheme.

Figure 21. CCO clock scheme
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12.10 CLK interrupts

The following interrupts can be generated by the clock controller:

• Master clock source switch event

• Clock security system event

• PLL unlock event

First two interrupts are individually maskable. The latter is a non maskable interrupt (NMI) 
type.

         

12.11 Clock registers description

For the base address please refer to the related databook.

12.11.1 CLK_SMD0 (SMED0 clock configuration)

Offset: 0x00

Default value: 0x00

         

Bit 1-0: CK_SW[1:0] clock switch

00: HSI at 16 MHz frequency selection.

01: PLL at 96 MHz frequency selection.

10: LSI frequency selection.

11: HSE frequency selection(b)

Equation 1

CLKSEL = CK_SW (HSI, PLL, LSI, HSE)

Bit 3-2: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 6-4: SMED_0_DIV[2:0] division factor (n) for:

Table 14. Clock interrupt event

Interrupt event Event flag Enable control bit Exit from wait Exit from Halt

Clock security system event 
(CSS)

CSSD CSSDIE Yes No

Master clock switch event SWIF SWIEN Yes No

PLL unlock event LOCKP PLL_LOCK_INT Yes (NMI) N. A.

7 6 5 4 3 2 1 0

RFU SMED_0_DIV [2:0] RFU RFU CK_SW [1:0]

r r/w r r r/w

b. The HSE frequency value must be chosen in accordance with the description present in Section 12.3.4: HSE 
on page 74.
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Equation 2

CLKSMED = CLKSEL / 2n

Bit 7:RFU reserved; must be kept 0 during register writing for future compatibility.

12.11.2 CLK_SMD1 (SMED1 clock configuration)

Offset: 0x01

Default value: 0x00

         

Bit 1-0: CK_SW[1:0] clock switch

00: HSI at 16 MHz frequency selection.

01: PLL at 96 MHz frequency selection.

10: LSI frequency selection.

11: HSE frequency selection(c)

Equation 3

CLKSEL = CK_SW(HSI, PLL, LSI, HSE)

Bit 3-2: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 6-4: SMED_1_DIV[2:0] division factor (n) for:

Equation 4

CLKSMED = CLKSEL / 2n

Bit 7: RFU reserved; must be kept 0 during register writing for future compatibility.

12.11.3 CLK_SMD2 (SMED2 clock configuration)

Offset: 0x02

Default value: 0x00

         

7 6 5 4 3 2 1 0

RFU SMED_1_DIV [2:0] RFU RFU CK_SW [1:0]

r r/w r r r/w

c. The HSE frequency value must be chosen in accordance with the description present in Section 12.3.4: HSE 
on page 74.

7 6 5 4 3 2 1 0

RFU SMED_2_DIV [2:0] RFU RFU CK_SW [1:0]

r r/w r r r/w
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Bit 1-0: CK_SW[1:0] clock switch

00: HSI at 16 MHz frequency selection.

01: PLL at 96 MHz frequency selection.

10: LSI frequency selection.

11: HSE frequency selection(d).

Equation 5

CLKSEL = CK_SW (HSI, PLL, LSI, HSE)

Bit 3-2: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 6-4: SMED_2_DIV[2:0] division factor (n) for:

Equation 6

CLKSMED = CLKSEL / 2
n

Bit 7: RFU reserved; must be kept 0 during register writing for future compatibility.

12.11.4 CLK_SMD3 (SMED3 clock configuration)

Offset: 0x03

Default value: 0x00

         

Bit 1-0: CK_SW[1:0] clock switch

00: HSI at 16 MHz frequency selection.

01: PLL at 96 MHz frequency selection.

10: LSI frequency selection.

11: HSE frequency selection(e).

Equation 7

CLKSEL = CK_SW (HSI, PLL, LSI, HSE)

Bit 3-2: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 6-4: SMED_3_DIV[2:0] division factor (n) for:

d. The HSE frequency value must be chosen in accordance with the description present in Section 12.3.4: HSE 
on page 74.
Resources available if the corresponding SMED IP is present on silicon, for details refer to the product 
datasheet.

7 6 5 4 3 2 1 0

RFU SMED_3_DIV [2:0] RFU RFU CK_SW [1:0]

r r/w r r r/w

e. HSE frequency value must be chosen in accordance with the description present in Section 9.3.4.
Resources available if the corresponding SMED IP is present on silicon device, for details refer to the product 
datasheet.
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Equation 8

CLKSMED = CLKSEL / 2n

Bit 7: RFU reserved; must be kept 0 during register writing for future compatibility.

12.11.5 CLK_SMD4 (SMED4 clock configuration)

Address: 0x04

Default value: 0x00

         

Bit 1-0: CK_SW[1:0] clock switch

00: HSI at 16MHz frequency selection.

01: PLL at 96MHz frequency selection.

10: LSI frequency selection.

11: HSE frequency selection(f)

Equation 9

CLKSEL = CK_SW (HSI, PLL, LSI, HSE)

Bit 3-2: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 6-4: SMED_4_DIV[2:0] division factor (n) for:

Equation 10

CLKSMED = CLKSEL / 2n

Bit 7:RFU reserved; must be kept 0 during register writing for future compatibility.

12.11.6 CLK_SMD5 (SMED5 clock configuration)

Offset: 0x05

Default value: 0x00

         

7 6 5 4 3 2 1 0

RFU SMED_4_DIV [2:0] RFU RFU CK_SW [1:0]

r r/w r/w r r/w

f. HSE frequency value must be chosen in accordance with the description present in Section 12.3.4: HSE on 
page 74
Resources available if the corresponding SMED IP is present on silicon device, for details refer to the product 
datasheet.

7 6 5 4 3 2 1 0

RFU SMED_5_DIV [2:0] RFU RFU CK_SW [1:0]

r r/w r r r/w
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Bit 1-0: CK_SW[1:0] clock switch

00: HSI at 16 MHz frequency selection.

01: PLL at 96 MHz frequency selection.

10: LSI frequency selection.

11: HSE frequency selection(g)

Equation 11

CLKSEL = CK_SW(HSI, PLL, LSI, HSE)

Bit 3-2: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 6-4: SMED_5_DIV[2:0] division factor (n) for:

Equation 12

CLKSMED = CLKSEL / 2n

Bit 7: RFU reserved; must be kept 0 during register writing for future compatibility.

12.11.7 CLK_PLLDIVR (PLL prescaler configuration)

Offset: 0x0A

Default value: 0x2

         

Bit 1-0: PLL_DIV[1:0] PLL at 96 MHz clock division factor:

00: CLKPLL_DIV = CLKPLL / 4

01: CLKPLL_DIV = CLKPLL / 5

10: CLKPLL_DIV = CLKPLL / 6

11: CLKPLL_DIV = CLKPLL / 7

Bit 2: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 4-3: PLL_PRES_DIV[1:0] PLL clock prescaled factor n

Equation 13

CLKPLL_PRES_DIV = CLKPLL_DIV / 2n

Note: Bits 1 - 0 and 4 - 3 are writable if PLL_EN = '1'.

Bit 7-5: RFU reserved; must be kept 0 during register writing for future compatibility.

g. HSE frequency value must be chosen in accordance with the description present in Section 9.3.4.
Resources available if the corresponding SMED IP is present on silicon device, for details refer to the product 
datasheet.

7 6 5 4 3 2 1 0

RFU PLL_PRES_DIV [1:0] RFU PLL_DIV [1:0]

r r/w r r/w
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12.11.8 CLK_AWUDIVR (AWU clock prescaler configuration)

Offset: 0x0B

Default value: 0x0

         

Bit 3-0: AWUDIV[3:0] AWU clock post divider

0000: fADC = fADC / 1

0001: fADC = fADC / 2

0010: fADC = fADC / 4

0011: fADC = fADC / 8

0100: fADC = fADC / 16

0101: fADC = fADC / 32

0110: fADC = fADC / 64

0111: fADC = fADC / 128

1xxx: fADC = fADC / 256

Bit 7-4: RFU reserved; must be kept 0 during register writing for future compatibility.

12.11.9 CLK_ICKR (internal clocks control)

Offset: 0x0C

Default value: 0x01

         

Bit 0: HSIEN enable high-speed RC internal oscillator

Enable control bit for the high-speed internal RC oscillator. The HSIEN can be set and 
clear by software, but it is set and kept asserted by hardware right of priority in such 
case:

- CSS safe oscillator is on (AUX = '1')

- when exiting HALT/ActiveHALT by fast-halt-wakeup configuration (FHW = '1')

- HSI selected by active CCO (CCOBSY = '1' and CCOSEL = 0x0)

- clock switch to HSI is ongoing (CKM ! = SWI and SWI = HSI) 

- HSI is clock master (CKM = HSI)

- HSI requested by SWIM when active for debug

0: disable high-speed internal RC oscillator.

1: enable high-speed internal RC oscillator.

7 6 5 4 3 2 1 0

RFU RFU RFU RFU AWUDIV [3:0]

r r r r r/w

7 6 5 4 3 2 1 0

RFU RFU REGAH LSIRDY LSIEN FHW HSIRDY HSIEN

r r r/w r r/w r/w r r/w
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Bit 1: HSIRDY high-speed internal oscillator ready

This bit indicates if the high-speed internal RC oscillator is stable or not. It is set and 
cleared by hardware. The HSI clock is not released as long as this bit is clear. The 
HSIRDY is automatically cleared when the HSI is turned off.

0: high-speed internal RC is not ready and HSI clock is not available.

1: high-speed internal RC reached stabilization and HSI clock is available.

Bit 2: FHW fast Halt/Active-halt wake up

This bit is set and cleared by software.

If the FHW is set the oscillator is automatically switched on (HSIEN = '1') and selected 
as a next clock master (CKM = SWI = HSI) when resuming from Halt/Active-halt power 
save modes.

0: fast Halt/Active-halt wakeup mode disabled

1: fast Halt/Active-halt wakeup mode enabled

Bit 3: LSIEN enable low-speed internal oscillator

Enable control bit for the low-speed internal RC oscillator. The LSIEN can be set and 
cleared by software, but it is set and kept asserted by hardware right of priority in such 
case:

- LSI is requested by SWIM or AWU peripheral

- LSI selected by active CCO (CCOBSY = '1' and CCOSEL = 0x1)

- Clock switch to LSI is ongoing (CKM != SWI and SWI = LSI)

- LSI is the clock master (CKM = LSI)

0: disable low-speed internal RC oscillator

1: enable low-speed internal RC oscillator

Bit 4: LSIRDY low-speed oscillator ready

This bit indicates if the low-speed internal RC oscillator is stable or not. It is set and 
cleared by hardware. The LSI clock is not released as long as this bit is clear. The 
LSIRDY is automatically cleared when the LSI is turned off.

0: low-speed internal RC is not ready and LSI clock is not available.

1: low-speed internal RC reached stabilization and LSI clock is available.

Bit 5: REGAH: regulator power off in Active-halt mode

This bit is set and cleared by software. When it is set, the main voltage regulator is 
powered off as soon as the MCU enters the Active-halt mode, so the wakeup time is 
longer.

0: MVR regulator ON in Active-halt mode

1: MVR regulator OFF in Active-halt mode

Bit 7-6: RFU reserved; must be kept 0 during register writing for future compatibility.
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12.11.10 CLK_ECKR (external clocks control)

Offset: 0x0D

Default value: 0x00

         

Bit 0: HSEEN enable high-speed external oscillator

Enable control bit for the high-speed external quartz oscillator. The HSEEN can be set 
and cleared by software. It is set and kept asserted by hardware in the following cases:

- Clock switch to HSE is ongoing (CKM != SWI and SWI = HSE).

- HSE selected by active CCO (CCOBSY = '1' and CCOSEL = 0x2).

- HSE is clock master (CKM = HSE).

Else, HSEEN is cleared and kept deasserted by hardware right of priority in such 
a case CSSD = '1'

0: disable high-speed external oscillator.

1: enable high-speed external oscillator.

Bit 1: HSERDY high-speed external quartz oscillator ready

This bit indicates if the high-speed external quartz oscillator is stable or not. It is set and 
cleared by hardware. The HSE clock is not released as long as this bit is clear. The 
number of stabilization cycles can be configured by the HSESTB bits when the HSE is 
chosen in quartz configuration (HSECNF = '0'). The HSERDY is soon asserted 
switching on the HSE user-external clock configuration (HSECNF = '1'). The HSERDY 
is automatically cleared when the HSE is turned off.

0: high-speed external quartz is not ready and HSE clock is not available.

1: high-speed external quartz reached stabilization and HSE clock is available.

Bit 7-2: RFU reserved; must be kept 0 during register writing for future compatibility.

12.11.11 CLK_PLLR (PLL configuration)

Offset: 0x0E

Default value: 0x00

         

Bit 0: PLLON PLL power-down

0: PLL disabled.

1: PLL enabled.

Bit 1: LOCKP PLL lock signal

0: PLL not locked.

1: PLL locked.

7 6 5 4 3 2 1 0

RFU RFU RFU RFU RFU RFU HSERDY HSEEN

r r r r r r r r/w

7 6 5 4 3 2 1 0

RFU PLL_LOCK_INT SPREAD_CTRL SSCG_CTRL BYPASS REF_SEL LOCKP PLLON

r r/w r/w r/w r/w r/w r r/w
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Bit 2: REF_SEL PLL clock input reference clock selection

0: HSI source clock selection.

1: HSE external source clock selection.

Note: The HSE frequency must be equal to 16 MHz.

Bit 3: BYPASS PLL bypass

0: disable PLL bypass.

1: enable PLL bypass.

Bit 4: SSCG_CTRL PLL SSCG input

0: output is not frequency modulated.

1: output is frequency modulated with a triangular profile.

Bit 5: SPREAD_CTRL PLL spread input

0: center spread in SSCG mode.

1: down spread in SSCG mode.

Bit 6: PLL_LOCK_INT PLL lock interrupt enable

0: disable PLL unlock interrupt generation.

1: enable PLL unlock interrupt generation if there is a falling edge on the PLL lock 
internal signal.

Note: This register is configurable when the PLL_EN option bit is set to '1'. Refer to the option 
bytes section in the datasheet.

Bit 7: RFU reserved; must be kept 0 during register writing for future compatibility.

12.11.12 CLK_CMSR (clock master)

Offset: 0x0F

Default value: 0xE1

         

7 6 5 4 3 2 1 0

nCKM [3:0] CKM [3:0]

r r
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Bit 3-0: CKM[3:0] clock master status bits

These bits are set and cleared by HW and show the system clock master delivered to 
the CPU and peripherals. The CKM can be changed by hardware in 3 cases only:

- SWI content is copied to the CKM soon after clock switch execution.

- If the fast-halt-wakeup mode is selected (FHW = '1'), the CKM is reset to the HSI 
when 
resuming from HALT/ActiveHALT (slow/fast).

- AUX = '1' is asserted by CSS. In such a case the CKM can be modified again only 
after external reset.

The system clock legal selections are the following:

0xE1: HSI 16 MHz.

0xD2: LSI 153.6 kHz.

0xB4: HSE external frequency.

0x78: reserved.

Any other values: HSI 16 MHz clock selection.

Note: When the HSE is one of the clock sources that concur to generate the fMASTER its frequency 
cannot be higher than 16 MHz.

Bit 7-4:nCKM[3:0] not (CKM[3:0]); EMC digit protection field

This register field is the complemented value of the CKM[3:0] register field.

12.11.13 CLK_SWR (clock switch)

Offset: 0x10

Default value: 0xE1

         

Bit 3-0: SWI[3:0] clock switch

These bits are used by application to choose/change the system clock by the clock 
switch procedure. In order to perform clock switch software has to fill these bits with the 
target oscillator code. SWI content is then frozen and write-protected as long as clock 
switch operation is ongoing (SWBSY = '1'). However software is enabled to reset clock 
switch executions by clearing the SWBSY flag: in such a case SWI is restored by its 

7 6 5 4 3 2 1 0

nSWI[3:0] SWI [3:0]

r/w r/w
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previous content (the actual CKM). Soon after clock switch execution SWI content is 
copied to CKM.

SWI is reset to HSI by hardware in such cases: 

- The Fast-Halt-wakeup mode is selected (FHW = '1'), SWI is reset to HSI when 
resuming from Halt/Active-halt (slow/fast).

- AUX = '1' is asserted by CSS. In such a case SWI can be modified again only after 
external reset.

The next clock master is following:

0xE1: HSI 16 MHz.

0xD2: LSI(1).

0xB4: HSE.

0x78: reserved.

Others encoding: no clock changes. This condition may occurs in case of the SWI 
wrong bit encoding or SWI corruption; in such cases the SWI is restored with the 
previous value.

Note: Writing 0xD2 to the SWI register is disabled when LSI_EN option bit is cleared. Refer to the 
product datasheet option bit section.

Bit 7-4: nSWI[3:0] not(SWI[3:0]); EMC digit protection field

This field must be configured with the complemented value of the SWI[3:0] register 
field.

12.11.14 CLK_SWCR (switch control)

Offset: 0x11

Default value: 0x0

         

Bit 0: SWBSY switch busy

This bit indicates, when asserted, that internal clock switch operations are ongoing. It is 
set and cleared by hardware. Nevertheless software can clear SWBSY in order to reset 
clock switch operations (target oscillator is broken, stabilization is longing too much, 
etc…) by restoring SWI = CKM. If at the same time software attempts to set SWEN and 
clear SWBSY, SWBSY action takes precedence.

0: clock switch operation not in progress.

1: clock switch operation in progress.

Bit 1: SWEN switch enable

This bit enables system clock to switch to the clock source pointed by SWI register. It 
also determines the SWIF bit behavior. It is set and cleared by software. If at the same 
time asserts SWEN and clears SWBSY, SWBSY takes precedence.

0: disable clock switch execution.

1: enable clock switch execution.

7 6 5 4 3 2 1 0

RFU RFU RFU RFU SWIF SWIEN SWEN SWBSY

r r r r rc/w0 r/w r/w r/w
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Bit 2: SWIEN clock switch interrupt enable

This bit enables, when set, the SWIF bit to generate clock switch interrupt. It is set and 
cleared by software.

0: disable clock switch interrupt.

1: enable clock switch interrupt.

Bit 3: SWIF clock switch interrupt flag

This bit is set by hardware and cleared by software writing '0'. Its meaning depends on 
the status of the SWEN bit. Refer to Figure 17 on page 79 and Figure 18 on page 80.

• In manual switching mode (SWEN = '0'):

– 0: target clock source not ready

– 1: target clock source ready

• In automatic switching mode (SWEN = '1'):

– 0: no clock switch event occurred

– 1: clock switch event occurred

Bit 7-4: RFU reserved; must be kept 0 during register writing for future compatibility.

12.11.15 CLK_CKDIVR (clock dividers)

Address: 0x12

Default value: 0x18

         

Bit 2-0: CPUDIV[2:0] CPU clock prescaler

These bits select the CPU clock division factor; they are set and cleared by software:

000: fCPU = fMASTER

001: fCPU = fMASTER / 2

010: fCPU = fMASTER / 4

011: fCPU = fMASTER / 8

100: fCPU = fMASTER / 16

101: fCPU = fMASTER / 32

110: fCPU = fMASTER / 64

111: fCPU = fMASTER / 128

7 6 5 4 3 2 1 0

RFU RFU RFU HSIDIV [1:0] CPUDIV [2:0]

r r r r/w r/w
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Bit 4-3: HSIDIV[1:0] high-speed internal clock prescaler

These bits select the high-speed internal RC clock division factor. Reset value is HSI/8, 
then HSI/8 is the user mode startup clock. These bits are normally set and cleared by 
software, but hardware control overcomes in such cases:

- AUX = CSSD = '1' reset configuration is forced (HSI/8)

00: HSIDIV = HSI

01: HSIDIV = HSI / 2

10: HSIDIV = HSI / 4

11: HSIDIV = HSI / 8

Note: The HSIDIV post-divisor logic provide a clock with duty cycle 50%.

Bit 7-5: RFU reserved; must be kept 0 during register writing for future compatibility.

12.11.16 CLK_PCKENR1 (peripherals clock enable)

Offset: 0x13

Default value: 0xFF

         

These bits are written by software to enable or disable the fMASTER clock to the 
corresponding peripheral.

Bit 0:PCKEN10 I2C peripheral clocks enable

1: clock enabled (active clock).

0: clock gated (disable clock).

Bit 1:PCKEN11 GPIO0 peripheral clock enable.

1: clock enabled

0: clock gated

Bit 2:PCKEN12 UART peripheral clocks enable

1: clock enabled.

0: clock gated.

Bit 3:PCKEN13 DALI peripheral clocks enable

1: clock enabled.

0: clock gated.

Bit 4:PCKEN14 STMR peripheral clocks enable

1: clock enabled.

0: clock gated.

Bit 5:PCKEN15 GPIO1 peripheral clock enable.

1: clock enabled.

0: clock gated.

7 6 5 4 3 2 1 0

PCKEN17 PCKEN16 PCKEN15 PCKEN14 PCKEN13 PCKEN12 PCKEN11 PCKEN10

r/w r/w r/w r/w r/w r/w r/w r/w
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Bit 6:PCKEN16 AWU peripheral clocks enable

1: clock enabled.

0: clock gated.

Bit 7:PCKEN17 ADC peripheral clocks enable

1: clock enabled.

0: clock gated.

12.11.17 CLK_CSSR (clock security system)

Offset: 0x14

Default value: 0x00

         

Bit 0: CSSEN clock security system enable

It's enabled by software one time, and cleared only by an external reset.

0: clock security system is off, no detection is provided for HSE

1: clock security system is on, HSE is being monitored by clock detector.

Bit 1: AUX auxiliary oscillator connected as clock master

This bit is set and cleared by HW. The AUX stays off if the clock security system is 
disabled (CSSEN = '0'). Otherwise it is set by hardware after the detection of 
disturbance on the high-speed external quartz / user external clock provided that one of 
the following assertion is true:

- CKM = HSE

It is set by hardware and can be cleared only by an external reset. When the AUX is 
set, the following actions are automatically performed:

- HSIEN = '1' is reset and kept forced

- CKM = SWI = HSI is reset and kept forced

- HSIDIV = 0x3 is reset until CSSD = '1'

0: auxiliary oscillator is off.

1: auxiliary oscillator is on and selected as an actual clock master source.

Bit 2: CSSDIE clock security system detection interrupt enable

This bit enables, when set, the CSSD bit to generate clock switch interrupt. It is set and 
cleared by software.

0: clock security system interrupt disabled.

1: clock security system interrupt enabled.

7 6 5 4 3 2 1 0

RFU RFU RFU RFU CSSD CSSDIE AUX CSSEN

r r r r rc/w0 r/w r r/w0
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Bit 3: CSSD clock security system detection

This bit is set by HW and cleared by SW. The CSSD stays off if clock security system is 
disabled (CSSEN = '0'). Otherwise it is set by hardware after the detection of 
disturbance on the high-speed external quartz provided HSEON = '1'.

The CSSD assertion:

- is cleared by software

- causes HSEEN bit automatically cleared

- causes CCOSEL bit automatically cleared if CCOSEL = 0x2

- generates clock security system interrupt when CSSDIE = '1'

0: CSS is off of no disturbance on the high-speed external quartz / user external clock 
was detected.

1: disturbances on high-speed external quartz clock was detected by the CSS.

Bit 7-4: RFU reserved; must be kept 0 during register writing for future compatibility.

12.11.18 CLK_CCOR (configurable clock output)

Offset: 0x15

Default value: 0x00

         

Bit 0: CCOEN configurable clock output enable

Enable control bit for the configurable clock output. It is set and cleared by software.

0: disable CCO clock.

1: enable CCO clock.

7 6 5 4 3 2 1 0

RFU CCOBSY CCORDY CCOSEL [3:0] CCOEN

r r r r/w r/w
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Bit 4-1: CCOSEL[3:0] configurable clock output selection

These bits are used by application SW to configure the CCO clock source provided on 
CCO output. Software has to program this field with the proper target frequency code. 
The PLL cannot be written as a source clock if the PLL_EN option bit is cleared.

CCOSEL content is frozen and write-protected as long as the CCO clock is being 
switched on, stabilized and delivered (CCOBSY = '1').

The CCOSEL is automatically reset to the HSI/HSIDIV in such a case:

- CCOSEL = 0x2 and CCOBSY= '1' and CSSD = '1'.

The possible configurable CCO clock output sources are shown below (not all SMED 
sources clock may be available, depending on specific product):

0x0: HSI

0x1: LSI

0x2: HSE

0x3: PLL

0x4: CPU

0x5: CKM

0x6: SMED0_CK

0x7: SMED1_CK

0x8: SMED2_CK

0x9: SMED3_CK

0xA: SMED4_CK

0xB: SMED5_CK

0xC: ADC_CK

0xD: EE_CLKSMUOUT

0xE: AWU_CK

0xF: PRESCLALED_PLL_CK

Note: 1. Writing 0x3, the CCOSEL register is disabled when the PLL_EN (option bit) is '0'.

2. Before selecting any clock sources it must be previously enabled.

3. The fCPU clock is generated by clock gating logic clocked by the fMASTER clock then the 
duty is variable and depends on the division factors (the high pulse is longer as the fMASTER 
clock period, while the lower pulse is variable, the minimum pulse is one fMASTER clock 
period).

4. The encoding 0xD is reserved and used only for a debug purpose.

Bit 5: CCORDY configurable clock output ready

This bit is set and cleared by HW. The CCORDY indicates that the clock requested on 
CCO output is being delivered.

0: CCO clock is not available.

1: CCO clock is available.

Bit 6: CCOBSY configurable clock output busy

This bit is set and cleared by HW. The CCOBSY indicates that the requested CCO 
clock is being switched on, stabilized or delivered by the CCOEN command. It is set by 
hardware after the CCOEN = '1' assertion and cleared by hardware after configurable 
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clock output is shut down. As long as the CCOBSY is set, the CCOSEL bits are write-
protected. The CCOBSY is also the same of the CCO alternate function output.

0: CCO is not busy; CCOSEL is configurable by SW.

1: CCO is busy; CCOSEL is not configurable.

Note: The procedure to write the CLK_CCOR is the following:

1. First step: write the CCOSEL register with the CCO disabled (CCOEN = '0'.).

2. Second step: enable the CCO (CCOEN = '1') and re-write the CCOSEL as first step.

Bit 7: RFU reserved; must be kept 0 during register writing for future compatibility.

12.11.19 CLK_PCKENR2 (peripherals clock enable)

Offset: 0x16

Default value: 0xFF

         

Bit 0: PCKEN20 clock enable for SMED0's processor interface and the RTC (real-time 
clock) logic.

1: clock enable.

0: clock gated.

Bit 1: PCKEN21 clock enable for SMED1's processor interface and the RTC logic.

1: clock enable.

0: clock gated.

Bit 2: PCKEN22 clock enable for SMED2's processor interface and the RTC logic(h).

1: clock enable.

0: clock gated.

Bit 3: PCKEN23 clock enable for SMED3's processor interface and the RTC logic(h).

1: clock enable.

0: clock gated.

Bit 4: PCKEN24 clock enable for SMED4's processor interface and the RTC logic(h).

1: clock enable.

0: clock gated.

Bit 5: PCKEN25 clock enable for SMED5's processor interface and the RTC logic(h).

1: clock enable.

0: clock gated.

Bit 6: RFU reserved; must be kept 0 during register writing for future compatibility.

7 6 5 4 3 2 1 0

PCKEN27 RFU PCKEN25 PCKEN24 PCKEN23 PCKEN22 PCKEN21 PCKEN20

r/w r r/w r/w r/w r/w r/w r/w

h. Clock gating available if the corresponding SMED IP is present on the silicon device; refer to the product 
datasheet.
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Bit 7: PCKEN27 clock enable of MISC's processor interface.

1: clock enable (must be kept enable in the current silicon version).

0: clock gated.

Note: Clock gating available if the corresponding SMED IP is present on the silicon device; refer to 
the product datasheet.

12.11.20 CLK_HSITRIMR (HSI calibration trimmer)

Offset: 0x18

Default value: 0x00

         

Bit 2-0: HSITRIM[2:0] high-speed internal oscillator trimmer

This register is writable by software in order to refine the internal high-speed RC 
oscillator frequency. The resulting calibration value is achieved on physical output by 
adding HSITRIM plus HSICAL value.

Bit 7-3: RFU reserved; must be kept 0 during register writing for future compatibility.

12.11.21 CLK_SWIMCCR (SWIM clock division)

Offset: 0x19

Default value: 0x00

         

Bit 0: SWIMCLK SWIM clock division

This bit is set and cleared by SW.

0: enable the SWIM clock division by 2

1: SWIM clock unchanged.

Bit 7-1: RFU reserved; must be kept 0 during register writing for future compatibility.

12.11.22 CLK_CCODIVR (CCO divider)

Offset: 0x1A

Default value: 0x00

         

7 6 5 4 3 2 1 0

RFU HSITRIM [2:0]

r r/w

7 6 5 4 3 2 1 0

RFU SWIMCLK

r r/w

7 6 5 4 3 2 1 0

CCODIV [7:0]

r/w
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Bit 7-0: CCODIV[7:0] division factor (n) for the CCO clock.

This field is set and cleared by SW. The CCODIV is the CCO clock post divider.

Equation 14

CLKCCO = CLK / (n + 1)

Note: After reset the CLK_CCODIVR must be programmed before to enable the CCO output (by 
CCOEN of CLK_CCOR register), then the division factor can be configured on the fly.

12.11.23 CLK_ADCR (ADC clock configuration)

Offset: 0x1B

Default value: 0x20

         

This register is configurable by SW and defines the ADC conversion frequency

Bit 1-0: SEL[1:0] ADC clock selection

00: HSI 16 MHz selected

01: PLL at 96 MHz selected

10: LSI selected

11: HSE selected

Bit 3-2: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 7-4: ADC_DIV[3:0] division factor (n) for ADC selected clock:

Equation 15

fADC = CLKSEL / (n+1)

Note: The minimum division factor (n) depends on the CLKSEL selected source clock.

7 6 5 4 3 2 1 0

ADC_DIV [3:0] RFU SEL [1:0]

r/w r r/w
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12.12 Clock registers overview

Table 15 shows the clock controller internal registers overview starting from the base 
address reported in the corresponding device datasheet; for detailed registers description 
refer to Section 12.11 on page 87.

         

Table 15. Clock controller registers overview

Name Description Offset Type Reset value

CLK_SMD0 SMED0 RTC clock config. register 0x00 R/W 0x00

CLK_SMD1 SMED1 RTC clock config. register 0x01 R/W 0x00

CLK_SMD2 SMED2 RTC clock config. register(1)

1. A register available if the corresponding SMED logic is present in the product device; for further details 
refer to the product datasheet.

0x02 R/W 0x00

CLK_SMD3 SMED3 RTC clock config. register(1) 0x03 R/W 0x00

CLK_SMD4 SMED4 RTC clock config. register(1) 0x04 R/W 0x00

CLK_SMD5 SMED5 RTC clock config. register(1) 0x05 R/W 0x00

RFU Reserved 0x06-0x09 - -

CLK_PLLDIV PLL divider/prescaler register(2)

2. Some bits are protected by a hard write protection mechanism.

0x0A R/W 0x00

CLK_AWUDIV AWU divider register 0x0B R/W 0x00

CLK_ICKR Internal clock register(2) 0x0C R/W 0x01

CLK_ECKR External clock register(2) 0x0D R/W 0x00

CLK_PLLR PLL status register(2) 0x0E R/W 0x01

CKL_CMSR Clock master status register 0x0F R 0xE1

CLK_SWR Clock master switch register 0x10 R/W 0xE1

CLK_SWCR Switch control register(2) 0x11 R/W 0x00

CLK_CKDIVR Clock divider register 0x12 R/W 0x18

CLK_PCKENR1 Peripheral clock enable 1 0x13 R/W 0xFF

CLK_CSSR CSS status register(2) 0x14 R/W 0x00

CLK_CCOR Configurable clock output reg.(2) 0x15 R/W 0x00

CLK_PCKENR2 Peripheral clock enable 2 0x16 R/W 0xFF

RFU Reserved 0x17 - -

CLK_HSITRIMR HSI calibration trimmer register 0x18 R/W 0x00

CLK_SWIMCCR SWIM CLK division factor 0x19 R/W 0x00

CLK_CCODIVR CCO divider register 0x1A R/W 0x00

CLK_ADCR ADC status register 0x1B R/W 0x20

RFU Reserved 0x1C - -
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13 Power management (PM)

13.1 Overview

The power saving strategy is based on a compromise between performances and the power 
consumption acceptable by the user application. The IC offers two methods to reduce both 
the dynamic consumption mainly due to the dynamic clock switching and the static 
consumption caused by the transistor bias and leakage current:

• Clock switching reduction: used to slow down the system clock and/or gating the clock 
of unused IPs.

• Operating modes: different operating modes have been implemented to reduce the 
power consumption. 

Note: The power management feature is configured by some CKC registers, for further details 
refer to Section 12.11: Clock registers description on page 87.

13.2 Clock switching reduction

The clock switching control activities allow decreasing the dynamic power consumption 
through the following configurable functionalities:

• Peripheral clock gating.

• Slow down the system clocks.

13.2.1 Peripheral clock gating

In functional modes the peripherals not used by the application contribute to the overall 
power consumption. The input clock signal switching activity drives hidden, power 
consuming transitions inside registered elements even though doesn't alter the resulting 
logic state. In order to limit the power consumption each peripheral source clock can be 
switched off independently when it's not used through the CKC CLK_PCKENR1 and 
CLK_PCKENR2 internal registers; for further detail about the registers layout refer to 
Section 12.11.

Note: The SW application can program “on the fly” the clock gating functionality.

13.2.2 Slow down clock

Whenever the IC doesn't need to run at full speed to meet the user application performance 
or in a similar way during a particular FW execution sequence that doesn't not require 
a higher CPU computational capability, either the system clock fMASTER or/and the fCPU 
clock can be slowed down increasing the IC power saving.

The system frequency fMASTER is generated by one of the three configurable sources clock 
lines (refer to Figure 16: Main clock tree processor interfaces on page 76): the HSE external 
crystal oscillator, LSI RC153.6 kHz internal oscillator and the HSI RC 16 MHz internal 
oscillator, which is the default clock line provided by the system after reset. The fMASTER 
frequency driven by the HSI source is programmable through the HSIDIV[1:0] bits field of 
the CLK_CKDIV register, selecting one of the following prescaled values: /1, /2, /4 or /8.
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The CPU frequency fCPU is controlled by the CLK_CKDIVR register through the 
CPUDIV[2:0] bits field that allows configuring a clock division factor from 1 up to 128; the 
peripheral clocks are not affected by the fCPU frequency scaling.

Note: The SW application can program “on the fly” the division factors.

13.2.3 Analog peripherals power-down

To reduce the leakage caused by the bias current and reference circuitry of the analog 
macros, it is recommended to turn off the unused peripherals. These may include the ADC 
converter, DAC reference voltages and PLL. Refer to relative sections for details about the 
suitable programming register. The following considerations are applied for the ADC and 
PLL blocks:

• ADC: the user has to assure that this peripheral is in the IDLE state, before turning off 
the peripheral by programming the PD bit field of the ADC_CFG register or by 
executing the HALT instruction. This may require postponing the ADC power-down (by 
adding some delay by SW) until the completion of current conversion operation; for 
details refer to Section 27.8.1: ADC_CFG (configuration register) on page 326.

• ACU: the user may keep the ACU peripheral in power-on even in the HALT mode. This 
is allowed in order to use the interrupt capability of the comparator related P3 port to 
wake up the device (available in some devices: refer to the product datasheet).

– No specific action has to be performed if the ACU is left enabled; however the 
power consumption increases accordingly (refer to the product datasheet).

– Otherwise, to power off the ACU peripheral, the MSC_DACCTR register has to be 
completely cleared before entering the HALT state. When the device awakes, the 
user has to configure the peripheral through the MSC_DACCTR register. The 
peripheral is fully stable and operative 400 ns after the user has completed the 
configuration.

• PLL: the PLL logic has to be put in power-down before entering the HALT state. This 
may be done by gating the clocks of the peripheral configured with the PLL source 
clock (refer to Section 13.2.1: Peripheral clock gating on page 107) and then clearing 
the PLLON bit field of the CKC_PLLR register. 

When the IC device exits from HALT, the user has to enable the PLL setting the PLLON bit, 
then poll by SW the LOCKP bit of the CLK_PLLR register until this field is high; after that 
may restore the peripheral clocks by removing the clock gating configurations. For PLL lock 
time information refer to the product datasheet.

13.3 Operating modes

The IC supports four different functional operating modes to reduce the dynamic power 
consumption:

• RUN: functional operating mode, where all system resources are actives.

• WAIT mode: the CPU is halted while peripherals and oscillators are running.

• Active-HALT mode: all the system is halted with the exception of the LSI oscillator 
feeding the AWU and the IWDG IPs (alternatively the HSE can be selected to clock 
only the AWU through option bytes).

• HALT mode: all clock activities are stopped (best power saving condition).

The user has to select one of these four operating modes, configuring them to obtain the 
best compromise between lower power consumption, and faster startup time after a wakeup 
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event. When the IC device enters in one of the power saving mode (HALT, Active-HALT or 
WAIT) the IC can return to the RUN operating mode only after triggering an interrupt event.

In the WAIT mode, all internal peripheral and the external lines (P0, P1, P2 and P3 
depending on the product) may be configured to generate a wakeup event.

In the HALT mode only the external lines, properly configured as asynchronous level event, 
can awake the IC device.

In the Active-HALT the external lines and the internal AWU may be configured to trigger the 
wakeup event.

Table 16 summarizes the main power management features.

         

Table 16. Power management scheme

Operating 
mode

Voltage 
regulator

Flash
Oscillators 

PLL
CPU Peripherals Entry

wakeup trigger 
event

Run MVR On On(1) On(2) On(3),(4) - -

Wait MVR On On(1) Off(2) On(3),(4) Execute WFI(5) 
instruction

All internal or external 
interrupts and reset

Active-halt

MVR(6)
On Off except 

LSI or 
HSE(7) Off

 

AWU and 
IWDG on (if 
activated)

Enable the AWU 
then execute 

HALT instruction

AWU or external 
interrupts and reset

Off

LPVR(8),(9)
On Off except 

LSI(10)
Off

Halt LPVR(8)
On

Off Off Off
Execute HALT 

instruction
External interrupts 

and resetOff

1. The PLL is enabled by 'PLL_EN' option bit and the CKC_PLLR register.

2. The fCPU clock can be slowed down to reduce the dynamic power switching.

3. The fMASTER clock can be slowed down to reduce the dynamic power switching.

4. Unused peripherals should be disabled turning off their clock gating.

5. The WFI: wait for interrupt.

6. The Active-halt mode configured with fast wakeup functionality.

7. The HSE has to be enabled by programming the CKAWSEL[1:0] option bit to 0 b. (Refer to the product datasheet); this 
selects the AWU clock fAWU to be provided by the fHSE with a proper scaling factor, also programmable through option byte.

8. When the LPVR is used, the MVR regulator is automatically switched off.

9. The Active-halt mode configured with slow wakeup functionality.

10. Only the LSI clock source can be used, as the HSE clock current consumption is too high for the LPVR.



Power management (PM) RM0380

110/335 DocID026249 Rev 1

Figure 22 shows the power management allowed operating transition scheme.

Figure 22. Power management transition state

13.3.1 RUN mode

By default, after a reset or power-on the microcontroller enters in the run mode; the system 
frequency fMASTER and the CPU frequency fCPU are clocked by the HSI clock line divided by 
eight. The FW application has to program the proper frequencies by configuring the clock 
prescaler and the clock gating functionalities according to the target application usage.

The reduction of the power consumption can be achieved decreasing the clock switching 
activity, further detail can be found in Section 13.2: Clock switching reduction.

13.3.2 WAIT mode

The wait for the interrupt mode allows reducing the device power consumption by switching 
off the CPU core when it is not being used. The wait mode is mainly used when the IC 
device is waiting for an external or an internal interrupt event which allows the program to 
continue its execution. Rather than waiting for an interrupt event in the run mode, the device 
can be switched in the wait mode, subsequently the expected interrupt acts as a wakeup 
source allowing to restore the run operating mode; further power reduction can be achieved 
by reducing the clock switching activity as described in Section 13.2.

WAIT mode enter

The wait mode is entered by executing the WFI assembly instruction. This stops the CPU, 
leaving all the other peripherals and the interrupt controller active. When the CPU executes 
the WFI instruction, the interrupts are automatically enabled.
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WAIT mode exit

When an internal or external interrupt request occurs, the CPU wakes up quickly from the 
wait mode and resumes processing. The list of wakeup interrupt sources is shown in the 
interrupt vector table described in the product datasheet.

13.3.3 Active-halt mode

The Active-halt mode is similar to the Halt mode except that in addition to the external 
interrupt it uses the AWU (auto-wakeup) unit to generate a wakeup event internally after 
a programmed delay, then the processor resumes its regular activity and the AWU counters 
are stopped.

In the Active-halt mode, the main oscillator, the CPU and almost all the peripherals are 
stopped. Only the LSI RC oscillator (or alternatively HSE if MVR is kept on) is running to 
drive the AWU counter.

This operating mode is commonly used to reduce the device power consumption in an 
interrupt based application where the processor activity is limited to control the peripheral 
interrupt request then it returns in the Active-halt mode.

Active-halt mode enter

The IC enters in the Active-halt mode when the AWU is enabled (refer to Section 17: Auto-
wakeup unit (AWU) on page 143) and the CPU executes a Halt instruction.

Note: If the IWDG is enabled before the HALT instruction is executed, the device does not switch 
to the Halt mode, but, switches to the Halt phase of the Active-halt mode. In this case, if the 
AWU is not enabled, the MCU does not wake up automatically. The MCU wakes up by an 
IWDG reset or an external reset.

Active-halt mode exit

The normal run operating mode is resumed when either an AWU or an external interrupt 
wakeup source is triggered (refer to interrupt exception vector table in the datasheet 
manual).

Fast wakeup mode

The capability to get a fast wakeup time is very important in the Active-halt mode. It 
supplements the effect of CPU processing performance by helping to minimize the time 
MCU, stays in the run mode between two periods in the low power mode and thus reduces 
the overall average power consumption.

After a wakeup event, the IC device resumes its activities using the clock selected before to 
enter in the Active-halt mode. The longest wakeup time is achieved when the fMASTER clock 
is provided by the HSE crystal; that's due to the oscillator stabilization time. To reduce the 
wakeup time, the device offers a feature called fast clock wakeup which allows starting 
automatically from the HSI clock after a wakeup event. The user can decide to switch back 
to the former clock or to stay on the HSI clock.

To enable the fast wakeup mode, set the FHW bit and reset the REGAH bit of the 
CLK_ICKR register. This mode automatically selects the HSI clock as the fMASTER source 
clock before to enter into the Active-halt mode; by default this functionality is disabled after 
reset.
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Additional power consumption can be gained programming the Flash in the power-down 
mode when the IC enters in the Active-halt mode by setting the AHALT bit of the 
FLASH_CR1 register.

Slow wakeup mode

To further reduce current consumption, in this mode the internal main voltage regulator is 
powered off automatically when the MCU enters the Halt or Active-halt mode. The MCU 
core is powered by the low power voltage regulator. The wakeup event restores the MVR 
power regulator source voltage after the MVR recovery time. To enable the slow wakeup 
mode the REGAH bit of the CLK_ICKR register has to be set.

Additional power consumption can be gained by programming the Flash in the power-down 
mode when the IC enters in the Active-halt mode. This is done by setting the AHALT bit of 
the FLASH_CR1 register.

Note: If the SWIM is enabled, the IC device won't switch off both the power regulators and the 
high-speed internal oscillator, and will enter in an operating mode similar to the fast Active-
halt mode. To switch off these two macros the OSCOFF bit of the SWIM CSR register must 
be set.

13.3.4 Halt mode

In this mode the master clock is stopped, the CPU and all the peripherals clocked by 
fMASTER or by derived clocks are disabled. As result, none of the peripherals are clocked 
and the digital part of the MCU consumes almost no power with the following exceptions:

• HSI not stopped if SWIM is enabled.

• LSI clock is stopped.

The main MVR voltage regulator is switched off to limit the power consumption, only the 
LPVR regulator source voltage stays active.

By default the Flash should be configured in the power-down mode by keeping the HALT bit 
of the FLASH_CR1 register clear; so when the device Halt condition is reached the Flash is 
switched off.

Note: In the Halt mode, all peripherals register values and the RAM contents are preserved; by 
default the clock configuration remains unchanged.

Halt mode enter

The MCU enters in the Halt mode when a HALT instruction is executed.

Halt mode exit

Wakeup from the Halt mode is triggered by an external interrupt sources, generated by the 
interrupt detection logic of the GPIO port (refer to the product datasheet) or by an alternate 
function pin capable to trigger a peripheral interrupt.

Fast wakeup mode

To speed up the wakeup start time the IC device can be configured to enable the fast 
wakeup functionality as described in the Fast wakeup mode in Section 13.3.3.
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14 Interrupt controller (ITC)

The interrupt controller is used to control all the interrupt request lines originated by the 
internal peripherals. The ITC manages up to 32 interrupt lines, and handles:

• Hardware interrupts

• Software interrupt (TRAP instruction)

• Interrupt priority level configuration for any interrupt request line.

• Nested or concurrent interrupt management:

– Up to 4 software programmable nested levels

– Up to 32 interrupt vectors fixed by hardware

– 2 not maskable events: RESET, TRAP

– User not maskable interrupt NMI (PLL unlock, P0, P1, P2 and auxiliary/basic 
timers if enabled) (2)

– Up to 22 external interrupt request lines (P0, P1, P2 and P3) configured on 
4 independent interrupt vectors (2, 3)

• P3 interrupts associated to the device's comparators allowing flexible and fast reaction 
to external analog signals.

Note: 1. All the internal interrupt requests are level type active high.

2. The port P0, P1, P2 and auxiliary/basic timers can be configured to assert maskable or 
unmaskable interrupt requests.

3. Some interrupts may be not available depending on the product features.

14.1 Functional overview

The interrupt request lines are controlled by 8 internal registers which configure the interrupt 
request priority level. The controller generates two interrupt output request lines: IRQ 
maskable interrupt, NMI unmaskable and the interrupt exception vector onto 5 bits which 
encodes the number of the interrupt request line currently active; all of these signals are 
interconnected to the CPU.

The encoding vector is generated by priority network logic; the interrupt 31 has the lowest 
priority. The interrupt vector table is located within address specify on the related product 
datasheet (DS).

The CPU controls the interrupt sequence through the bit 5 and bit 3 of the condition code 
(CC) register (I1, I0).

Note: 1. When the CPU executes WFI or HALT instructions all interrupt request are enabled.

2. The SW task with WFI or HALT instructions should avoid the usage of RIM instruction.

14.2 Interrupt masking and processing flow

The interrupt masking is managed by bits I1 and I0 of the CCR register and by the 
ITC_SPRx registers which set the software priority level of each interrupt request (refer to 
Table 18: Interrupt priority encoding value). The interrupt process flow is shown in 
Figure 23: Interrupt processing flowchart.
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When an interrupt request is serviced:

1. Normal processing is suspended at the end of the current instruction execution.

2. The PC, X, Y, A and CCR registers are saved onto the stack.

3. Bits I1 and I0 of the CCR register are set according to the values in the ITC_SPRx 
registers corresponding to the serviced interrupt request.

4. The PC is then loaded with the interrupt vector of the interrupt to the service and the 
first instruction of the interrupt service routine is fetched.

The interrupt service routine should end with the IRET instruction which causes the content 
of the saved registers to be recovered from the stack. As a consequence of the IRET 
instruction, bits I1 and I0 are restored from the stack and the program execution resumes. 

Figure 23. Interrupt processing flowchart

Caution: If the interrupt mask bits I0 and I1 are set within an interrupt service routine (ISR) with the 
instruction SIM, removal of the interrupt mask with RIM causes the software priority to be 
set to the level 0.
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To restore the correct priority when disabling and enabling interrupts inside an ISR, refer to 
the procedures presented in Table 17.

         

Note: The IRS_CC is a variable which stores the current value of the CC register.

14.3 Interrupt priority

The interrupt priority configuration is done by setting the SPR1 and SPR0 bit accordingly 
with the next descriptions:

VECTxSPR[1:0] vector “x” software priority 

These bits are written by software to define the software priority of each interrupt. The 
priority level is specified in Table 18.

         

Where “x” is the interrupt vector start from 01 to 31.

The value of the “interrupt pointer” in the interrupt vector table is defined in the 
corresponding product datasheet.

Note: 1. The interrupt vector table is located at a fixed location (refer to the corresponding product 
datasheet).

2. Each interrupt vector (except RESET, NMI and TRAP) has two corresponding bits in 
these registers where its own software priority is stored.

3. The VECTxSPR[1:0] fields of the ITC_SPRx registers has the same meaning of the I1 
and I0 bits in the CC register. They have to be configured as described in Table 18.

4. Interrupt level 0 cannot be configured (VECTxSPR[1] = 1, VECTxSPR[0] = 0); in this case 
the previously stored value is kept. See the register description in Section 14.11: Interrupt 
controller registers description on page 124.

Table 17. Interrupt disable / enable inside the ISR

Disabling the interrupts Enabling the interrupts

#asm

PUSH CC

POP ISR_CC(1)

SIM

#end asm

#asm

PUSH ISR_CC(1)

POP CC

#end asm

Table 18. Interrupt priority encoding value

Interrupt level Priority VECTxSPR1 VECTxSPR0

Level 0 (normal)
Lowest

↓

Highest

1 0

Level 1 0 1

Level 2 0 0

Non interruptible 1 1
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14.4 Servicing pending interrupts

Several interrupt requests may be pending at the same time. The interrupt to be taken into 
account is determined by the following two-step process:

1. The highest software priority interrupt is serviced.

2. If several interrupts have the same software priority then the interrupt with the highest 
hardware priority number is serviced first.

When an interrupt request is not serviced immediately, it is latched and then processed 
when its software priority combined with the hardware priority becomes the highest one.

Note: 1. The hardware priority is exclusive while the software one is not. This allows the previous 
process to succeed with only one interrupt.

2. The RESET, NMI and TRAP are considered as having the highest software priority in the 
decision process.

14.5 Interrupt sources

Two interrupt source types are managed by the STLUX interrupt controller:

• Not maskable interrupts: RESET, TRAP and NMI or external interrupts configured as 
NMI

• Maskable interrupts: external interrupts configured as IRQ or interrupts issued by the 
internal peripherals

14.5.1 Not-maskable interrupt sources

Not maskable interrupt sources are processed regardless of the state of bits I1 and I0 of the 
CCR register (see Table 18). PC, X, Y, A and CCR registers are stacked only when a TRAP 
or NMI interrupts occur. The corresponding vector is then loaded in the PC register and bits 
I1 and I0 of the CCR register are set to disable interrupts (level 3).

• TRAP (not maskable software interrupt):

This software interrupt source is serviced when the TRAP instruction is executed. It is 
serviced as a TRAP according to the flowchart shown in Figure 23.

A TRAP interrupt does not allow the processor to exit from the Halt mode.

• RESET:

The RESET interrupt source has the highest priorities. This means that all the interrupts are 
disabled at the beginning of the reset routine.

These have to be re-enabled by the RIM instruction (see Table 19 on page 124).

A RESET interrupt allows the processor to exit from the Halt mode.

Refer to Section 11: Reset control unit (RST) on page 67 for more details about RESET 
interrupt management.

• NMI (not maskable hardware interrupt):

This hardware interrupt source is serviced immediately as soon as the interrupt request is 
active in according to the flowchart shown in Figure 23. This interrupt kind allows the 
processor to exit from the Halt mode.

Caution: 1. A TRAP instruction must not be used in a NMI service routine.
2. Configuring more than one NMI HW interrupt sources should be avoided.
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14.5.2 Maskable interrupt sources

Maskable interrupt vector sources are serviced if the corresponding interrupt is enabled and 
if its own interrupt software priority in ITC_SPRx registers is higher than the one currently 
being serviced (I1 and I0 in CCR register). If one of these two conditions is not met, the 
interrupt is latched and remains pending.

• External interrupts:
External interrupts can be used to wake up the MCU from the Halt mode. The device 
sensitivity to external interrupts can be selected by software through the external 
interrupt control registers (MSC_CFGP<xy>).
When several input pins connected to the same interrupt line are selected 
simultaneously, they are logically ORed.
When external level-triggered interrupts are latched, if the given level is still present at 
the end of the interrupt routine, the interrupt remains activated except if it's been 
cleared by the interrupt service routine.
Optionally P0, P1 (if available) and P2 interrupts can be configured as NMI.

• Peripheral interrupts:
Some peripheral interrupts cause the MCU to wake up from the Halt mode. Refer to the 
interrupt vector table description present in the product datasheet.
A peripheral interrupt occurs when a specific flag is set in the peripheral interrupt status 
register and the corresponding interrupt enable bit is set in the peripheral control 
register.
The standard sequence for clearing a peripheral interrupt requires an access to the 
status register followed by a read or write to the associated interrupt register field. The 
clearing sequence resets the internal latch. A pending interrupt (that is an interrupt 
waiting to be serviced) is therefore lost when the clear sequence is executed.

14.6 Interrupts and low power modes

All interrupts allow the processor to exit from the wait mode.

Only the external and other specific interrupts allow the processor to exit from the Halt and 
Active-halt mode (refer to the interrupt vector table in the product datasheet).

When several pending interrupts are present while waking up from the Halt mode, the first 
interrupt serviced can be only an interrupt able to force the IC device to exit from the Halt 
mode. If the priority of the highest interrupt pending cannot wake up the device from the Halt 
mode, it will be serviced next.

If any internal or external interrupt (from a timer for example) occurs while the HALT 
instruction is executing (the HALT instruction lasts 9 clock cycles; see the STM8 
programming manual PM0044), the HALT instruction is completed but the interrupt invokes 
the wakeup process immediately after the HALT instruction has finished executing. In this 
case the MCU is actually waking up from the Halt mode to the run mode, with the 
corresponding delay of Twu(H) as specified in the product datasheet.
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14.7 Activation level/low power mode control

The MCU activation level is configured by programming the AL bit in the CFG_GCR register 
(refer to CFG_GCR (global configuration register) in Section 5.6.2).

This bit is used to control the low power modes of the MCU. In very low power applications, 
the MCU spends most of the time in WFI and is woken up (through interrupts) at specific 
moments in order to execute a specific task. Some of these recurring tasks are short 
enough to be treated directly in an ISR (interrupt service routine), rather than going back to 
the main program.

To cover this case, you can set the AL bit before entering low power (by executing WFI 
instruction), then the interrupt routine returns directly to the low power mode. The run 
time/ISR execution is reduced due to the fact that the register context is saved only on the 
first interrupt. 

As a consequence, all the operations can be executed in the ISR in very simple 
applications. In more complex ones, an interrupt routine may re-launch the main program by 
simply resetting the AL bit.

For example, an application may need to be woken up by the auto-wakeup unit (AWU) 
every 50 ms in order to check the status of some pins/sensors/push-buttons. Most of the 
times, as these pins are not active, the MCU can return to the low power mode without 
running the main program. If one of these pins is active, the ISR decides to launch the main 
program by resetting the AL bit.

14.8 Concurrent and nested interrupt management

The STLUX device has two interrupt management modes:

• Concurrent mode 

• Nested mode

14.8.1 Concurrent interrupt management mode

In this mode, all interrupts have the priority level 3 so that none of them can be interrupted, 
except by the RESET or TRAP or NMI.

The hardware priority is given in the following order from the lowest to the highest priority, 
that is: MAIN, IT4, IT3, IT2, IT1, IT0, TRAP, NMI and RESET.



DocID026249 Rev 1 119/335

RM0380 Interrupt controller (ITC)

335

Figure 24 shows an example of the concurrent interrupt management mode.

Figure 24. Concurrent interrupt management

14.8.2 Nested interrupt management mode

In this mode, nested interrupts are allowed during interrupt routines. This mode is activated 
as soon as an interrupt priority level lower than level 3 is set. 

The hardware priority is given in the following order from the lowest to the highest priority, 
that is: MAIN, IT4, IT3, IT2, IT1, IT0, TRAP, and NMI. 

The software priority is configured for each interrupt vector by setting the corresponding 
I1_x and I0_x bits of the ITC_SPRx register. I1_x and I0_x bits have the same meaning of 
the CCR register fields I1 and I0.

The level 0 cannot be programmed (I1_x = 1, I0_x = 0). In this case, the previously stored 
value is kept. For example: if previous value is 0xCF, and programmed value equals 64 h, 
the result is 44 h. 

The RESET, NMI and TRAP vectors have no software priorities. When one of them is 
serviced, bits I1 and I0 of the CCR register are both set. 

Caution: If bits I1_x and I0_x are modified while the interrupt x is executed, the device operates as 
follows: if the interrupt x is still pending (new interrupt or flag not cleared) and the new 
software priority is higher than the previous one, then the interrupt x is re-entered.
Otherwise, the software priority remains unchanged till the next interrupt request (after the 
IRET of the interrupt x). 

During the execution of an interrupt routine, the HALT, POPCC, RIM, SIM and WFI 
instructions change the current software priority till the next IRET instruction or one of the 
previously mentioned instructions is issued. Refer to Section 14.10: Interrupt instructions on 
page 124 for the list of dedicated interrupt instructions. 
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Figure 25 shows an example of the nested interrupt management mode. In the example the 
interrupt IT2 has software priority 1, IT1 has software priority 2 while IT0, IT3 and IT4 have 
software priority 3.

Warning: A stack overflow failure may occur without any SW 
notification.

Figure 25. Nested interrupt management

14.9 External interrupts

The external interrupts are triggered at the occurrence of a programmed level or edge 
transition on configurable I/O lines. The interrupts are configured and sensed through 
capture logic modules (refer to Section 14.9.4: Edge detector configuration for further 
details about the SW configuration of this functionality).

The input lines of the detector modules are in this case directly connected to the I/O lines, 
while each module drives its own interrupt request line. Each module and its interrupt 
channel are associated to any port groups.

• MSC_CFGP0<y> registers and MSC_STSP0 register control the port-P0 (GPIO0)

• MSC_CFGP1<y> registers and MSC_STSP1 register control the port-P1 
(PWM/GPIO1) if the feature is available in the product

• MSC_CFGP2<y> registers and MSC_STSP2 register control the port-P2 (DIGINs)

• MSC_CFGP3<y> registers and MSC_STSP3 register control the port-P3 (CMPs) if the 
feature is available in the product

The actual number of ports connected to the edge detector depends on the product. See the 
product datasheet for details on the port interrupt vector mapping and knowing the ports 
with interrupt capable. Refer to Section 14.9.4 for details on the edge detector programming 
and interrupt handling method.
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14.9.1 Interrupt on port 3 (comparators)

In some products it is possible to enable the interrupt capability on the pins associated to the 
internal fast analog comparators (P3) through the MSC_CFGP3<y> registers. This feature 
is very valuable because allows the user to configure up to 4 lines (depending on the 
device) to sense analog signals in a range from 0 up to 1.25 V.

The comparators respond within a short time (50 ns) and their analog output are directly 
connected to the edge detection logic, allowing a fast management of alarm or sense 
signals through interrupt service routines.

The interrupts generated by the port-P3 are maskable. Refer to Section 26: Analog 
comparator unit (ACU) on page 300 for further details on the comparators and the internal 
DAC reference voltage generation.

14.9.2 Interrupt polling mode

The external maskable interrupt request lines may be controlled in the polling mode by 
masking the interrupt request and reading the MSC_STSP<x> to check the presences of an 
interrupt request flag. The interrupt request is cleared by writing '1' the active interrupt flag of 
the MSC_STSP<x> register.

The user has to enable the interrupt mask to manage the lines in the polling mode through 
the INPP<x>_IMSK register field of the miscellaneous register.

• P0: the INPP0_IMSK bit of the MSC_INPP2AUX2 register has to be set, then the 
P0_CR2[5:0] register is used to enable selectively the interrupt request lines. If the 
INPP0_IMSK field is cleared, the interrupt is enabled.

• P1: the P1_CR2[5:0] register is used to enable selectively the interrupt request lines of 
the port-P1 if the feature is available in the product.

• P2: the interrupt masks are directly and individually controlled through the 
INPP2_IMSK[5:0] field of the MSC_INPP2AUX2 register. The interrupt on the port is 
masked if the related bit in the INPP2_IMSK[5:0] field is enabled.

• P3: the interrupt mask is enabled on each pin by means of the INT_MSK field of the 
corresponding MSC_CFGP3<y> register (present in the MSC indirect addressing area) 
if the feature is available in the product.

The port current signal values may be read through the registers MSC_INPP<x>. 

The port-P2 offers the SW controllability through the MSC_INPP2AUX1 register of the 
internal 47 kΩ pull-up resistances interconnected to the DIGIN[5:0] input lines. For 
compatibility with the previous product after reset the pull-up resistances are enabled.

Note: For compatibility with previous STLUX385 devices, the interrupt masks of all P0/P2 ports 
are disabled at reset.

The MSC_CFGP3<y>, MSC_STSP3, MSC_INPP2AUX1 and MSC_INPP2AUX2 registers 
are addressed by the miscellaneous register indirect mode. Refer to the product datasheet 
for further description about the indirect addressing mechanism.

Refer toSection 22: General purpose I/O port (GPIO) on page 221 for details on the 
P<x>_CR2 registers.

14.9.3 Auxiliary/basic timers interrupt functionality

The interrupt feature of the auxiliary/basic timers shares the interrupt capture logic of port-
P1. When the timers are enabled through the option bit configuration the input lines of the 
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capture logic are alternatively assigned to the auxiliary/basic timers according to the 
following configurations:

• Auxiliary timer (CCO), if available in the product, is associated to the P1[5] interrupt 
line.

• Basic timer0, if available in the product, is associated to the P1[0] interrupt line.

• Basic timer1, if available in the product, is associated to the P1[1] interrupt line.

For timer availability and configurability refer to the specific product datasheet.

The interrupts have to be programmed in the edge mode through the MSC_CFGP1<y> 
registers (y = 0, 1, 5). The configuration of the register field P1_CR2[y] selects the interrupt 
handling mode:

0: polling sequence

1: interrupt mode 

The interrupt status request is readable on the MSC_STSP1[y] bit. Refer to Section 14.9.4 
for details on the interrupt capture logic.

The timer interrupts shares the same interrupt vector of the port-P1. Refer to the product 
datasheet for details on the timer availability and the interrupt vector mapping.

Note: The CCO auxiliary timer functionality is an internal feature that doesn't involve the DIGIN[0] 
primary signal except in case of clock output configuration (for further information refer to 
Section 12: Clock control unit (CKC) on page 71).

Refer to Section 22: General purpose I/O port (GPIO) on page 221 for details on the 
P1_CR2 register.

14.9.4 Edge detector configuration

The edge detector is a module able to accept signals from its input channels and to send an 
interrupt request based on the configuration and behavior of the input lines.

Every module is based on up to 6 separate input channels and manages an interrupt 
request line directly connected to the ITC and the internal processor.

The module handles the following features:

• A dedicate interrupt request line connected to the interrupt controller logic

• Up to 6 configurable input sense lines

• Each input sense line can be programmed asynchronous (no clock needed to setup an 
interrupt event, supporting also wake up feature) or synchronous

• Each input sense line is individually programmable to capture a level or an edge with 
either polarity

The MSC_CFGP<xy> miscellaneous registers, where x is the associated module 
instantiation number (i.e the port number ranging from 0 to 3 depending on the product 
features) and y is the input line number of the module, configuring the single source line 
P<x>[<y>] pin (y is in a range from 0 up to 5). 
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These registers allow configuring:

• Interrupt capture modes: edge type, synchronous level, asynchronous level with wake 
up feature. The selection is achieved through the INT_SEL[1:0] field. 

• Select the polarity of the sensed signal individually for each input line (raising/falling 
edge or high/low level). The polarity is programmed through the INT_LEV field.

• Select the interrupt type between maskable (IRQ) or unmaskable (NMI) for each input 
line. In the first case the occurrence of the event on the input line raises an interrupt on 
the module dedicated line. The interrupt type is selected through the INT_TYPE field. 
Only P0, P1 (where available) and P2 ports can be programmed as a source of the NMI 
interrupt by enabling the INT_TYPE bit of the MSC_CFGP<xy> registers.

• Enable the interrupt through the INT_ENB field. All interrupt input source lines can be 
enabled separately.

The MSC_STSP<x> status registers allow identifying the interrupt source when an interrupt 
relative to the port P<x> is raised (or when the event occurs in the polling mode). There's 
a direct correlation between the register bit position and the port pin index number.

When the enabled input line matches the configured capture condition (e.g.: falling edge) 
and the respective interrupt is enabled, the corresponding flag on the MSC_STSP<x> status 
register is asserted; an interrupt request (IRQ or NMI depending on the configuration) is 
raised and stays active until cleared by SW.

There are two ways to reset an interrupt source request:

• User can write the status register (MSC_STSP<x>) with a data pattern containing ones 
in correspondence to the sources event to be reset.

• Alternatively the capture mode can be re configured for the related input line (control 
register MSC_CFGP<xy>). This procedure resets automatically the interrupt request 
line of the port associated to the control register.

Note: When an input line is programmed in the level mode (synchronous or asynchronous), the 
interrupt flag has to be cleared only after the corresponding interrupt source request line 
becomes false, otherwise a new interrupt for the same source event is retriggered.
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14.10 Interrupt instructions

Table 19 shows the interrupt instructions related to the CC register.

         

14.11 Interrupt controller registers description

For details about the interrupt vector number refer to the corresponding product datasheet.

Note: Pay attention that level 0 cannot be programmed (I1_x = 1, I0_x = 0). In this case, the 
previously mask stored value is kept. For example: if previous value is 0xCF, and 
programmed value equals 64 h, the result is 44 h.

14.11.1 ITC_SPR0 (interrupt SW priority 0)

Offset: 0x00

Default value: 0xFF

         

Bit 1-0: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 7-2: VECTxSPR[1:0] vector x software priority 

These bits are written by software to define the software priority of the interrupt sources 
3 - 1 agreed on the encoding value present in Table 18: Interrupt priority encoding 
value on page 115.

Note: The interrupt0 is a not maskable interrupt, so the bits1 - 0 are unused.

Table 19. Dedicated interrupt instruction set

Instruction Description Functional / example I1 H I0 N Z C

HALT Entering Halt mode 1 0

IRET Interrupt routine return Pop CCR, A, X, Y, PC I1 H I0 N Z C

JRM Jump if I1:0 = 11 (level 3)

JRNM Jump if I1:0<>11

POP CC Pop CCR from the stack Memory => CCR I1 H I0 N Z C

PUSH CC Push CC on the stack CC => memory

RIM Enable interrupt (level 0 set) Load 10 in I1:I0 of CCR 1 0

SIM Disable interrupt (level 3 set) Load 11 in I1:I0 of CCR 1 1

TRAP Software trap Software NMI 1 1

WFI Wait for interrupt 1 0

7 6 5 4 3 2 1 0

VECT03SPR1 VECT03SPR0 VECT02SPR1 VECT02SPR0 VECT01SPR1 VECT01SPR0 RFU RFU

r/w r/w r/w r/w r/w r/w r r
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14.11.2 ITC_SPR1 (interrupt SW priority 1)

Offset: 0x01

Default value: 0xFF

         

Bit 7-0: VECTxSPR[1:0] vector x software priority 

These bits are written by software to define the software priority of the interrupt sources 
7 - 4 agreed on the encoding value present in Table 18 on page 115.

14.11.3 ITC_SPR2 (interrupt SW priority 2)

Offset: 0x02

Default value: 0xFF

         

Bit 7-0: VECTxSPR[1:0] vector x software priority 

These bits are written by software to define the software priority of the interrupt sources 
11-8 agreed on the encoding value present in Table 18.

14.11.4 ITC_SPR3 (interrupt SW priority 3)

Offset: 0x03

Default value: 0xFF

         

Bit 7-0: VECTxSPR[1:0] vector x software priority 

These bits are written by software to define the software priority of the interrupt sources 
15-12 agreed on the encoding value present in Table 18.

7 6 5 4 3 2 1 0

VECT07SPR1 VECT07SPR0 VECT06SPR1 VECT06SPR0 VECT05SPR1 VECT05SPR0 VECT04SPR1 VECT04SPR0

r/w r/w r/w r/w r/w r/w r/w r/w

7 6 5 4 3 2 1 0

VECT11SPR1 VECT11SPR0 VECT10SPR1 VECT10SPR0 VECT09SPR1 VECT09SPR0 VECT08SPR1 VECT08SPR0

r/w r/w r/w r/w r/w r/w r/w r/w

7 6 5 4 3 2 1 0

VECT15SPR1 VECT15SPR0 VECT14SPR1 VECT14SPR0 VECT13SPR1 VECT13SPR0 VECT12SPR1 VECT12SPR0

r/w r/w r/w r/w r/w r/w r/w r/w



Interrupt controller (ITC) RM0380

126/335 DocID026249 Rev 1

14.11.5 ITC_SPR4 (interrupt SW priority 4)

Offset: 0x04

Default value: 0xFF

         

Bit 7-0: VECTxSPR[1:0] vector x software priority 

These bits are written by software to define the software priority of the interrupt sources 
19 - 16 agreed on the encoding value present in Table 18.

14.11.6 ITC_SPR5 (interrupt SW priority 5)

Offset: 0x05

Default value: 0xFF

Bit 7-0: VECTxSPR[1:0] vector x software priority 

These bits are written by software to define the software priority of the interrupt sources 
23 - 20 agreed on the encoding value present in Table 18.

14.11.7 ITC_SPR6 (interrupt SW priority 6)

Offset: 0x06

Default value: 0xFF

         

Bit 7-0: VECTxSPR[1:0] vector x software priority 

These bits are written by software to define the software priority of the interrupt sources 
27 - 24 agreed on the encoding value present in Table 18.

7 6 5 4 3 2 1 0

VECT19SPR1 VECT19SPR0 VECT18SPR1 VECT18SPR0 VECT17SPR1 VECT17SPR0 VECT16SPR1 VECT16SPR0

r/w r/w r/w r/w r/w r/w r/w r/w

7 6 5 4 3 2 1 0

VECT23SPR1 VECT23SPR0 VECT22SPR1 VECT22SPR0 VECT21SPR1 VECT21SPR0 VECT20SPR1 VECT20SPR0

r/w r/w r/w r/w r/w r/w r/w r/w

7 6 5 4 3 2 1 0

VECT27SPR1 VECT27SPR0 VECT26SPR1 VECT26SPR0 VECT25SPR1 VECT25SPR0 VECT24SPR1 VECT24SPR0

r/w r/w r/w r/w r/w r/w r/w r/w
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14.11.8 ITC_SPR7 (interrupt SW priority 7)

Offset: 0x07

Default value: 0xFF

         

Bit 3-0: VECTxSPR[1:0] vector x software priority 

These bits are written by software to define the software priority of the interrupt sources 
31 - 28 agreed on the encoding value present in Table 18.

14.12 Miscellaneous interrupt registers

14.12.1 MSC_CFGP<xy> (port P<x>[<y>] input control register)

Offset: 0x00 + <y> if <x> is 0

Offset: 0x06 + <y> if <x> is 2

Offset: 0x21 + <y> if <x> is 1

Indirect address: 0x0E + <y> if <x> is 3

Default value: 0x00

         

<y> is in a range from 0 to 5 if <x> is 0, 1 or 2 (depending on the product)

<y> is in a range from 0 to 3 if <x> is 3 (depending on the product)

Bit 0: INT_LEV interrupt request active level used in combination with INT_SEL[1:0]

When INT_SEL[1:0] is equal to '00' or '11', then INT_LEV has the following definition:

0: interrupt level active low.

1: interrupt level active high.

When INT_SEL[1:0] is equal to '10', then INT_LEV selects:

0: interrupt edge triggered active on falling edge.

1: interrupt edge triggered active on rising edge.

Bit 2-1: INT_SEL[1:0] interrupt source configuration.

00: level interrupt with the wakeup capability. The interrupt pulse width should be 
greater than 40 ns and should stay active until the interrupt event is processed by SW. 

7 6 5 4 3 2 1 0

VECT31SPR1 VECT31SPR0VECT30SPR1 VECT30SPR0 VECT29SPR1 VECT29SPR0 VECT28SPR1 VECT28SPR0

r/w r/w r/w r/w r/w r/w r/w r/w

7 6 5 4 3 2 1 0

RFU INT_TYPE/INT_MSK INT_ENB INT_SEL[1:0] INT_LEV

r r/w r/w r/w r/w
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The interrupt request is cleared with the WC (write clear bit) functionality of 
MSC_STSP0 register.

01: reserved encoding value; must be not use for future product compatibility.

10: edge triggered interrupt. The interrupt pulse width should be greater than one fCPU 
clock period. The interrupt request is cleared with the WC (write clear bit) functionality 
of the MSC_STSP0 register.

11: level interrupt. The interrupt pulse width min. should be greater than one fCPU clock 
period and should stay active until the interrupt event is processed by SW. The interrupt 
request is cleared with the WC (write clear bit) functionality of the MSC_STSP0 
register.

Bit 3: INT_ENB interrupt enable

0: disable interrupt request line.

1: enable interrupt request line.

If <x> is 0, 1, 2:

Bit 4: INT_TYPE interrupt type configuration IRQ /NMI

0: interrupt type IRQ.

1: interrupt type NMI unmaskable interrupt request.

If <x> is 3:

Bit 4: INT_MSK interrupt mask enable on pin <y> for polling operation

0: IRQ interrupt mask disable (interrupt enable).

1: IRQ interrupt mask enable (interrupt mask).

Bit 7-5: RFU reserved; must be kept 0 during register writing for future compatibility.

Note: If <x> = 1, <y> = 0, 1, 5, the MSC_CFGP1<xy> register may control the interrupt of the 
associated auxiliary/basic timer if the feature is available and enabled via option bytes (see 
Section 14.9.3: Auxiliary/basic timers interrupt functionality on page 121.

14.12.2 MSC_STSP<x> (port P<x> interrupt status reg.; <x> = 0, 1, 2, 3)

Offset: 0x0C if <x> is 0

Offset: 0x0D if <x> is 2

Offset: 0x27 if <x> is 1

Indirect address: 0x12 if <x> is 3

Default value: 0x00

         

7 6 5 4 3 2 1 0

RFU BIT_5_INT/RFU(1),(2) BIT_4_INT/RFU(1) BIT_3_INT BIT_2_INT BIT_1_INT(2) BIT_0_INT(2)

r r/wc(1) r/wc(1) r/wc r/wc r/wc r/wc

1. If <x> = 3, the bit [5:4] has to be considered RFU read only.

2. If <x> = 1, these fields are alternatively associated to the interrupts of auxiliary/basic timers where available and enabled via 
option bytes (see Section 14.9.3 on page 121.).
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Bit 0: BIT_0_INT interrupt pending for port<x>[0] input signal or basic timer 0

0: interrupt cleared.

1:interrupt pending; clearing by writing '1'.

Bit 1: BIT_1_INT interrupt pending for port<x>[1] input signal or basic timer 1

0: interrupt cleared.

1: interrupt pending; clearing by writing '1'.

Bit 2: BIT_2_INT interrupt pending for port<x>[2] input signal

0: interrupt cleared.

1: interrupt pending; clearing by writing '1'.

Bit 3: BIT_3_INT interrupt pending for port<x>[3] input signal

0: interrupt cleared.

1: interrupt pending; clearing by writing '1'.

If <x> is 0, 1, 2:

Bit 4: BIT_4_INT interrupt pending for port<x>[4] input signal

0: interrupt cleared.

1: interrupt pending; clearing by writing '1'.

Bit 5: BIT_5_INT interrupt pending for port<x>[5] input signal or CCO auxiliary timer

0: interrupt cleared.

1: interrupt pending; clearing by writing '1'.

If <x> is 3:

Bit 4: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 5: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 7-6: RFU reserved; must be kept 0 during register writing for future compatibility.

14.12.3 MSC_INPP2AUX1 (INPP2 aux. register1)

Offset: 0x08 (MSC INDIRECT AREA)

Default value: 0x00

         

Bit 5-0: INPP2_PULCTR[5:0] this register field configures respectively the INPP2[5:0] pull-
up functionality as follows:

0: enable pad pull-up features.

1: disable pad pull-up.

Bit 7-6: RFU reserved; must be kept 0 during register writing for future compatibility.

7 6 5 4 3 2 1 0

RFU INPP2_PULCTR [5:0]

r r/w
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14.12.4 MSC_INPP2AUX2 (INPP2 aux. register2)

Idx address: 0x09 (MSC INDIRECT AREA)

Default value: 0x00

         

Bit 5-0: INPP2_IMSK[5:0] INPP2 interrupt mask control register:

0: disable INPP2<n> interrupt mask (interrupt sources are enabled), <n> bit position.

1: enable INPP2<n> interrupt mask (interrupt sources are masked), <n> bit position.

Bit 6: INPP0_IMSK INPP0 interrupt mask enable:

0: disable INPP0 interrupt mask (disabled by default for compatibility with STLUX385).

1: enable INPP0 interrupts mask through the GPIO register P0_CR2.

Bit 7:RFU reserved; must be kept 0 during register writing for future compatibility.

14.12.5 MSC_INPP2 (Port2 input data register)

Offset: 0x0E

Default value: 0x00

         

Bit 5-0: DATA_IN[5:0] port P2 input signals.

These read only registers return the port-2 input signal values after a re-
synchronization stage.

Bit 7-6: RFU reserved; must be kept 0 during register writing for future compatibility.

7 6 5 4 3 2 1 0

RFU INPP0_IMSK INPP2_IMSK [5:0]

r r/w r/w

7 6 5 4 3 2 1 0

RFU DATA_IN [5:0]

r r



DocID026249 Rev 1 131/335

RM0380 Interrupt controller (ITC)

335

14.13 Interrupt controller registers overview

Table 20 shows the interrupt controller internal registers starting from the base address 
specified in the corresponding product datasheet; for detailed registers description refer to 
Section 14.11 on page 124.

         

14.14 Miscellaneous interrupt registers overview

Table 21 shows the miscellaneous interrupt registers starting from the base address 
specified in the corresponding product datasheet; for detailed registers description refer to 
Section 14.11 on page 124.

         

Table 20. ITC interrupt control registers

Registers overview

Name Description Offset Type Reset value

ITC_SPR0 Interrupt SW priority reg-0 0x00 R/W 0xFF

ITC_SPR1 Interrupt SW priority reg-1 0x01 R/W 0xFF

ITC_SPR2 Interrupt SW priority reg-2 0x02 R/W 0xFF

ITC_SPR3 Interrupt SW priority reg-3 0x03 R/W 0xFF

ITC_SPR4 Interrupt SW priority reg-4 0x04 R/W 0xFF

ITC_SPR5 Interrupt SW priority reg-5 0x05 R/W 0xFF

ITC_SPR6 Interrupt SW priority reg-6 0x06 R/W 0xFF

ITC_SPR7 Interrupt SW priority reg-7 0x07 R/W 0xFF

Table 21. MISC interrupt control registers

Registers overview

Name Description Offset Type Reset value

MSC_CFGP00 Port P0[0] input control reg. 0x00 R/W 0x00

MSC_CFGP01 Port P0[1] input control reg. 0x01 R/W 0x00

MSC_CFGP02 Port P0[2] input control reg. 0x02 R/W 0x00

MSC_CFGP03 Port P0[3] input control reg. 0x03 R/W 0x00

MSC_CFGP04 Port P0[4] input control reg. 0x04 R/W 0x00

MSC_CFGP05 Port P0[5] input control reg. 0x05 R/W 0x00

MSC_CFGP20 Port P2[0] input control reg. 0x06 R/W 0x00

MSC_CFGP21 Port P2[1] input control reg. 0x07 R/W 0x00

MSC_CFGP22 Port P2[2] input control reg. 0x08 R/W 0x00

MSC_CFGP23 Port P2[3] input control reg. 0x09 R/W 0x00

MSC_CFGP24 Port P2[4] input control reg. 0x0A R/W 0x00

MSC_CFGP25 Port P2[5] input control reg. 0x0B R/W 0x00

MSC_STSP0 Port P0 interrupt status reg. 0x0C R/WC 0x00
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14.15 Interrupt exception vector table

For the interrupt vector address table information refer to the corresponding product 
datasheet. 

MSC_STSP2 Port P2 interrupt status reg. 0x0D R/WC 0x00

MSC_CFGP10 Port P1[0]/AddTim0 input control reg. 0x21 R/W 0x00

MSC_CFGP11 Port P1[1]/AddTim1 input control reg. 0x22 R/W 0x00

MSC_CFGP12 Port P1[2] input control reg. 0x23 R/W 0x00

MSC_CFGP13 Port P1[3] input control reg. 0x24 R/W 0x00

MSC_CFGP14 Port P1[4] input control reg. 0x25 R/W 0x00

MSC_CFGP15 Port P1[5]/aux timer input control reg. 0x26 R/W 0x00

MSC_STSP1 Port P1/Aux/bas timers interrupt status reg. 0x27 R/WC 0x00

MSC_INPP2AUX2 INPP2 aux register2 0x09(1) R/W 0x00

MSC_CFGP30 Port P3[0] input control reg. 0x0E(1) R/W 0x00

MSC_CFGP31 Port P3[1] input control reg. 0x0F(1) R/W 0x00

MSC_CFGP32 Port P3[2] input control reg. 0x10(1) R/W 0x00

MSC_CFGP33 Port P3[3] input control reg. 0x11(1) R/W 0x00

MSC_STSP3 Port P3 interrupt status reg. (comparators) 0x12(1) R/WC 0x00

1. Indirect address mode.

Table 21. MISC interrupt control registers (continued)

Registers overview

Name Description Offset Type Reset value
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15 Independent watchdog (IWDG)

15.1 IWDG introduction

The independent watchdog peripheral can be used to resolve processor malfunctions due to 
hardware or software failures. It is clocked by the 153.6 kHz LSI internal RC clock source 
divided by 2, and thus stays active even if the main clock fails.

15.2 IWDG functional description

When the independent watchdog is started by writing the value 0xCC in the key register 
(IWDG_KR), the counter starts counting down from the reset value of 0xFF. When it reaches 
the end of count value (0x00) a reset signal is generated (IWDG reset).

Once enabled, the independent watchdog can be configured through the IWDG_PR, and 
IWDG_RLR registers. The IWDG_PR register is used to select the prescaler divider feeding 
the counter clock. Whenever the KEY_REFRESH value (0xAA) is written in the IWDG_KR 
register, the IWDG is refreshed by reloading the IWDG_RLR value into the counter and the 
watchdog reset is prevented.

The IWDG_PR and IWDG_RLR registers are write-protected. To modify them, first write the 
KEY_ACCESS code (0x55) in the IWDG_KR register. The sequence can be aborted by 
writing 0xAA in the IWDG_KR register to refresh it.

Refer to Section 15.5: Independent watchdog registers description for details on the IWDG 
registers.

Figure 26. Independent watchdog (IWDG) block diagram

15.2.1 IWDG HW feature

If the hardware watchdog feature has been enabled through the IWDG_HW option byte, the 
watchdog is automatically enabled at power-on, and generates a reset unless the key 
register is written by software before the counter reaches the end of the count. Refer to the 
option byte description in the product datasheet.
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15.2.2 IWDG timeout period

The timeout period can be configured through the IWDG_PR and IWDG_RLR registers. It is 
determined by the following equation:

Equation 16

T = 2 x TLSI x P x R

where:

T = timeout period

TLSI = 1/fLSI

P = 2 (PR[2:0] + 2)

R = RLR[7:0]+1

The IWDG counter must be refreshed by software before this timeout period expires. 
Otherwise, an IWDG reset will be generated after the following delay has elapsed since the 
last refresh operation:

Equation 17

D = T + 6 x TLSI

where D = delay between the last refresh operation and the IWDG reset.

         

15.3 IWDG program sequence

To use the IWDG if not being enabled by HW configuration (IWDG_HW bit of MISCUOPT 
option byte register), the user should perform the following steps:

• Starting the IWDG function by writing 0xCC in the IWDG_KR register (key register).

• Setup the IWDG_RLR (reload counter) by writing 0x55 in the IWDG_KR and then write 
the desired value on the IWDG_RLR register.

• Setup the IWDG_PR (prescaler register) by writing 0x55 in the IWDG_KR and then 
write the desired prescaler value in the IWDG_PR register.

• Refresh the IDWG_KR register (writing value 0xAA) before the time expire.

Table 22. Watchdog timeout period (with LSI/2 counter clock)

IWDG timeout period

Prescaler divider PR[2:0] bits
Min. timeout 

RL[7:0] = 0x00
Max. timeout 

RL[7:0] = 0xFF

/4 0 52.08 μs 13.33 ms

/8 1 104.1 μs 26.66 ms

/16 2 208.3 μs 53.33 ms

/32 3 416 μs 106 ms

/64 4 833 μs 213 ms

/128 5 1.66 ms 426 ms

/256 6 3.33 ms 853 ms
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Note: 1. After reset the prescaler is set to 0x00 and the reload counter to 0xFF. This means that 
between the activation of the IWDG and the first refresh there must be less than 2048 LSI 
clock cycles corresponding to about 13.333 ms, otherwise the IWDG triggers a hardware 
reset.

2. If the IWDG is enabled by HW configuration, the IDDG_KR register has to be refreshed 
within the proper interval time otherwise the IWDG triggers a hardware reset.

To know if the CPU was reset by the IWDG peripheral please see the RST_SR register bit 
IWDGF (refer to RST_SR (status register) in Section 11.4).

15.4 IWDG and AWU concurrent activation

The IWDG and the AWU are the only peripherals that can run also when the system is in the 
Active-halt mode. If both IWDG and AWU are configured at the same time, the programmer 
must take care of the following conditions depending on the time of activation of the IWDG 
(writing 0xCC to IWDG_KR) and of the AWU (execution of the HALT instruction).

• If the AWU is started before that the IWDG has completed its internal synchronization 
(8 + 2 * prescaler LSI clocks), the system enters the HALT mode with the IWDG in 
a frozen state, then when the AWU time elapses and the system wakes-up, the IWDG 
completes its synchronization and after the programmed period will generate 
a hardware reset if not retriggered.

• If the AWU is started after the IWDG internal synchronization, two different conditions 
apply depending on the IWDG and AWU timings:

1. AWU timing less than IWDG
In this case the system enters the HALT mode, it is awakened by the AWU and then the 
IWDG will generate a hardware reset at its elapsing time if not retriggered.

2. IWDG timing less than AWU
In this case the system enters the HALT mode, when the IWDG time elapses, an 
internal reset flag is latched and the system remains in HALT; when also the AWU time 
is elapsed, the system is awakened and immediately reset.

15.5 Independent watchdog registers description

15.5.1 IWDG_KR (key register)

Offset: 0x00

Default value: -

         

Bit 7-0: KEY[7:0] 7 bit key value

0xCC: enables the IWDG function.

0xAA: this constant must be written by software at regular intervals, otherwise the 
watchdog generates an MCU reset when the counter reaches 0 (if enabled).

0x55:enables access to the IWDG_PR and IWDG_RLR register.

7 6 5 4 3 2 1 0

KEY [7:0]

w
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15.5.2 IWDG_PR (prescaler register)

Offset: 0x01

Default value: 0x00

         

Bit 2-0: PR[2:0] prescaler divider

These bits are write access protected. They are written by software to select the 

prescaler divider feeding the counter clock.

000: fIWDG/4

001: fIWDG /8

010: fIWDG /16

011: fIWDG /32

100: fIWDG /64

101: fIWDG /128

110: fIWDG /256

111: reserved

Bit 7-3: RFU reserved; must be kept 0 during register writing for future compatibility.

15.5.3 IWDG_RLR (reload counter)

Offset: 0x02

Default value: 0xFF

         

Bit 7-0: RL[7:0] watchdog counter reload value

These bits are write access protected. This field is written by software to define the 
value to be loaded in the watchdog counter each time the value 0xAA is written in the 
IWDG_KR register. The watchdog counter counts down from this value. The timeout 
period is a function of this value and the clock prescaler (IWDG_PR); refer to Table 22: 
Watchdog timeout period (with LSI/2 counter clock).

7 6 5 4 3 2 1 0

RFU PR [2:0]

r r/w

7 6 5 4 3 2 1 0

RL [7:0]

r/w
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15.6 Watchdog registers overview

Table 23 shows the independent watchdog internal registers starting from the base address 
specified in the corresponding product datasheet; for detailed register description refer to 
Section 15.5: Independent watchdog registers description.

         

Table 23. IWDG internal registers overview

Name Description Offset Type Reset value

IWDG_KR Key register 0x00 W none

IWDG_PR Prescaler register 0x01 R/W 0x00

IWDG_RLR Counter reload register 0x02 R/W 0xFF
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16 Window watchdog (WWDG)

16.1 WWDG introduction

The window watchdog is used to detect the occurrence of a software fault, usually 
generated by external interference or by unforeseen logical conditions, which causes the 
application program to abandon its normal sequence. 

The watchdog circuit generates an MCU reset on expiry of a programmed time period, 
unless the program refreshes the contents of the down counter before the T6 bit becomes 
cleared. 

An MCU reset is also generated if the 7-bit down counter value (in the control register) is 
refreshed before the down counter has reached the window register value. This implies that 
the counter must be refreshed in a limited window.

16.2 WWDG main features

• Programmable free running down counter

• Conditional reset:

– Reset (if watchdog activated) when the down counter value becomes less than 
0x40

– Reset (if watchdog activated) if the down counter is reloaded outside the window

• Hardware/software watchdog activation (selectable by option byte)

• Optional reset on HALT instruction (configurable by option byte)

16.3 WWDG functional description

If the watchdog is activated (the WDGA bit is set) and when the 7-bit down counter (T[6:0] 
bits) rolls over from 0x40 to 0x3F (T6 becomes cleared), it initiates a reset cycle pulling low 
the reset pin. If the software refreshes the counter while the counter is greater than the 
value stored in the window register, then a reset is generated.
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Figure 27. Window watchdog block diagram

The application program must write in the WWDG_CR register at regular intervals during 
normal operation to prevent an MCU reset. This operation must occur only when the counter 
value is lower than the window register value. The value to be stored in the WWDG_CR 
register must be between 0xFF and 0xC0:

• Enabling the watchdog:
When the software watchdog is selected (by option byte), the watchdog is disabled 
after a reset. It is enabled by setting the WDGA bit in the WWDG_CR register, and then 
it cannot be disabled again except by a reset.
When the hardware watchdog is select (by option byte), the watchdog is always active 
and the WDGA bit is not used.

• Controlling the down counter:
The down counter is free running; it counts down even if the watchdog is disabled. 
When the watchdog is enabled, the T6 bit must be set to prevent generating an 
immediate reset.
The T[5:0] bits contain the number of increments which represents the delay time 
before the watchdog asserts a reset signal. The timing varies between a minimum and 
a maximum value due to the unknown status of the prescaler when writing the 
WWDG_CR register.
The window register (WWDG_WR) contains the high limit of the window: To prevent 
a reset, the down counter must be reloaded when its value is lower than the window 
register value and greater than 0x3F.

Note: The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is 
cleared).

16.4 Watchdog reset on Halt option

If the watchdog is activated and the watchdog reset on Halt option is selected, then the 
HALT instruction will generate a reset.
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16.5 How to program the watchdog timeout

The next formula can be used to calculate the WWDG timeout, tWWDG, expressed in ms:

Equation 18

tWWDG = TCPU × 12288 × (T[5:0] + 1)

where TCPU is the peripheral clock period expressed in ms.

Figure 28. Approximate timeout (ms) at 16 MHz fCPU 

Figure 29. Windows watchdog timing diagram
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16.6 WWDG low power modes

Table 24 defines effect of low power modes on WWDG:

         

16.6.1 Hardware watchdog option

If the hardware watchdog is selected by the option byte, the watchdog is always active and 
the WDGA bit in the WWDG_CR register is not used. Refer to the option byte description in 
the product datasheet.

16.6.2 Using Halt mode with the WWDG (WWDG_HALT option byte)

The following recommendation applies if the Halt mode is used when the watchdog is 
enabled. Before executing the HALT instruction, refresh the WDG counter, to avoid an 
unexpected WWDG reset immediately after waking up the microcontroller.

16.7 Window watchdog registers description

16.7.1 WWDG_ CR (control register)

Offset: 0x00

Default value: 0x7F

         

Table 24. Low power-on WWDG

Mode Description

Wait No effect on watchdog: the down counter continues to decrement.

Halt

WWDG_HALT 
in option byte

0

No watchdog reset is generated. The MCU enters the Halt mode. The watchdog 
counter is decremented once and then stops counting and is no longer able to 
generate a watchdog reset until the MCU receives an external interrupt or a reset. 

If an interrupt is received (refer to interrupt vector table mapping to see interrupts 
which can occur in the Halt mode), the watchdog restarts counting after the 
stabilization delay. If a reset is generated, the watchdog is disabled (reset state) 
unless hardware watchdog is selected by option byte. 

1 A reset is generated instead of entering the Halt mode.

Active-Halt X

No reset is generated. The MCU enters the Active-halt mode. The watchdog 
counter is not decremented. It stops counting. When the MCU receives an oscillator 
interrupt or external interrupt, the watchdog restarts counting immediately. When 
the MCU receives a reset the watchdog restarts counting after the stabilization 
delay.

7 6 5 4 3 2 1 0

WDGA T [6:0]

rs r/w
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Bit 0: T[6:0] 7 bit counter (MSB to LSB)

These bits contain the value of the watchdog counter. It is decremented every 12288 
fCPU cycles (approx.). A reset is produced when it rolls over from 0x40 to 0x3F 
(T6 becomes cleared).

Warning: When writing to the WWDG_CR register, always write 1 in the 
T6 bit to avoid generating an immediate reset.

Bit 7: WDGA activation bit

This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, 
the watchdog can generate a reset.

0: watchdog disabled.

1: watchdog enabled.

Note: This bit is ignored if the HW watchdog option bit is set.

16.7.2 WWDG_WR (window register)

Offset: 0x01

Default value: 0x7F

         

Bit 6-0: W[6:0] 7-bit window value

These bits contain the window value to be compared to the down counter contents.

Bit 7: RFU reserved; must be kept 0 during register writing for future compatibility.

16.8 Window watchdog registers overview

Table 25 details the window watchdog internal registers starting from the base address 
specified in the corresponding product datasheet (DS); for detailed register description refer 
to Section 16.7: Window watchdog registers description.

         

7 6 5 4 3 2 1 0

RFU W [6:0]

r r/w

Table 25. WWDG internal registers overview

Name Description Offset Type Reset value

WWDG_CR Control register 0x00 R/W 0x7F

WWDG_WR Window register 0x01 R/W 0x7F
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17 Auto-wakeup unit (AWU)

The AWU is used to provide an internal wakeup time base usable when the MCU enters into 
the Active-halt power saving mode. The fAWU time base frequency is generated by the LSI 
internal RC oscillator or by the external prescaled HSE source (prescaled to 128 kHz).

17.1 AWU functional description

Figure 30 shows an outline view of the AWU block diagram.

The fAWU clock is generated by the CKC block, for further details refer to Section 12: Clock 
control unit (CKC) on page 71 and the requirements present in the product datasheet.

Figure 30. AWU block diagram

When the AWU logic is not in used, the AWUTB[3:0] bits of time base selection register 
(AWU_TBR) should be cleared to reduce the IC device power consumption.

17.2 Time base selection

Please refer to the asynchronous Section 17.5.2: AWU_APR (prescaler divider register) 
Section 17.5.3: AWU_TBR (time base register) descriptions.

In order to choose the right values for AWUTB[3:0] and APRDIV register fields, the user has 
first to search the range corresponding to the desired time interval (this gives the 
AWUTB[3:0] value). Then the APRDIV can be chosen to get a time interval value as close 
as possible to the desired one.

The above register field configuration can be done through the formulas present in Table 26.
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Table 26 details the auto-wakeup interval range selectable through both AWUTB[3:0] and 
APRDIV register fields.

         

Note: 1. If the target value is between 211x128/fAWU and 211x130/fAWU or between 211x320/fAWU 
and 211x330/fAWU, the value closer to the target one must be chosen.

2. The AWU interval time can be further decreased by configuring the CLK_AWUDIVR 
prescaler register (refer to Section 12.11.8: CLK_AWUDIVR (AWU clock prescaler 
configuration) on page 92).

17.3 Interval time formulas

The following equations can be used to configure the TAWU elapsed time:

• When AWUTB[3:0] < 0b1110: TAWU = (2^(AWUTB-1) * APRDIV)/fAWU

• When AWUTB[3:0] = 0b1110: TAWU = (2^(AWUTB-3) * 5 * APRDIV)/fAWU

• When AWUTB[3:0] = 0b1111: TAWU = (2^(AWUTB-4) * 30 * APRDIV)/fAWU

Table 26. AWU timer interval range

AWUTB[3:0]
APRDIV 
range

APRDIV formula for 
internal time 

definition
Interval range

Timer range 
fAWU (LSI) at 

153.6 kHz (ms)

Timer range 
fAWU 

(HSE/HSI) at 
128 kHz (ms)

0b0001 2 to 64 APRDIV/fAWU 2/fAWU - 64/fAWU 0,013 - 0,417 0,016 - 0,5

0b0010 32 to 64 2xAPRDIV/fAWU 2x32/fAWU - 2x64/fAWU 0,41 - 0,83 0,5 - 1

0b0011 32 to 64 22xAPRDIV/fAWU 2x64/fAWU - 2x128/fAWU 0,83 - 1,66 1 - 2

0b0100 32 to 64 23xAPRDIV/fAWU 22x64/fAWU - 22x128/fAWU 1,66 - 3,33 2 - 4

... ... ... ... ...

0b1100 32 to 64 211xAPRDIV/fAWU 210x64/fAWU - 210x128/fAWU 426,66 - 853,33 512 - 1024

0b1101 32 to 64 212xAPRDIV/fAWU 211x64/ fAWU -211x128/fAWU 853,33 - 1706,66 1024 - 2048

0b1110 26 to 64 211x5xAPRDIV/fAWU 211x130/fAWU -211x320/fAWU
1733,33 - 
4266,66

2080 - 5120

0b1111 11 to 64 211x30xAPRDIV/fAWU 211x330/fAWU - 212x960/fAWU 4400 - 25600 5280 - 30720
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17.4 AWU program sequence

The AWU usage requires the following program sequences:

1. Select the appropriate clock input HSE, HSI or LSI (refer to the product datasheet 
description).

2. Define the appropriate prescaler value by writing to the APR [5:0] bits in the 
asynchronous prescaler register (AWU_APR).

3. Select the desired auto-wakeup delay by writing to the AWUTB[3:0] bits in the time 
base selection register (AWU_TBR).

4. Set the AWUEN bit in the control/status register (AWU_CSR).

5. Execute the HALT instruction. AWU counters are reloaded and start to count a new 
AWU interval time.

6. Continue the executions after AWU interrupt.

Note: 1. The AWU timer starts only when the MCU enters the Active-halt mode after a HALT 
instruction (refer to the Active-halt mode section in Section 13: Power management (PM) on 
page 107). The AWU interrupt logic is enabled in this timeframe.

2. The prescaler counter starts to count only if APR[5:0] value is different from the reset 
value 0x3F.

3. The fAWU time base source clock has to be select in accordance with the product 
datasheet requirements.

4. If the AWU logic is not used, the AWUTB[3:0] bits of time base selection register 
(AWU_TBR) should be cleared to reduce the IC device power consumption.

17.5 Auto wake unit registers description

17.5.1 AWU_CSR (control status register)

Offset: 0x00

Default value: 0x00

         

Bit 3-0: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 4: AWUEN auto-wakeup enable

This bit is set and cleared by the software. It enables the auto-wakeup feature. If the 
microcontroller enters either the Active-halt or wait mode, the AWU logic wakes up the 
microcontroller after the programmed delay time.

0: AWU (auto-wakeup) disabled.

1: AWU (auto-wakeup) enabled.

7 6 5 4 3 2 1 0

RFU RFU AWUF AWUEN RFU RFU RFU RFU

r r rc/r r/w r r r r
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Bit 5: AWUF auto-wakeup flag

This bit is set by the hardware when the AWU module generates an interrupt and 
cleared by SW reading the AWU_CSR register; the bit writing is ignored. 

0: no AWU interrupt occurred.

1: AWU interrupt occurred.

Bit 7-6: RFU reserved; must be kept 0 during register writing for future compatibility.

17.5.2 AWU_APR (prescaler divider register)

Offset: 0x01

Default value: 0x3F

         

Bit 5-0: APR[5:0] asynchronous prescaler divider factor

These bits are written by software to select the prescaler divider feeding the counter 
clock.

0x00: APRDIV = 2

0x01: APRDIV = 3

0x02: APRDIV = 4

0x03: APRDIV = 5

…

0x06: APRDIV = 8

…

0x0E: APRDIV = 16

…

0x1E: APRDIV = 32

…

0x2E: APRDIV = 48

…

0x3E: APRDIV = 64

0x3F: reserved value

Note: Do not write the value 0x3F in this register.

Bit 7-6: RFU reserved; must be kept 0 during register writing for future compatibility.

7 6 5 4 3 2 1 0

RFU RFU APR [5:0]

r r r/w
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17.5.3 AWU_TBR (time base register)

Offset: 0x02

Default value: 0x00

         

Bit 3-0: AWUTB[3:0] auto-wakeup time base selection

These bits are written by software to program the wakeup interrupt frequency.

AWU interrupt is enabled when AWUEN = '1'.

0000: no interrupt.

0001: (20 x APRDIV) / fAWU

0010: (21 x APRDIV) / fAWU

0011: (22 x APRDIV) / fAWU

0100: (23 x APRDIV) / fAWU

0101: (24 x APRDIV) / fAWU

0110: (25 x APRDIV) / fAWU

0111: (26 x APRDIV) / fAWU

1000: (27 x APRDIV) / fAWU

1001: (28 x APRDIV) / fAWU

1010: (29 x APRDIV) / fAWU

1011: (210 x APRDIV) / fAWU

1100: (211 x APRDIV) / fAWU

1101: (212 x APRDIV) / fAWU

1110: (211 x 5 x APRDIV) / fAWU

1111: (211 x 30 x APRDIV) / fAWU

Bit 7-4: RFU reserved; must be kept 0 during register writing for future compatibility.

17.6 Auto wake unit registers overview

Table 27 shows the auto wake unit internal registers starting from the base address 
specified in the corresponding product datasheet; for detailed register description refer to 
Section 17.5: Auto wake unit registers description.

         

7 6 5 4 3 2 1 0

RFU RFU RFU RFU AWUTB [3:0]

r r r r r/w

Table 27. AWU internal registers overview 

Name Description Offset Type Reset value

AWU_CSR Control status register 0x00 R/W 0x00

AWU_APR Asynchronous prescaler register 0x01 R/W 0x3F

AWU_TBR Time base register 0x02 R/W 0x00
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18 System timer (STMR)

18.1 STMR introduction

The system timer consists of a 16-bit auto-reload upcounter driven by a programmable 
prescaler. It can be used for the time base generation, with the interrupt generation on the 
timer overflow event.

18.2 STMR main features

The system timer has the following main features

• 16-bit auto-reload upcounter 

• One shoot, free running operating mode

• 3-bit programmable prescaler allowing dividing (also “on the fly”) the counter clock 
frequency by 1, 2, 4, 8, 16, 32, 64 and 128.

• Interrupt generation on the following events:

– Counter overflow.

– Counter update.

– Counter initialization by SW.

18.3 STMR timer overview

The system timer is based on a 16-bit upcounter connected to the internal clock fCK_CNT 
provided by a prescaler logic clocked by the fMASTER. The prescaler can divide the internal 
clock by any power of 2 from 1 to 128.

The counter clock frequency is calculated as follows:

Equation 19

fCK_CNT = fMASTER/2(PSC[2:0])

A 16-bit auto-reload register defines the value of the overflow count. When the upcounter 
matches the auto-reload value, an update event is generated and the upcounter is restarted 
from 0.
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A block diagram of the system timer is represented in Figure 31.

Figure 31. STMR block diagram

The 16-bit counter, prescaler and auto-reload registers may be read or written by software.

The auto-reload register is formed by a preload register plus a shadow register. The update 
of the auto-reload register can be done in two different modes:

• Auto-reload preload enabled (the ARPE bit set in the STMR_CR1 register)
In this mode, when data are written to the auto-reload register, this it's posted in the 
preload register and transferred into the shadow register at the next update event 
(UEV).

• Auto-reload preload disabled (the ARPE bit cleared in the STMR_CR1 register)
In this mode, when data are written to the auto-reload register this it's transferred into 
the shadow register immediately.

An update event is generated when:

• The counter overflows

• The UG bit in the STMR_EGR register is set by software

The UEV can be disabled by setting the UDIS bit in the STMR_CR1.

18.4 Configuration of the 16-bit counter

There is no buffering when writing to the counter. Both STMR_CNTH and STMR_CNTL may 
be written at any time, so it is suggested not to write a new value into the counter while this 
it's running to avoid loading an incorrect intermediate content.

An 8-bit buffer is implemented for the read. Software must read the MSB byte first, after that 
the LSB byte value is buffered automatically. This buffered value remains unchanged until 
the 16-bit read sequence is completed.

Note: Do not use the LDW instruction to read the 16-bit counter. It reads the LSB byte first and 
returns an incorrect result.
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18.5 Write sequence for 16-bit STMR_ARR register

16-bit values are stored in the STMR_ARR register through the preload registers. This must 
be performed by two consecutive write instructions, one for each byte. The MSB byte must 
be written first.

The shadow register update is blocked as soon as the MSB byte has been written, and 
stays blocked until the LSB byte has been written.

Note: Do not use the LDW instruction as this writes the LSB byte first which produces incorrect 
results.

18.6 Prescaler

The STMR prescaler is based on a 7-bit counter controlled by the PSC[2:0] bits of the 
STMR_PSCL register. The register field may be changed on the fly as this control register is 
buffered. The prescaler divides the counter clock frequency by any power of 2 between 1 
and 128.

The prescaler value is loaded through a preload shadow register. The shadow register, 
which contains the current value to be used, is loaded as soon as a UEV is generated.

Read operations to the STMR_PSCL register access the preload register, so no special 
care needs to be taken to read it.

18.7 STMR counting mode

The counter counts from 0 up to the auto-reload value present into the STMR_ARR H-L 
registers, then restarts from 0 generating a counter overflow and a UEV event, if the UDIS 
bit of the STMR_CR1 register is cleared.

Figure 32. STMR counting mode

An update event can also be generated by setting the UG bit in the STMR_EGR register (by 
software).

The UEV update event can be disabled by software by setting the UDIS bit in the 
STMR_CR1 register. This is useful to avoid updating the shadow registers while writing new 
values in the preload registers. No update event occurs until the UDIS bit has been written 
to 0. However, the counter restarts from the 0 value, whereas the counter of the prescaler 
restarts from 0 (without any change to the prescale rate).
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In addition, if the URS bit (update request selection) in the STMR_CR1 register is set, 
setting the UG bit generates a UEV without setting the UIF flag (thus no interrupt request is 
sent). This avoids generating both update and capture interrupts when clearing the counter 
on the capture event.

When an update event occurred, all registers are updated and the update flag UIF bit of the 
STMR_SR1 register is set (depending on the value of the URS bit, refer to Section 18.11.1: 
STMR_CR1 (control register) description):

• The buffer of the prescaler is reloaded with the preload value (content of the 
STMR_PSCL register).

• The auto-reload shadow register is updated with the preload value (content of the 
STMR_ARR register). Note that the auto-reload is updated before the counter is 
reloaded, so that the next period is the expected one.

Figure 33. Counter update when ARPE = 0 (ARR not preloaded) with prescaler = 2
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Figure 34. Counter update when ARPE = 1 (ARR preloaded)

18.8 STMR program sequence

This section gives an example of the system timer initialization flow.

• Setup CKC peripheral registers to start the STMR internal clock source

• Disable the counter (STMR_CR1 = 0x0)

• Set the UDIS bit of the STMR_CR1 register to prevent interrupt

• Setup the reload counter value by configuring the STMR_ARRH/L registers

• Set the prescaler register STMR_PSCL with a desired value

• Set the UG bit of the STMR_EGR register to generate update event

• Set the CEN to enable the counter and clear UDIS bits of the STMR_CR1 register

• Set the UIE bit of the STMR_IER register to generate an interrupt on the counter 
overflow event.

18.9 STMR interrupts

STMR has only one interrupt request source mapped on a dedicated interrupt vector:

• Update event interrupt (overflow, and counter initialization)

The interrupt features is enabled by setting the UIE bit of the STMR_IER register to enable 
the timer interrupt requests.

The update interrupt event can also be generated by software setting the UG bit of the 
STMR_EGR register.
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18.10 System timer as ADC trigger source

The STMR peripheral may be configured to provide the ADC HW trigger functionality; refer 
to the product datasheet to see if this functionality is supported.

The ADC start is triggered by any event which is programmed (by means of UDIS and URS 
bits) to set the interrupt flag. The trigger functionality is independent of peripheral interrupt 
enable: when the peripheral is selected to trigger the ADC, the interrupt should be disabled 
in order to minimize the CPU load. Refer to the ADC chapter for further details on using the 
ADC trigger (refer to Section 27: Analog-to-digital converter (ADC) on page 312).

18.11 System timer unit registers description

18.11.1 STMR_CR1 (control register)

Offset: 0x00

Default value: 0x00

         

Bit 0: CEN counter enable

0: the counter is disabled.

1: the counter is enabled.

Bit 1: UDIS update disable

0: the update event is generated as soon as a counter overflow occurs or a software 
update is generated; the buffered registers are then loaded with their preload values.

1: the update event is not generated; shadow registers keep their value (ARR, PSC). 
Anyway the counter and the prescaler are reinitialized if the UG bit is set.

Bit 2: URS update request source 

0: the interrupt requests are sent as soon as registers are updated (counter overflow or 
set of UG bit).

1: the interrupt requests are sent only when the counter reaches the overflow.

Bit 3: OPM one pulse mode

0: counter doesn't stop when an update event is triggered

1: counter stops the count when the next update event is triggered (clearing the bit 
CEN).

Bit 6-4: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 7: ARPE auto-reload preload enable

0: STMR_ARRx register are not buffered.

1: STMR_ARRx register are buffered through a preload register.

7 6 5 4 3 2 1 0

ARPE RFU OPM URS UDIS CEN

r/w r r/w r/w r/w r/w
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18.11.2 STMR_IER (interrupt enable register)

Offset: 0x01

Default value: 0x00

         

Bit 0: UIE update interrupt enable

0: update interrupt disabled.

1: update interrupt enabled.

Bit 7-1:RFU reserved; must be kept 0 during register writing for future compatibility.

18.11.3 STMR_SR1 (status register 1)

Offset: 0x02

Default value: 0x00

         

Bit 0: UIF update interrupt flag

This bit is set by hardware on an update event. It is cleared by software by writing '0':

0: no update occurred.

1: update interrupt pending. This bit is set by hardware when the registers are updated:

- When the overflow occurs and if the UDIS = 0 in the STMR_CR1 register.

- When the CNT is reinitialized by software using the UG bit in the STMR_EGR 
register, if URS = 0 and UDIS = 0 in the STMR_CR1 register.

Bit 7-1: RFU reserved; must be kept 0 during register writing for future compatibility.

7 6 5 4 3 2 1 0

RFU UIE

r r/w

7 6 5 4 3 2 1 0

RFU UIF

r rc/wo
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18.11.4 STMR_EGR (event generation register)

Offset: 0x03

Default value: 0x00

         

Bit 0: UG update generation

This bit is set by software and it's automatically cleared by hardware:

0: no action.

1: re-initializes the counter and generates an update of the registers. Note that the 
prescaler counter is cleared too (the prescaler ratio is not changed).

Bit 7-1: RFU reserved; must be kept 0 during register writing for future compatibility.

18.11.5 STMR_CNTH (counter high register)

Offset: 0x04

Default value: 0x00

         

Bit 7-0: CNT[15:8] counter value most significant byte (MSB).

18.11.6 STMR_CNTL (counter low register)

Offset: 0x05

Default value: 0x00

         

Bit 7-0: CNT[7:0] counter value less significant byte (LSB).

18.11.7 STMR_PSCL (prescaler register)

Offset: 0x06

Default value: 0x00

         

7 6 5 4 3 2 1 0

RFU UG

r w

7 6 5 4 3 2 1 0

CNT [15:8]

r/w

7 6 5 4 3 2 1 0

CNT [7:0]

r/w

7 6 5 4 3 2 1 0

RFU PSC [2:0]

r r/w
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Bit 2-0: PSC[2:0] prescaler value

Value of the prescaling factor to be applied to the internal clock fMASTER.

The fCK_CNT counter clock frequency is equal to fMASTER / 2PSC[2:0].

The PSCL contains the value which is loaded in the active prescaler register at each 
update event (including when the counter is cleared through the UG bit of the 
STMR_EGR register.

Consequently, a UEV must be generated so that a new prescaler value can be taken 
into account.

Bit 7-3: RFU reserved; must be kept 0 during register writing for future compatibility.

18.11.8 STMR_ARRH (auto-reload high register)

Offset: 0x07

Default value: 0xFF

         

Bit 7-0: ARR[15:8] auto-reload value MSB

The ARR is the value to be loaded into the actual auto-reload register.

The counter is halted while the auto-reload value is null.

18.11.9 STMR_ARRL (auto-reload low register)

Offset: 0x08

Default value: 0xFF

         

Bit 7-0: ARR[7:0] auto-reload value LSB

The ARR is the value to be loaded in the actual auto-reload register.

The counter is halted while the auto-reload value is null.

7 6 5 4 3 2 1 0

ARR [15:8]

r/w

7 6 5 4 3 2 1 0

ARR [7:0]

r/w
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18.12 System timer unit registers overview

Table 28 details the system timer internal registers starting from the base address specified 
on the corresponding product datasheet; for detailed register description refer to 
Section 18.11: System timer unit registers description.

         

Table 28. System timer internal registers overview

Name Description Offset Type Reset value

STMR_CR1 Control register 1 0x00 R/W 0x00

STMR_IER Interrupt enable register 0x01 R/W 0x00

STMR_SR1 Status register 0x02 R/W1 0x00

STMR_EGR Event generation register 0x03 RS 0x00

STMR_CNTH Counter high register 0x04 R/W 0x00

STMR_CNTL Counter low register 0x05 R/W 0x00

STMR_PSCL Prescaler register 0x06 R/W 0x00

STMR_ARRH Auto-reload high register 0x07 R/W 0xFF

STMR_ARRL Auto-reload low register 0x08 R/W 0xFF



Auxiliary timer RM0380

158/335 DocID026249 Rev 1

19 Auxiliary timer

19.1 Auxiliary timer introduction

The auxiliary timer is a light timer built grouping some functionality already existing in the 
silicon device and spread on different IPs to optimize the silicon cost.

The main purpose of this timer is to provide a secondary programmable time base 
generation usable by SW application.

19.2 Auxiliary timer main features

The timer clock pulse is provided by the configurable clock out logic (programmable in term 
of the clock source and prescaler division factor), while the interrupt functionality is 
implemented by an interrupt edge detection logic similar to the port P0. The timer has the 
following main features:

• Free running mode

• Upcounter

• Timer prescaler 8 bits

• Interrupt timer request

– Vectored interrupt

– Interrupt IRQ/NMI or polling mode

• Timer pulse configurable as an output signal on CCO primary pin.

19.3 Auxiliary timer functional description

The main function of the auxiliary timer is to provide a periodic interrupt (or polled signal) 
useful as reference for a time base generation.

The timer unit uses the configurable clock out logic to generate a periodic square wave. The 
interrupt functionality is controlled by the edge detector logic of the P1[5] port; the 
MSC_CFGP15 configures the interrupt type, the interrupt flag and the reset mechanism is 
handled by the register MSC_STSP1[5] bit.

The interrupt mask functionality managed by the P1_CR2[5] bit acts also on the auxiliary 
timer interrupt. The aux. timers share the interrupt vector with the P1 port, in products where 
the P1 port interrupt functionality is available.

Refer to Section 14: Interrupt controller (ITC) on page 113 and Section 22: General purpose 
I/O port (GPIO) on page 221 for details about the interrupt configurability.

The auxiliary timer may be configured to generate the HW trigger to start the ADC trigger 
conversion sequence (refer to the product datasheet if this features is available). The ADC 
trigger functionality is independent of the interrupt timer request generation.



DocID026249 Rev 1 159/335

RM0380 Auxiliary timer

335

19.4 Program sequence

The following operations have to be done in order to configure the auxiliary timer 
functionality:

• Select the source clock, by programming the CLK_CCOR register as for standard CCO 
configuration.

• Initialize the clock divisor, by programming the CLK_CCODIVR register as for standard 
CCO configuration.

• Configure the input capture logic of the GPIO1[5] input line (rising edge active high 
active IRQ/NMI) using the dedicated miscellaneous registers MSC_CFGP15.

• Enable the interrupt source (GPIO1[5] input line) through the MSC_CFGP15 register.

• The interrupt or polling mode functionality is selected by the register P1_CR2 bit 5 
(if it's set, the interrupt request is enabled).

If the interrupt request is masked , the timer event may be polled by checking the bit 5 of the 
port 1 status register (MSC_STSP1).

The aux. timer functionality is an internal feature independent of the DIGIN[0] primary signal 
except in case of external timer clock configuration (enabled by CCO output pin selection). 

Note: 1. The auxiliary timer is halted by clearing the MSC_CFGP15 bit 3.

2. The pulse timing is also available on the CCO primary pin, via the CKC programming 
register.

3. The CCO internal clock is a free running clock source.

4. The auxiliary timer is not halted when the CPU enters in the debug mode; this has to be 
considered during this phase.

5. To be detected by the interrupt edge capture logic, the frequency of the waveform 
selected through the CLK_CCOR and CLK_CCODIVR register must respect the following 
condition: fCCO < fCKM. This rule must be considered also when the auxiliary timer is used 
as a source for the ADC trigger functionality.

19.5 Auxiliary timer unit register overview

Table 29 shows the auxiliary timer internal register overview; the registers are distributed 
across different peripherals; for register details refer to respectively peripheral chapter 
descriptions.

          

Table 29. Auxiliary timer register overview

Name Description Block Offset Type Reset value

P1_CR2 Control register2 GPIO1 0x04 R/W 0x00

MSC_CFGP10 P15 input line control
MISC

0x26 R/W 0x00

MSC_STSP1 Port 1 status 0x27 R/W 0x00

CLK_CCODIVR Clock dividers
CKC

0x15 R/W 0x00

CLK_CCOR Configurable clock output 0x1A R/W 0x00
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20 Basic timer

20.1 Basic timer introduction

The STLUX architecture can include up to two additional basic timers besides the system 
timer and the auxiliary timer. Each basic timer (BscTim) operates with a free running counter 
clocked by an independently selectable and prescalable source. Refer to the product 
datasheet for details on the availability and the count of the BscTim in your product.

These timers can increase the flexibility of the application by allowing the user to implement 
additional time-based events.

20.2 Basic timer main features

Each BscTim generates an internal square signal with 50% duty cycle whose half period 
depends on the clock source frequency fck, the counter value cnt and the prescaler prsc 
division factor according to the following equation:

Equation 20

T / 2 = [prsc × (2 + cnt)] / fck 

When one BscTim is enabled, this square signal feeds the input of the associated edge 
detector logic. In the current implementation the BscTim0 and BscTim1, if available, share 
through a multiplexer the edge detector of the P1[0] and P1[1] port respectively. Enabling 
the timer function inhibits the interrupt feature on the relative P1 port (if available in the 
product).

Each timer has the following main features:

• Free running mode

• Timer prescaler register 8 bits

• Counter register 6 bits

• Programmable source clock (HSI, LSI, HSE, PLL)

• Interrupt timer request

– Vectored interrupt (shared with the P1 port if available in the product)

– Interrupt IRQ/NMI or polling mode

20.3 Basic timer functional description

The basic timers provide a periodic waveform which can be used as reference for time base 
generation. It is possible to associate an interrupt or to use a polling approach. In both cases 
the user has to properly configure and enable the edge detection circuit.

For the BscTim<x> (x = 0, 1) the MSC_CFGP1<x> register configures the interrupt type and 
the detection mode (for normal operation the edge mode is recommended); the interrupt 
flag and the reset mechanism are handled by the MSC_STSP1[x] register bit.

The interrupt functionality is enabled through the P1_CR2[x] bit. The BscTims share the 
programming registers and the interrupt vector with the P1 port, in products where the P1 
port interrupt functionality is available.
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Refer to Section 14: Interrupt controller (ITC) on page 113 and Section 22: General purpose 
I/O port (GPIO) on page 221 for further details on the interrupt programming. 

The BscTims can be used also as a source of the ADC trigger functionality, available on 
some products. The event which can trigger an ADC SoC is the rising edge of the timer 
waveform. The BscTim can be selected as an ADC trigger source regardless of interrupt 
enabling. Refer to Section 27: Analog-to-digital converter (ADC) on page 312 for further 
details on the use of the ADC trigger.

In order to synchronize the timer output, the system PLL has to be enabled and locked.

20.4 Programming sequence

The following operations have to be done in order to configure the BscTim<x> (x = 0, 1) 
functionality:

• Enable the system PLL and wait for its lock.

• Select the clock source of the timer through the CK_SEL<x> field of the 
MSC_FTM0CKSEL register (see Section 20.5.1: MSC_FTM0CKSEL (BscTim10 clock 
selection) for details).

• Select the prescaler (prsc) value through the MSC_TM<x>CKDIV register.

• Select the counter (cnt) value through the MSC_TM<x>CONF register.

• Configure the input sensitivity of the P1[x] input line (rising/falling edge and optionally 
NMI) by using the dedicated MSC_CFGP1<x> miscellaneous register. Refer to the 
Section 14: Interrupt controller (ITC) for further details on configuring, enabling and 
using the P1 detection logic (MSC_CFGP1<x> and MSC_STSP1 registers).

• Enable the edge detection through the MSC_CFGP1<x>[3] bit.

• Enable the generation of the timer waveform through the EN<x> bit of the 
MSC_FTM0CKSEL register (see Section 20.5.1 for details on the bit).

• The interrupt or polling mode functionality is selected through the P1_CR2[x] bit (if it is 
set, the interrupt request is enabled). Refer to Section 22: General purpose I/O port 
(GPIO) for further details on P1_CR2 register.

If the interrupt request is masked, the timer event may be polled by checking the relative 
status register bit (MSC_STSP1[x]).

Note: 1. The BscTim<x> is halted and reset by clearing the EN<x> bit. Alternatively the user can 
disable the edge detection through the MSC_CFGP1<x> register in order to stop timer 
events.

2. The BscTim is not halted automatically when the CPU enters in the debug mode; this 
condition has to be considered during this phase.

3. In order to be detected by the edge detector, the frequency of the timer related waveform 
must respect the following condition: f < fCKM. This consideration applies also if the BscTim 
is used as a source for the ADC trigger functionality.

4. In some products where the BscTim1 feature is absent, the CK_SEL1 and EN1 bits of the 
MSC_FTM0CKSEL register, the MSC_FTM1CKDIV and MSC_FTM1CONF registers 
themselves may be associated to the ADC trigger filter functionality. Refer to the product 
datasheet for further details.
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20.5 Basic timer control registers

Note that depending on the product, all or some of the registers may not be available.

20.5.1 MSC_FTM0CKSEL (BscTim10 clock selection)

Offset: 0x00 (MSC INDIRECT AREA)

Default value: 0x00

         

Bit 2-0: CLK_SEL0[2:0] BscTim0 clock source configuration:

000: HSI source clock

001: HSE source clock

010: LSI source clock

011: PLL source clock

1xx: RFU reserved encoding values.

Bit 3: EN0 BscTim0 enable:

0: BscTim0 logic disabled

1: BscTim0 logic enabled

Bit 6-4: CLK_SEL1[2:0] BscTim1 clock source configuration:

000: HSI source clock

001: HSE source clock

010: LSI source clock

011: PLL source clock

1xx: RFU reserved encoding values.

Bit 7: EN1 BscTim1 enable:

0: BscTim1 logic disabled

1: BscTim1 logic enabled

20.5.2 MSC_FTM0CKDIV (BscTim0 clock division factor)

Offset: 0x01 MSC (INDIRECT AREA)

Default value: 0x00

         

Bit 7-0: DIV[7:0] BscTim0 clock division factor:

This field represents the frequency ratio of the source clock prescaler 
(prsc = DIV + 1). The following equation applies:

7 6 5 4 3 2 1 0

EN1 CLK_SEL1 [2:0] EN0 CLK_SEL0 [2:0]

r/w r/w r/w r/w

7 6 5 4 3 2 1 0

DIV [7:0]

r/w
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Equation 21

fprsc = fck / (DIV + 1)

where fprsc is the prescaled frequency and fck is the source clock frequency.

20.5.3 MSC_FTM0CONF (BscTim0 counter)

Offset: 0x02 (MSC INDIRECT AREA)

Default value: 0x00

         

Bit 5-0: COUNT[5:0] BscTim0 timer value:

The clock count used to synthesize the BscTim0 waveform half period. The single clock 
period is given by 1/fprsc. Due to the internal architecture the real count value is

Equation 22

cnt = COUNT + 2

Bit 7-6: RFU reserved for future use.

Keep these bits reset unless other product functionalities are associated to them.

20.5.4 MSC_FTM1CKDIV (BscTim1 clock division factor)

Offset: 0x03 MSC (INDIRECT AREA)

Default value: 0x00

         

Bit 7-0: DIV[7:0] BscTim1 clock division factor:

This field represents the frequency ratio of the source clock prescaler (prsc = DIV + 1). 
See Section 20.5.2: MSC_FTM0CKDIV (BscTim0 clock division factor) for the 
analogous discussion about the BscTim0.

20.5.5 MSC_FTM1CONF (BscTim0 counter)

Offset: 0x04 (MSC INDIRECT AREA)

Default value: 0x00

         

7 6 5 4 3 2 1 0

RFU RFU COUNT [5:0]

r/w r/w r/w

7 6 5 4 3 2 1 0

DIV [7:0]

r/w

7 6 5 4 3 2 1 0

ADC_AReload ADC_AFlush COUNT [5:0]

r/w r/w r/w
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Bit 5-0: COUNT[5:0] BscTim1 timer value:

The clock count used to synthesize the BscTim1 waveform half period. See 
Section 21.6.3: External input multiplexing on page 170 for the analogous discussion 
about BscTim0.

Bit 6: ADC_AFlush FIFO auto-flush for single conversion mode:

0: disable auto-flush.

1: enable auto-flush (if available, it works when the CIRCULAR bit of the ADC_CFG 
register is '0').

Bit 7: ADC_AReload FIFO auto-reload mode:

0: disable auto-reload.

1: enable auto-reload (if available, it works when the CIRCULAR bit of the ADC_CFG 
register is '1').

20.6 Additional basic timer register overview

Table 30 shows the BscTim internal register overview. The registers are located in the 
indirect address miscellaneous area. Refer to the product datasheet on details on how to 
manage the indirect addressing.

         

Table 30. BASIC timer register overview

Name Description Block Offset Type Reset value

MSC_CFGP10 P10 input line control
MISC

0x21 R/W 0x00

MSC_STSP1 Port 1 status 0x27 R/W 0x00

MSC_FTM0CKSEL Basic timer source clock sel.

MSC (indirect)

0x00 R/W 0x00

MSC_FTM0CKDIV Basic Timer0 clock prescale 0x01 R/W 0x00

MSC_FTM0CONF Basic Timer0 counter value 0x02 R/W 0x00

MSC_FTM1CKDIV Basic Timer1 clock prescale 0x03 R/W 0x00

MSC_FTM1CONF Basic Timer1 counter value 0x04 R/W 0x00
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21 State machine, event driven (SMED)

21.1 SMED architecture overview

The SMED is an advanced programmable PWM generator signal designed to meet mainly 
the requirements of lighting applications, power controllers and PFC of small/medium 
power. Single or multiple instantiations of the SMED module are intended to be embedded 
in the microcontroller IC device.

The SMED (state machine, event driven) peripheral is a programmable state machine 
controllable by both internal events (counter timers) and external events (primary I/O 
signals), able to generate an output signal (PWM) depending on the evolution of the internal 
state machine.

The main purpose of the SMED is to generate a periodic pulsed PWM output signal with 
a behavior instantaneously modifiable by real-time events in terms of the duty cycle, polarity 
level and frequency adjustment. The deterministic evolution and the reaction to 
asynchronous input events are programmed by a dedicated set of three registers for each 
state. The SMED state machine contains four independent timed states (S0-3), one initial 
state (IDLE) and one not timed state (HOLD).

Each SMED block is provided with an expansion interface that allows functional cross 
connections between different SMED modules. The expansion i/f allows coupling two up to 
four SMED depending on the product features. For further information refer to the product 
datasheet.
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21.2 SMED main features

The SMED main features are summarized in the following points:

• Programmable state machine for PWM generation

• Four independent states (S0-S3) plus an initial state (IDLE) and a special state (HOLD)

• Programmable timings independent for each state (S0-S3)

• Large set of selectable trigger events:

– I/O lines levels and edges

– Analog comparators outputs

– Software programmable events

• High sampling rate on input signals (up to 96 MHz)

• High resolution on output signal generation due to high-speed clock

• Output signal modulation (dithering function)

• Events timestamp (dump function)

• Interrupt generation capability on internal/external events

– External input trigger

– State change

– Timer overflow

• Full status information

– Events overflow

– Timing overflow

– Timing capture (dump status)

– State change

– Current state

– Output line status

– Input lines status

• ADC trigger capability (if available on the product)

• Independently programmable IDLE PWM levels via option byte (refer to the product 
datasheet)

• PWM independently programmable as (pseudo) open drain output (refer to the product 
datasheet)

• SMED coupled expansion interface.
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21.3 Block diagram

A simplified architecture of a single SMED device is depicted in Figure 35.

Figure 35. SMED architecture

21.3.1 Subblocks descriptions

The functionalities implemented by the main blocks depicted in Figure 35 are the following:

• Edge/level detectors: sample the external input line to detect both the signal level and 
the signal transitions

• Coupled interface: handles the internal signals to/from other SMED devices for coupled 
mode configurations

• Counters/comparators: handle the FSM timing information related to sequential state 
evolution

• FSM controller: is the core logic of the SMED that determines state evolution

• Processor interface: glue logic necessary to correctly interface the SMED device to the 
microcontroller system bus.

21.3.2 Clock domains

The SMED unit operates with two different clock logic domains as highlighted in the block 
diagram; the processor domain (CKM) and the FSM domain. This distinction is particularly 
useful to understand internal synchronization behaviors when the processor clock and the 
SMED clock are distinct.

The processor clock domain is related to all the interface registers that can be directly 
accessed by the user application, while the FSM clock domain is related to the SMED 
internal logic, in particular to input signals detection and FSM state evolution.

The synchronization between the two clock domains is handled internally by the SMED 
logic.
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Note: 1. The real-time FSM clock lines feeding all SMED peripheral logics may be frozen when the 
CPU is stalled in the debug mode, depending on the ENFCT3 bit field of the DM_ENFCT 
register.

2. In order to use the SMED interrupts for clock frequency fSMED < fCKM it is necessary to 
select the “interrupt low frequency” feature through the option byte. For further details refer 
to the product datasheet.

21.4 Processor interface

The user application can access and control the SMED operations through the processor 
interface logic, by reading and writing a dedicated set of registers; through the registers the 
user can configure and control the SMED behavior.

The SMED registers are allocated in the standard microcontroller peripheral register area.

The overall registers that control the SMED logic are grouped in different register spaces 
depending on their functionality:

• Registers for global SMED configuration (SMED behavior, input lines multiplexing, 
output lines multiplexing) are located in the MSC register space.

• Registers for clock selection and configuration reside in the CKC (clock controller) 
area.

• Registers for the SMED state machine configuration reside in dedicated SMED areas, 
one for each SMED.

The detailed description of SMED core registers and their usage can be found in 
Section 21.17.1: SMED coupled interface configuration scheme on page 189 while the 
detailed description of the SMED environment configuration registers is found in 
Section 21.17.2: Chapter assumptions: on page 190. 

Note: SMED registers configuration can be easily done also thanks to the SMED configurator tool 
available online on the STLUX webpage.

21.5 FSM controller

The FSM controller is the core of the SMED peripheral logic. It is up to this block to handle 
the selected input events and timings to generate the requested output signal.

The understanding of this block and of the input/output signals configuration is fundamental 
for the correct usage of SMED logic.

The FSM is a finite state machine based on 5 different states (IDLE, S0, S1, S2 and S3) 
plus one special state (HOLD).

The transitions among the states are driven by both external events and internal events.

These events are controlled by a complete set of configuration registers, dedicated to each 
state (unless for the special state HOLD), and determines the evolution of the FSM core for 
the PWM output signal generation.

Note: The FSM is enabled, i.e. not forced in the IDLE state and thus capable to evolve and react 
to events, when the SMD<n>_CTR[1] register bit is at '1'; Clearing the bit isn't a full software 
reset, because memory elements other than the state registers of the machine, shadow and 
lock controls included, maintain their information. The user, who needs to force the SMED in 
IDLE, has to manage this process consistently.
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21.6 External events

The SMED has the capability to sample three different independent external input lines 
called InSig[0], InSig[1] and InSig[2] to detect the real-time signal variations. The input 
signals can be physical I/O external input of the IC device or signals generated by the 
internal logic.

The input InSig[2:0] lines are sampled with the FSM frequency, that can be configured up to 
96 MHz, allowing a fast response time to input signal transitions.

To be correctly acquired a digital input signal interconnected to the InSig line should have 
a pulse width ≥ 4 Tck. Refer to the product datasheet for details about the frequency and 
slope characteristics of the DIGIN pads.

21.6.1 Level/edge detection logic

A dedicated block of the SMED logic is used to constantly monitor the status of the input 
lines to detect any input signal variations in the real-time mode without SW intervention.

Each input lines may be configured independently to trigger different signal conditions 
depending on the SMD<n>_CTR_INP register bit values (refer to register programming in 
SMD<n>_CTR_INP (control input register) of Section 21.18.1), as detailed below:

• Falling edge

• Rising edge

• Low level

• High level

In case of edge configuration the InSig line is active for one cycle when the programmed 
edge is detected.

When the configured capture condition is recognized by one of the enabled InSig[2:0] input 
lines, and the current state is programmed to react to the involved InSig, the corresponding 
external event is generated and causes a FSM jump to a new state.

Each one of the three input lines InSig[0], InSig[1] and InSig[2] has to be individually 
enabled in order to be sensed by the capture logic; this is carried out by configuring the 
SMD<n>_ISEL register.

The InSig signals are synchronized with a two-stage register chain. 

21.6.2 External event handling

The events triggered by the InSig[2:0] external inputs can be used by the FSM to change 
the state evolution in two distinct ways: sequential transitions and non-sequential 
transitions.

These events are referred in the following description as Event_Seq(I) or Event_NoSeq(I), 
depending on the way the FSM uses them for state transitions. The “I” letter is a generic 
index indicating that the event originates due to the InSig[I] signal.

• By convention the sequential transition events is referred as Event_Seq(I) (refer to 
Section 21.9.3: Sequential state transitions (S0→S3) on page 174).

• The non-sequential transition events is referred as Event_NoSeq(I) (refer to 
Section 21.9.4: Non-sequential state transitions on page 175).
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Whenever an InSig[2:0] related event is triggered, and the related mask bit is set, the 
associated interrupt is triggered and the corresponding status flag bit is set. From the 
interrupt perspective the Event_Seq(k) and Event_NoSeq(k) for a given k are 
indistinguishable. The interrupt and the flag are associated just to the index of the InSig[k] 
line that caused the transition.

For each state the InSig used for the Event_Seq() and Event_NoSeq() transitions are 
programmed through the CEDGE and EDGE fields of the state parameter registers.

The InSig[0] line has a supplementary latch functionality used to memorize the occurrence 
of an InSig[0] capture condition, allowing a deferred Event_Seq(0) or Event_NoSeq(0) 
transition occurrence from any of the states configured to react to InSig[0] input capture. 
When this feature is used, the InSig[0] line is typically configured to capture a signal edge, 
although this is not required.

This feature is controlled by the INPUT_LAT field of the SMD<n>ISEL register; the latched 
information is selectively cleared by entering any of the S0-3 states when the LATCH_SEL 
bit of respective SMD<n>_PRM_<st>2 register is set.

21.6.3 External input multiplexing

Each of the InSig[2:0] input lines may be driven by different signals. The lines are generated 
by an embedded switch matrix (ConBox) capable to multiplex more input signals (either 
internal or external sources) to the InSig lines. The configuration of the signals connected to 
the InSig input lines of each SMED<n> is controlled by the MSC_CBOXS<n> register.

The signal families multiplexed are the following:

• DIGINs (primary input signals)

• CMPs (output of the internal comparator units)

• SW (internal register signal driven by SW)

• PWMs (available only for some SMED units)

For the complete list of signals configurable as the InSig of the SMED units refer to the 
product datasheet.

When the SMED FSM is running, the input line hot change may be done through the 
following program sequence:

• Disable the corresponding InSig[k] input line through the SMD<n>_ISEL register.

• Configure the new input signal changing the ConBox configuration by programming the 
MSC_CBOXS<n> register.

• Configure the corresponding input capture logic with the new input signal by 
programming the SMD<n>_CTR_INP control register

• Enable the InSig[k] signal through the SMD<n>_ISEL register.

21.7 Internal events

The SMED has an internal 16-bit counter that can be used to control the FSM sequential 
state evolution similarly to the Event_Seq(I) event. Any of the FSM states S0, S1, S2 and S3 
except IDLE and HOLD has an associated 16-bit state timer register (TMR_T0, TMR_T1, 
TMR_T2 and TMR_T3).

The SMED counter is clocked by the FSM real-time clock and is incremented by 1 on every 
clock cycle. The registers counter value is compared with the FSM current counter; when 
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the counter matches or exceeds the respective state timer, then the corresponding Tmr(S) 
(timer) event is generated. By convention the “S” letter is a generic index that specifies the 
state in which the timer event arises.

When the counter reaches the maximum value (0xFFFF), it automatically wraps back to 
0x0001; if the relative CNT_OV_E bit field of the SMD<n>_IER register is set, the counter 
overflow interrupt is generated and the corresponding CNT_OVER status bit is set. No 
Tmr(S) event is generated in this case.

Note: For the FSM clock configuration refer to Section 12: Clock control unit (CKC) on page 71.

The counter is initialized to 0x0001 whenever the FSM timer is enabled (refer to the 
START_CNT bit of SMD<n>_CTR (control register) in Section 21.18.1 on page 199) or 
when it's reset by the occurrence of a state transition if the suitable CNT_RSTC or 
CNT_RSTE state parameter register bit is set (refer to Section 21.10.2: Counter reset on 
page 179).

21.8 Events priority

In the normal priority sequence the first active event among the Event_NoSeq(I), 
Event_Seq(I) or Tmr(S) determines the SMED evolution state; in case two or more events 
are asserted at the same time, the FSM state evolution decision process uses the following 
fixed priority scheme:

         

21.9 State transition

The SMED logic, as mentioned in the previous paragraph, has five distinct states named 
IDLE, S0, S1, S2 and S3, plus a special state named HOLD. The FSM states and the 
allowable transitions between states are represented by the graph in Figure 36.

The state transitions graph emphasizes the coexistence of two different state transition 
sequences:

• Sequential evolution: shown by the continuous line, it's based on the sequential state 
transitions determined either by Event_Seq(I) or Tmr(S) events; the FSM state 
evolution is done sequentially in the circular mode from lower to the upper state (i.e. 
S0, S1, S2, S3, S0, S1, etc.).

• Non-sequential evolution: indicated by the dashed line, it comprises the state 
transitions determined by the Event_NoSeq(I) events and let the FSM jump into any of 
S0, S1, S2, S3 and HOLD state without order restrictions.

Mixed mode transition sequences are allowed to increase the complexity of the PWM signal 
modulation. Each state can be configured to wait for both Event_Seq(I) and Event_NoSeq(I) 
transitions in addition to the internal Tmr(S) event. (The AND_OR bit may modify the 
transition state policy).

• Event_NoSeq(I) Higher priority

• Event_Seq(I) ↓

• Tmr(S) Lower
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The state transitions are controlled by a dedicated set of registers available for every states 
(refer to parameter registers SMD<n>_PRM_<id>[2:0] and SMD<n>_PRM_<st>[2:0] of 
Section 21.18.1: SMED core registers on page 199).

• When the FSM changes the state, jumping from the state x to the next state due to the 
Tmr(x) event, and the corresponding interrupt enable request bit is set (IT_STA_<st> 
field of the SMD<n>_IEN register, <st> = S<x>), the associated interrupt request is 
raised and the respective flag is set (the STA_<st>_IT bit field of the SMD<n>_IRQ 
register).

• When the transition is caused by an external event, Event_Seq(k) or Event_NoSeq(k), 
the system considers the InSig[k] that produced it. If the associated interrupt is enabled 
(the IT_EN_EX<k> bit of the SMD<n>_IEN), the interrupt request is raised and the 
respective flag is set (the EXT<k>_INT bit field of the SMD<n>_IRQ register).

In case the FSM timer counter is not enabled (refer to START_CNT field of SMD<n>_CTR 
register Section 21.18.1: SMED core registers on page 199), the FSM state evolution 
depends only on both external event s according to the following rules:

• All states including the IDLE state must be configured to exit on the Event_NoSeq(I) or 
Event_Seq(I) event.

• In case of the Event_NoSeq(I) event the next state is determined by the value 
programmed into the register parameters SMD<n>_PRM_<st>0.

• In case of the Event_Seq(I) event the next state is the sequential one.

• If the AND_OR bit of the SMD<n>_PRM_<st> register (<st> = S0, S1, S2, S3, ID) the 
behavior is modified.

For further details refer to the AND_OR functionality description.

Figure 36 shows an outline view of the SMED finite state machine state flow diagram.
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Figure 36. FSM state transition graph
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21.9.1 IDLE state

The IDLE state is the initial state of the SMED FSM. This state is only entered 
asynchronously by a reset condition (power-on reset, microcontroller reset or peripheral 
reset), or synchronously whenever the FSM is disabled. The exit from this initial state may 
be caused by the following conditions:

• Event Event_NoSeq(I), if programmed, allows jumping to any state: S0, S1, S2, S3 and 
HOLD.

• Event Event_Seq(I), if programmed, allows jumping to the state S0 (refer to 
Section 21.9.5: State evolution equations on page 176).

• Start FSM counter, if enabled causes to jump to the S0 state.

The initial value of the PWM output signal before the FSM exits from the IDLE state is 
configured by the Rst_PWM[5:0] option bits of the GENCFG register (for further information 
refer to the product datasheet).

Note: If the initial value of a PWM output is configured 'high' through the Rst_PWM[5:0] option bits, 
the high level is applied after the system has loaded the option byte values from the 
EEPROM. The initialization sequence is done after about 50 µs from the release of the reset 
signal; during this interval time, the pad is driven low (refer to the product datasheet).

21.9.2 HOLD state

The HOLD is special state condition of the SMED FSM where the state machine is frozen 
until the HOLD exit condition is reached. This particular state is useful either when the 
SMED works in one of the available coupled modes or is configured in the single mode. In 
the HOLD state, the counter is stopped, freezing the current value until the SMED exits from 
this state resuming the functional state evolution. For the complete information about all 
possible SMED coupled configuration schemes refer to the product datasheet.

21.9.3 Sequential state transitions (S0→S3)

The FSM evolves sequentially among states S0, S1, S2 and S3 whenever a Tmr(S) or an 
Event_Seq(I) event is triggered(1).

Figure 37. Sequential state transition

The Tmr(S) event is triggered when the FSM 16-bit counter is equal or greater than the 
16-bit register timer value (SMD<n>_TMR_T<3:0>L/H) associated to the current FSM 
state(2). Note that only the comparator associated to the current FSM state is active.
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If the FSM counter is not enabled (refer to START_CNT bit in the SMD<n>_CTR register 
Section 21.18.1: SMED core registers on page 199), the FSM sequential evolution is 
determined only by the Event_Seq(I) events.

The Event_Seq(k) (k = 0, 1, 2) event is triggered when the following conditions are met 
contemporaneously:

• The InSig[k] line is enabled through the SMD<n>_ISEL register.

• The InSig[k] input signal matches the configured capture condition (falling/rising edge, 
low/high level) programmed through the SMD<n>_CTR_INP register.

• The InSig[k] is programmed as a source of the Event_Seq(k) sequential event in the 
current state. In each state only one at a time of the InSig input signals may be 
programmed as sequential event (refer to the CEDGE field of register 
SMD<n>_PRM_<st>1 (parameter1 register) in Section 21.18.1: SMED core registers 
on page 199).

Both events Tmr(S) and Event_Seq(I), whichever comes first, determine the FSM 
sequential evolution state in the circular mode as shown in Figure 37. If the events are 
raised simultaneous the priority scheme in Section 21.8: Events priority on page 171 is 
applied.

Note: This behavior may be modified by the AND_OR and HOLD_JMP bits of 
SMD<n>_PRM_<st>0 register (refer to Section 21.9.5: State evolution equations on 
page 176).

In the IDLE state the Tmr(S) event is substituted by the timer activation 
(SMD<n>_CTR[0] = '1') because there is no timer associated to this state.

21.9.4 Non-sequential state transitions

The FSM state evolution is not fixed; any evolution scheme is allowed by configuring the 
parameter registers of states S0 - S3 whenever an Event_NoSeq(I) event is triggered (1) as 
shown in Figure 38.

Figure 38. Event controlled state transitions
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The Event_NoSeq(k) (k = 0, 1, 2) event is triggered when the following conditions are met 
contemporaneously:

• The InSig[k] line is enabled through the SMD<n>_ISEL register.

• The InSig[k] input signal matches the configured capture condition (falling/rising edge, 
low/high level) programmed through the SMD<n>_CTR_INP register.

• The InSig[k] is programmed as a source of the Event_NoSeq(k) non-sequential event 
in the current state. In each state only one at a time of the InSig input signals may be 
programmed as non-sequential event (refer to the EDGE field of the register 
SMD<n>_PRM_<st>0 (parameter0 register) in Section 21.18.1: SMED core registers 
on page 199).

The next state is programmed by the NX_STAT bits of the SMD<n>_PRM_<st>0 register 
(refer to register programming in SMD<n>_PRM_<st>0 (parameter0 register)) of 
Section 21.18.1: SMED core registers on page 199.

Note: This behavior may be modified by the AND_OR and HOLD_JMP bits of the 
SMD<n>_PRM_<st>0 register (refer to Section 21.9.5).

21.9.5 State evolution equations

The FSM evolves following predefined “transition equations” configured by the register 
parameters. These are the HOLD_JMP and the AND_OR bit of SMD<n>_PRM_<st>0 
register (refer to register programming in SMD<n>_PRM_<st>0 (parameter0 register) of 
Section 21.18.1: SMED core registers on page 199).

The following description assumes that the HOLD_JMP bit of the SMD<n>_PRM_<st>0 
register is cleared. Refer to SMD<n>_PRM_<st>0 (parameter0 register) in Section 21.18.1: 
SMED core registers on page 199 for further details on the HOLD_JMP parameter.

• AND_OR flag cleared (OR condition applies):

The FSM changes the state when the first of the configured triggering events is raised.

– If the triggering event is Tmr(S) or Event_Seq(I), the following state will be the next 
sequential state.

– If the triggering event is Event_NoSeq(I), the next state may be any one of the S0, 
S1, S2 or S3 programmed states.

This is the case described in Section 21.9.3: Sequential state transitions (S0→S3) and 
Section 21.9.4: Non-sequential state transitions. The corresponding state transition graph is 
shown in Figure 39.

Figure 39. OR state transition graph
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• AND_OR flag set (AND condition applies) (with Event_NoSeq(I) configured):

The FSM changes the state when both the sequential state transition condition (Tmr(S) 
or the Event_Seq(I)) and the programmed state transition condition (Event_NoSeq(I)) 
are satisfied contemporaneously (i.e. within the same FSM clock cycle).

The new state is the one selected by the programmed state transition (see NX_STAT 
bits of SMD<n>_PRM_<st>0 register in SMD<n>_PRM_<st>0 (parameter0 register) of 
Section 21.18.1: SMED core registers on page 199).

The corresponding state transition graph is shown in Figure 40.

Figure 40. AND state transition graph with Event_NoSeq(I)

• AND_OR flag set (AND condition applies) (with no Event_NoSeq(I) configured):

The FSM changes the state when the sequential state transition conditions (Tmr(S) or 
Event_Seq(I)) are satisfied.

The new state is the one selected by the programmed state transition (see NX_STAT 
bits of SMD<n>_PRM_<st>0 register in SMD<n>_PRM_<st>0 (parameter0 register) of 
Section 21.18.1: SMED core registers on page 199).

The corresponding state transition graph is shown in Figure 41.

Figure 41. AND transition graph without Event_NoSeq(I)
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21.10 State transition occurrence

To support the generation of complex output signals two or more SMEDs can be configured 
in coupled schemes (for further information refer to Section 21.17: SMED coupled 
expansion interface on page 189). Table 31 summarizes the possible FSM state transitions 
in every configuration.

         

Two fundamental operations are carried out when a transition occurs: the output PWM level 
change and the timer counter reset. These actions are performed on the exit from the 
current state even if the FSM passes through the HOLD state. The SMD<n>_PRM_<st>0 
and SMD<n>_PRM_<st>1 contains the relevant configuration bits which determine the 
output level (PULS_CMP, PULS_EDG) and the counter reset on transition (CNT_RSTC, 
CNT_RSTE).

The above bit fields are used alternatively in accordance with the following rules:

• If the AND_OR bit is set or the state transition is raised by an Event_NoSeq(I) event, 
the PULS_EDG and CNT_RSTE register bits are used.

• If the AND_OR bit is reset and the state transition is raised by a Tmr(S) or Event_Seq(I) 
event, the PULS_CMP and CNT_RSTC register bits are used.

Table 31. FSM states transition overview

Global config.(1) Conf. parameter fields Active events Next state

Coupled/!single 
configuration

HOLD_JMP AND_OR
Tmr(S) OR 

Event_Seq(I)
Event_NoSeq(I) HOLD S0,S1,S2,S3

Single/coupled 0 0 1 0 No Sequential

Single/coupled 0 0 1 or 0 1 No NX_STAT[1:0]

Single/coupled 0 1 1 1(2) No NX_STAT[1:0]

Single only 1 0 1 0 No Sequential

Single/coupled 1 0 1 or 0 1 Yes NX_STAT[1:0](3)

Coupled only 1 0 1 X(4) Yes NX_STAT[1:0](3)

Single/coupled 1(4) 1(4) 1 1(2), (4) Yes NX_STAT[1:0](3)

1. Parameter configured by the SMD<n>GLBCONF field of MSC_SMDCFG<xy> registers.

2. In these cases the Event_NoSeq(I) condition is considered always true if the Event_NoSeq(I) option is not selected for the 
considered state (EDGE[1:0] = “00”).

3. Next state after the Hold exit.

4. If the No Event_NoSeq(I) is used the SMED can exit from the HOLD state only when the corresponding coupled SMED 
enters the HOLD state. In this case it is mandatory to use a paired configuration by setting the HOLD_EXIT bit of the 
SMD<n>_PRM_<st>1 register.
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21.10.1 Output PWM level

The PWM output signal level is configured through the register parameters available for 
every state; during the FSM state evolution the PWM output signal changes polarity 
according to the value configured into the state parameter registers; then by programming 
the state timing and the transition sequence it's possible to generate the desired PWM 
timing pulse.

The output signal is updated whenever the state transition occurs, including transitions to 
the HOLD state where the output signal is updated on entering the HOLD state itself, The 
PWM level is always maintained when the FSM exits from the HOLD state.

The PWM timing pulse accuracy increases with the SMED clock frequency; a high 
frequency (configurable up to 96 MHz) enhances the PWM output signal timing resolution.

Note: 1. If the PWM signal is used internally (i.e. SMD connected in coupled configuration), it 
doesn't have limitation in term of the toggle rate.

2. If the PWM signals is used as primary output pins its toggle rate has not to exceed the 
maximum toggle frequency of its own output pad (for further details refer to the product 
datasheet).

The level of the PWM output signal may be configured independently for sequential and 
non-sequential state transitions. The user has to configure the PULS_EDG bit of the 
SMD<n>_PRM_<st>0 register (refer to SMD<n>_PRM_<st>0 (parameter0 register) in 
Section 21.18.1: SMED core registers on page 199) for non-sequential and the PULS_CMP 
of the SMD<n>_PRM_<st>1 register (refer to SMD<n>_PRM_<st>1 (parameter1 register) 
in Section 21.18.1: SMED core registers on page 199) for sequential transitions.

If the AND_OR bit is set, the FSM takes into consideration the PULS_EDG bit to change the 
PWM level on a transition. 

The PWM output signal has an additional dithering functionality that can be dynamically 
configured by software; for further information refer to Section 21.11.2: Dithering.

21.10.2 Counter reset

By default the FSM counter, when enabled, increments its value on every FSM clock cycle 
independently by the edge events, and wraps to 0x0001 when it exceeds the maximum 
count value (0xFFFF).

When the FSM state changes, the internal counter may be reset selectively either by non-
sequential state transitions (bit CNT_RSTE of the SMD<n>_PRM_<st>0 register 
SMD<n>_PRM_<st>0 (parameter0 register) in Section 21.18.1: SMED core registers on 
page 199) or by sequential state transitions (bit CNT_RSTC of the SMD<n>_PRM_<st>1 
register in SMD<n>_PRM_<st>1 (parameter1 register) of Section 21.18.1: SMED core 
registers on page 199).

If the AND_OR bit is set, the FSM takes into consideration the CNT_RSTE bit to change the 
PWM level on a transition. 

In this way it is possible to have the following timing periods:

• Cumulative period for more states (no counter reset between different states).

• Independent period for each state (reset counter between any states).

A simple example of the counter reset functionality is the generation of a PWM signal for 
a fixed time period (TP), with a granted minimum high level initial period (T0) and a granted 
minimum low period at the end (T2). The states sequence is described in Figure 42.
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The PWM signal is generated using three states: the S0 minimum initial high level period, 
S1 intermediate period and S2 minimum final low level period.

The state S0 is programmed for a period T0 and is sensible only to the Tmr(0) event; this 
grants the minimum period of the output high voltage level. On the exit from the S0 the PWM 
output is left unchanged and the counter is left running.

The state S1 is programmed for a period equal to TP-T2 and is sensible both to the 
Event_Seq(I) and to Tmr(1) whichever came first (OR configuration). On the exit from the 
S1 the PWM output is cleared at low voltage and the counter is left running.

The state S2 is programmed for a period TP and is sensible only to the Tmr(2) event (with 
AND_OR and no_Event to S0); this grants the minimum period of low voltage output level. 
On the exit from the S2 the PWM output is set and the counter is reset starting a new cycle.

Figure 42. Counter reset example

21.10.3 Hold jump

The HOLD functionality is used when it's required to freeze the current state of the SMED 
until some external event is triggered. The HOLD state may be entered by any of the 
<st> = ID, S0, S1, S2 or S3 state, setting the corresponding HOLD_JMP bit of the 
SMD<n>_PRM_<st>0 register (refer to the register programming in SMD<n>_PRM_<st>1 
(parameter1 register) of Section 21.18.1: SMED core registers on page 199).

The HOLD state is commonly used when two or more SMEDs are coupled together to form 
a more complex state machine able to drive more than one PWM signal at the same time or 
a more complex merged PWM signal (further description is found in Section 21.17: SMED 
coupled expansion interface on page 189), but it can also be used in single SMED 
configuration with a little different behavior.
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The following paragraph the HOLD_JMP bit is assumed active.

• Single mode:
Two cases are possible according to the value of the AND_OR register field:

– If the AND_OR bit is cleared, the HOLD state is entered from any state when the 
state transition is driven by an Event_NoSeq(I) event.

– If the AND_OR bit is set, the HOLD state is always entered when the state 
evolution equation is satisfied. For further information refer to the AND_OR bit 
programming Section 21.9.5: State evolution equations on page 176.

• Coupled mode:

– If the AND_OR bit is cleared, any of the Event_Seq(I), Event_NoSeq(I) or Tmr(S) 
events triggers the transition to the HOLD state.

– If the AND_OR bit is set, the HOLD state is always entered when the state 
evolution equation is satisfied. For further information refer to the AND_OR bit 
programming Section 21.9.5: State evolution equations.

Note: For the complete information about all possible SMED coupled configuration schemes refer 
to Section 21.17: SMED coupled expansion interface on page 189.

21.10.4 Hold exit

When an FSM is frozen in the HOLD state, it waits until the hold exit condition is reached. 
The event used to exit from the HOLD state depends on the SMED behavior (single mode 
or coupled mode) and on the HOLD_EXIT bit of SMD<n>PRM_<st>1 register (see register 
programming in SMD<n>_PRM_<st>1 (parameter1 register) of Section 21.18.1: SMED 
core registers on page 199).

When the FSM exits from the HOLD state, the next state is configured exclusively by the 
NX_STAT bits field of register SMD<n>_PRM_<st>0. Refer to SMD<n>_PRM_<st>0 
(parameter0 register) in Section 21.18.1: SMED core registers on page 199. When an 
SMED is in HOLD, the FSM monitors the related InSig[I] programmed as a source of the 
Event_NoSeq(I) in the state preceding the HOLD(i). In the single mode and with AND_OR = 
'0' the Event_NoSeq(I) is also the only event can cause the SMED to enter the HOLD state. 
The AND_OR bit doesn't influences the HOLD exit mechanism.

• Single mode:
The HOLD_EXIT bit must be cleared in this configuration mode; then the FSM exits 
from the HOLD state when the capture condition on the “exit InSig” is triggered (if it is 
an edge sensible input) or becomes false (if it is a level sensible input). 

• Coupled mode(j):

– HOLD_EXIT cleared
The FSM exits from the HOLD state when the capture condition on the “exit InSig” 

i. When the HOLD_EXIT register bit is cleared, the FSM can exit from the HOLD state only through the specified 
behavior on the “exit InSig”. In this case, the EDGE[1:0] field relative to the origin state must be different from 
“00”.

j. For the complete information about all possible SMED coupled configuration schemes refer to the coupled 
expansion interface Section 18.17.
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is triggered (if it is an edge sensible input) or becomes false (if it is a level sensible 
input). 

– HOLD_EXIT set
The FSM exits from the HOLD state when the corresponding coupled SMED 
enters the HOLD state.

Note that it is possible to configure two coupled SMED running at the same time with the 
HOLD_EXIT bit cleared. The coupling programmed through MSC_SMDCFG<xy> registers 
in this case just forces either the SMED to jump to HOLD, if the origin state HOLD_JUMP bit 
is set, even if the transition is of the Tmr(S) or Event_Seq(I) type.

21.11 Time control

The FSM has an embedded internal 16-bit upcounter that is incremented at every cycle of 
the programmed clock; this provides the time base for the deterministic PWM timing pulse 
generation (refer to Section 21.18.1: SMED core registers on page 199).

This counter is started by the START_CNT bit in the SMD<n>_CTR register (refer to the 
registers programming in SMD<n>_CTR (control register) of Section 21.18.1: SMED core 
registers on page 199) and runs until the SMED is active. When the counter reaches the 
maximum count value (0xFFFF) automatically wraps to 0x0001 continuing the counting 
process (for further detail refer to Section 21.18.1: SMED core registers).

The counter is handled by the FSM both to generate programmed timing (state timers 
compare) and to generate the time stamp information (dump).

The counter may be reset on a state transition if the CNT_RSTE or CNT_RSTC register bits 
are set (refer to Section 21.10.2: Counter reset).

When the FSM enters the HOLD state, the counter is frozen and resumes counting when 
the FSM exits from the HOLD state, unless the involved CNT_RSTE bit or CNT_RSTC bit 
are set, restarting the counter from 0x0001 (refer to registers programming 
Section 21.10.2).

When the counter reaches the overflow condition, it wraps back to 0x0001 and, if the 
CNT_OV_E bit field of the SMD<n>_IER register is '1', the CNT_OVER bit of the 
SMD<n>_IRQ register is set and an interrupt is generated.

21.11.1 State timer registers

The FSM single 16-bit timer counter register is compared every clock cycle with the value 
programmed in the timer constant registers of the current state S<x> (x = 0, 1, 2, 3) The 
16-bit timer constant register is configured through the lower byte SMD<n>_TMR_T<x>L 
and upper byte SMD<n>_TMR_T<x>H registers, where x represent the state number (0:3). 
The IDLE and HOLD states are not equipped with the timer constant registers since they 
don't use the timer functionality.

To avoid conflict when updating the contents of the upper and lower bytes of the state timer 
comparison registers, a shadow register technique is used. Each state timer has 
a corresponding 16-bit shadow register that holds a copy of the timer registers contents.

• If the FSM is not active, the update of the state timer registers updates also the 
corresponding shadow register.

• If the FSM is running, the update of the state timer registers does not automatically 
update the shadow registers; these are updated synchronously (all 16 bits at a time) 
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when the corresponding TIME_Tx_VAL bit of the register SMD<n>_CTR_TMR is set, 
validating the new contents, and when the condition selected by the TIM_UPD[1:0] field 
of the SMD<n>_CFG register occurs (refer to register programming in SMD<n>_CFG 
(timer configuration register) of Section 21.18.1: SMED core registers).

The content of the upcounter is continuously compared with the content of the state timer 
shadow register of the current active state. If the counter is equal or greater than the state 
timer, the corresponding Tmr(S) event is generated; this event generates the state transition 
according to the configured transition equations (refer to Section 21.9.5: State evolution 
equations on page 176).

Note: 1. The SMD<n>_CTR_TMR[4:0] register bits can be updated only when the register content 
is cleared; while set by SW in single or multi-bit configuration, these fields have to be 
cleared only by HW. Although the register bits can also be cleared by SW for a diagnostic 
purpose, this operation is forbidden in the functional mode.

2. When fSMED < fMASTER, the back-to-back SMD<n>_CTR_TMR write register sequence is 
allowed only when the register is cleared and after 2tSMED additional latency time (this delay 
is not requested in case of fSMED ≥ fMASTER).

3. SMD<n>_TMR_T<i>L/H constant registers are writable by SW only when the 
corresponding SMD<n>_CTR_TMR[3:0] register control bit is cleared; if the control bit is set 
the corresponding constant register is locked until the proper control bit is cleared again; 
during this phase any attempt to write the constant register is ignored.

21.11.2 Dithering

In particular cases, generating a periodic signal with a precise fixed timing may cause 
resonance or EMI problems in the hardware application where capacitive and/or inductive 
loads are present.

To avoid these problems, the programmed values of the state timers and consequently the 
PWM output signal, may be dynamically modified at run time configuring the dithering 
functionality.

The dithering functionality is obtained by temporarily incrementing the contents of the state 
timer register of 1 cycle. The dithering is applied to timer comparator value of one of the four 
available states (S0, S1, S2 and S3) selected by the TIM_NUM field of the SMD<n>_CFG 
register. The dithering is programmable over a period of 8 state cycles, by setting the 
corresponding bits of the SMD<n>_CTR_DTHR register; if the register bit is set, then the 
corresponding cycle in the selected state timer is temporary incremented by 1 cycle (refer to 
the register programming in SMD<n>_CTR_DTHR (dithering register) of Section 21.18.1: 
SMED core registers).

Note: 1. By design the cycle index of dithering functionality is updated on the rising edge of the 
PWM SMED output signal; this has to be taken in account especially when the PWM idle 
level (reset value) is configured active high.

2. Note that soon after the SMED start the cycle index points to the bit position 0 of the 
SMD<n>_DITHER register. If the SMED pulse makes a transition to '1' exiting from IDLE, 
the index in the first SMED cycle will point to the position 1, in full respect of the rule 
explained in the preceding note.
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Like the state timers, the dithering register is also implemented with a shadow mechanism.

• If the FSM is not running, the update of the dithering register also updates the shadow 
register.

• If the FSM is enabled, the update of the dithering register does not update the shadow 
register; the register is updated when the DITHER_VAL bit in the register 
SMD<n>_CTR_TMR is set validating the new contents, and the FSM is not in the state 
hosting the dither (refer to the register programming Section : SMD<n>_CTR_TMR 
(control time register) on page 200).
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Figure 43 shows an example of the dithering functionality applied to an SMED that runs 
cyclically on states S0 - S1 with respective timings T0 and T1. The dithering is applied to 
cycles 1, 2, 6 and 7. Note that in the current example the SMED PWM signal toggles at 
every state updating the dithering cycle counter.

Figure 43. Dithering example

Note: 1. The SMD<n>_CTR_TMR[4] register bit can be updated only when the register content is 
cleared; while it's set by SW, this field has to be cleared only by HW. Although the register 
bits can also be cleared by SW for a diagnostic purpose, this operation is forbidden in the 
functional mode.

2. The SMD<n>_CTR_DTHR constant register is writable any time by SW only when the 
corresponding SMD<n>_CTR_TMR[4] register control bit is cleared; if the control bit is set 
the corresponding constant register is locked until the proper control bit is cleared again; 
during this phase any attempt to write the constant register is ignored.

21.11.3 Time stamp functionality

For control purposes sometimes it may be necessary to know the FSM current count when 
an external event occurs.

The time stamp functionality is triggered either by the Event_Seq(k) or Event_NoSeq(k) 
transition event if the dump functionality is enabled for the InSig[k] line. Tmr(S) events are 
ignored for this purpose.

By configuring the DMPE_EX[k] (k = 0, 1, 2) field of the SMD<n>_DMP register (refer to the 
register programming Section 21.18.1: SMED core registers) the running time value of the 
FSM counter is instantaneously copied in two dedicated 8-bit registers which stores the 
upper byte (SMD<n>_DMP_H) and the lower byte of the counter value (SMD<n>_DMP_L) 
when the corresponding Event_Seq(k) or Event_NoSeq(k) event is triggered. If AND_OR bit 
= '1' the dump is triggered if the Event_Seq(k) is one of the causes of the transition.

This functionality is controlled by the DMP_EVER bit of the SMD<n>_DMP register.

• DMP_EVER cleared:
Only the first triggered event dumps the counter time value; the successive events are 
ignored until the corresponding EX<k>_DUMP bit of SMD<n>_GSTS register is 
cleared by SW.

• DMP_EVER set:
Any configured events trigger and override the content of the SMD<n>_DMP_L/H 
registers with the current run time counter value (the registers contain the counter 
value of the latest dump event).

Note: When the DMP_EVER bit field of the register SMD<n>_DMP is set, the maximum dump 
rate supported by dump logic is expressed by the following equation: 
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fDUMP_Max = 1 / [4 (tMASTER + tSMED)]. In case of a fast dump request, the event that 
exceeded the fDUMP_Max frequency is simply ignored and the SMD<n>DMP_L/H dump 
registers maintain the time information of the previous dumped event.

21.12 Interrupt functionality

The SMED implements eight dedicated interrupt sources. The following list shows all 
possible interrupt source requests:

• FSM counter overflow.

• Exit for Event_Seq(I)/Event_NoSeq(I) due to InSig[I] capture with I = 0, 1, 2.

• State S exit for Tmr(S) conditions with S = 0, 1, 2, 3.

The interrupt source requests are individually controllable through the SMD<n>_IER 
interrupt enable register which enables selectively each interrupt sources and by the 
SMD<n>_IRQ interrupt request register that contains the interrupt flag requests. Every 
interrupt flag request is reset by writing '1' to the corresponding bit position.

Note: 1. The interrupt request bits in the SMD<n>_IRQ register are set only if the corresponding 
bits in the SMD<n>_IER register are set.

2. The reset of the SMED interrupt flag request, asserted by writing '1' into the 
SMD<n>_IRQ register bits, due to the cross clock logic domains requires the latency time 
expressed by the next equation: tISR_Rst = tMASTER + 3 tSMED. This latency has to be 
considered when the fSMED < fMASTER and the interrupt of SMED logic is triggered by 
multiple sources. In this case SW has to take care of this aspect when the interrupt flag is 
evaluated.

3. The interrupt enable/disable sequence performed by writing the SMD<n>_IER register 
due to the cross clock logic domains requires the following latency time: 
tIER_Lat = tMASTER + 3 tSMED. Note that an interrupt source is masked only when the 
corresponding mask reading bit of the SMD<n>_IER register is cleared (after a time 
tIER_Lat).

4. The minimum time of contiguous write back-to-back cycle to the SMD<n>_IER register, 
due to the cross clock logic domains is expressed by the next equation: 
tIER_Wb = 6 tMASTER + 4 tSMED. The subsequent write faster than the tIER_Wb minimum time 
is ignored.

The interrupt capability is useful when events that are handled in real-time by the FSM, 
require also an exception handling by the SW application process due to special events or 
error conditions that must be served in a restricted time limit.

The generations of an interrupt flag, not immediately served by the corresponding interrupt 
service routine, doesn't affect the behavior of the FSM that is completely autonomous and 
can continue to run independently from the CPU activity.

The application programmer shall pay attention in configuring the SMED interrupts, 
especially when SMED logic is running at higher frequency, since the interrupt rate may 
impact the CPU bandwidth operation.
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21.13 Status information

To support a complete state transition handling, in addition to the interrupt functionality, the 
SMEDs implement dedicated registers containing several status flags that resume the 
current FSM status.

The status flags are grouped in two distinct registers that collects logically separated 
conditions.

21.13.1 GSTS (global status register)

This register contains the bit fields that monitor the status of the time stamp functionality; the 
list of the register fields is shown below:

• The dump event for InSig event transition occurred (EX[2:0]_DUMP).

• The counter reset or overflow when the dump is enabled (CNT_FLAG).

• Dump register lock status (DMP_LK[1:0]): this field controls the logic that preserves the 
integrity of the 16-bit dump value when the DUMP_EVER option is enabled.

• The dump event overflow (EVENT_OV): set by HW when the DUMP_EVER is cleared 
and a new event would trigger a dump while the preceding one has not yet been 
handled by SW.

The SW application program may synchronously poll these flags, resetting them in the time 
stamp handling routine.

Note: 1. The EX[2:0]_DUMP bits are reset by writing '1' to the corresponding bit (or also by 
clearing the corresponding EXT[3:1]_INT bit field of the SMD<n>_REQ register if the 
SMD<n>_DMP[4] bit is set).

2. The CNT_FLAG bit is reset by writing '1' to this field.

3. The DMP_LK field is reset only by reading consecutively both SMD<n>_DMP_L/H 
registers.

4. The EVENT_OV field is reset by clearing any of the EX[2:0]_DUMP flags (or also by 
clearing any of the EXT[3:1]_INT flags of the SMD<n>_IRQ register if the 
SMD<n>_DMP[4]bit is set).

21.13.2 FSM_STS (finite state machine status register)

This register contains the real-time information related to the status of the FSM. The list of 
the available bit fields is the following:

• Current FSM state (FSM[2:0])

• Current PWM output level (PWM)

• Current InSig levels (EVINP[2:0])

The application program can synchronously poll these flags resetting them in the handling 
routine.
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Table 32 shows the coding value of the FSM field belonging to the SMD<n>_FSM_STS 
register (refer to SMD<n>_FSM_STS (FSM status register) in Section 21.18.1: SMED core 
registers on page 199).

         

21.14 PWM reset output value

The PWM signal reset output value can be configured individually for each SMED unit 
through a suitable option byte (refer to the product datasheet for details). The initialization 
value is loaded into the PWM output register during the option byte loading phase which 
follows the NRST signal release. Each PWM[n] takes its reset value as long as the driving 
SMED<n> remains or is forced in the IDLE state (by setting the SMD<n>_CTR[1] bit). 
During the IC configuration process the CPU core is stalled in the reset state.

21.15 PWM pad (pseudo) open drain configuration

Depending on the product, an option byte may be enabled to allow the PWM to be 
configured in the (pseudo) open drain mode. The option can be applied selectively on each 
PWM by means of the P1_CR1 register, which controls the similar functionality on the same 
port configured as the GPIO. A logical high level on a (pseudo) open drain port will result in 
the Hi-Z state. Refer to the product datasheet to check if this feature is available on your 
product.

21.16 SMED as ADC trigger source

Depending on the product, the ADC conversion may be triggered by various internal 
sources, other than issued by a software command. The SMED HW trigger feature is 
enabled by the option bit SMED_HWtrg of the CLKCTL register set a '1' and requires that 
the ADC_HWtrg option bit of the AFR_IOMXP2 register is programmed at '0'.

The SMED is able to trigger the ADC conversion start through the Tmr(2) event interrupt. 
Refer to Section 27: Analog-to-digital converter (ADC) on page 312 for details on the 
configuration of the functionality. When the SMED<n> Tmr(2) interrupt is enabled and 
selected as the ADC SoC source, the interrupt is masked (i.e. does not generate an IRQ on 
the SMED<n> interrupt channel) and the request is autoreset on the ADC starting 
conversion sequence.

Table 32. FSM states coding

FSM states encoding value

FSM state FSM_STS[2:0] coding

S0 000

S1 001

S2 010

S3 011

IDLE 100

HOLD 101
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Note: The HW trigger functionality requires that all SMEDs of the IC device must be configured 
with fSMED ≥ fMASTER.

Due to the capability of the IC device to enter low power states by disabling all clock 
sources, particular caution has to be adopted in order to avoid impact on the SMED logic 
interface. Table 33 details the correct procedure to prepare the SMED peripheral to a low 
power processor state.

         

The SMED logic does not have the capability to wakeup the device from the Active-halt or 
Halt mode.

21.17 SMED coupled expansion interface

The expansion interface allows expanding the functionality of a single SMED by grouping 
other SMED logic together to form a more complex SMED unit capable to generate more 
complex PWM signals.

The expansion interface logic can be used in case the IC device is provided by several 
SMED logics (for further information refer to the product datasheet), these can be 
connected in single coupled or two coupled configurations increasing the performances of 
a single SMED. The main advantage of coupled configuration is summarized below:

1. To generate complex waveforms on a single PWM channel (involving essentially the 
eight states belonging to the two SMEDs) by using the SMED<n>_DRVOUT register 
field. 

2. To obtain two interlocked signals on two distinct PWM channels in order e.g.: to permit 
anti-phase control of high-side and low-side drivers with minimum external logic.

The arbitration between SMED activities is accomplished by the HoldJump/HoldExit logic 
mechanism and by the Asy_Enable asynchronous signal line in the case of two coupled 
SMEDs. 

21.17.1 SMED coupled interface configuration scheme

The SMED basic operation is defined by the SMDx_GLBCONF and SMDx_DRVOUT fields 
of the MSC_SMEDCFG<xy> registers; the register coding values is shown in Table 34 (for 
further details refer to Section 21.18.2: SMED environment configuration registers on 
page 215).

These register fields select the SMED operating mode that must be configured before 
enabling the involved SMEDs and cannot be changed until the SMED logics are disabled. 

Table 33. SMED low power mode

Modes Description

Wait No effect on SMED logic.

Halt
Active-halt

Before entering the Halt/Active-halt mode the SMED clock must be stopped through 
the PCKEN2<n> bit of the CLK_PCKENR2 register, then if the PLL is enabled it has 
to be configured in power-down by clearing the bit PLLON of the CLK_PLLR register.

After waking up from Halt/Active-halt, if required by the application, the PLL has to be 
enabled by setting the PLLON bit of the CLK_PLLR register, as soon as PLL is 
locked, the SMED clock can be enabled once more by disabling the clock gating 
features.
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The only exception at this rule is represented by the selection of unlock feature in coupled 
SMEDs configuration (refer to MSC_SMULOCK (SMEDs unlock) in Section 21.18.1: SMED 
core registers on page 199).

         

Note: The <n> index represents the SMED number present in the product datasheet.

21.17.2 Chapter assumptions:

The following assumptions have been adopted to simplify the discussion of the next 
paragraphs:

• Active: means that the SMED is not in the HOLD state

• Inactive: means that the SMED is in the HOLD state

• Pair active: means that one SMED of a pair is not in the HOLD state and both SMEDs 
of the other pair are in the HOLD state

• Pair inactive: means that both SMEDs of a pair are in the HOLD state

Note: In any couple configuration the SMED exiting from the HOLD must be programmed to not 
re-enter the HOLD states at least after 3 TCK.

21.17.3 SMED subsystem configuration

The following sections describe all possible SMED configuration schemes:

Single SMED configuration

This configuration mode is allowed for all SMEDs. The FSM state evolution and the PWM 
output signal depend only on the configuration of the selected SMED.

Table 34. SMED coupled interface configuration scheme

SMEDs global configuration Description

SMD<n>_GLBCONF SMD<n>_DRVOUT Main feature PWM output pulse

000
0

Single SMED
Independent PWMs (fixed by parameters)

1 RFU (reserved encoding for future use)

001
0 Synchronous coupled 

SMEDs

Independent PWMs (fixed by parameters)

1 Combined PWM (driven by active SMEDs)

010
0 Two synchronous 

coupled SMEDs

Independent PWMs (fixed by parameters)

1 Combined PWM (driven by active SMEDs)

011
0 Two asynchronous 

coupled SMEDs

Independent PWMs (fixed by parameters)

1 Combined PWM (driven by active SMEDs)

100
0

External control SMED
Independent PWMs (fixed by parameters)

1 RFU (reserved encoding for future use)

101
0 Asynchronous coupled 

SMEDs

Independent PWMs (fixed by parameters)

1 Combined PWM (driven by active SMEDs)

11X X RFU RFU (reserved encoding for future use)
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Note: If an SMED is configured in the single mode, the related coupled SMED, if available on 
product devices, must be programmed in the single MODE.

Synchronous coupled SMEDs configuration

Two SMEDs are coupled through an internal dedicated interface to form a single logic unit 
(pair) from the application point of view. This configuration requires that the two SMEDs 
must be programmed with the same source clock. This operating mode doubles the 
resources of a single SMED allowing the synthesis of a more complex PWM output 
waveform signal.

When configured in this mode, only one of the two SMEDs is active at the same time, while 
the other one is inactive (frozen in HOLD state) and vice versa.

The coupled SMEDs use the HoldJump/HoldExit mechanism to switch the control between 
them. When one SMED of the pair enters to the HOLD state, the other exits from its HOLD 
(HOLD_EXIT bit is '1'). Due to signal handshaking, after one SMED of the pair enters the 
HOLD state, the other will become active at after 2 clock periods.

Figure 44 shows a generic two couple SMEDs configuration scheme where:

SMED<n> is coupled with SMED<n+1>n = 0, 2, 4

The list of the SMED units configurable in the coupled mode is specific for the product 
device. For details refer to the product datasheet.

Figure 44. Single couple SMEDs interconnection scheme

The coupled SMEDs may generate two separate PWM output signals or a single more 
complex PWM signal depending on the value of the SMD<n>_DRVOUT configuration bits.

1. If these register fields are cleared, each SMED generates its own PWM output signal 
as shown in Figure 45.

Figure 45. Single couple SMEDs with SMD<n,n+1>_DRVOUT bit cleared

2. If one of the SMEDs is configured with its SMD<x>_DRVOUT register field set to '1' 
and is in the active state, it drives its own PWM output signal, else, if it's inactive, hosts 
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the PWM logical output signal of the other coupled active SMED, as detailed by the 
next expressions and shown in Figure 46:

• If (SMD<n>_DRVOUT = 1 and SMD<n+1>_DRVOUT = 0) then:
PWM<n> = (Smed<n>_Pwm and [SM_Stat<n> ! = hold]) || (Smed<n+1>_Pwm and 
[SM_Stat<n+1>! = hold])(k)

• If (SMD<n+1>_DRVOUT = 1 and SMD<n>_DRVOUT = 0) then:
PWM<n+1> = (Smed<n>_Pwm and [SM_Stat<n> ! = hold]) || (Smed<n+1>_Pwm 
and[SM_Stat<n+1> ! = hold])(k).

Note: 1. Only one SMD<n,n+1>_DRVOUT bit of the two SMEDs must be active at the same time, 
selecting which of the two coupled SMEDs physically generates the merged PWM output 
signal.

2. The unused PWM primary pin may be configured alternatively as GPIO1[x].

3. When using the drive out feature the PWM level of the SMED entering HOLD change, 
due to the transition, to the level of the SMED currently in HOLD.

Figure 46 shows the behavior of the SMED with the merged PWM output signal.

Figure 46. Single coupled SMED with SMD<n>_DRVOUT bit set

Two synchronous coupled SMEDs configuration

Two pairs of SMEDs are coupled through an internal dedicated interface, to form a single 
logic unit based on four SMEDs from the application point of view. Synchronous means that 
all the four SMEDs have to be configured with the same source clock.

The SMEDs pairs used in this configuration mode are SMED<0,1> and SMED<2,3>. The 
PWM signals are driven by a cross coupled SMED interconnection as shown in Figure 47.

k. The PWM<n> signal is driven by the selected SMED when it's not in the hold and the other coupled SMED is in 
the hold state.
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Figure 47. Two couple SMEDs interconnection scheme

Note: 1. PWM0,2 are cross coupled together.

2. PWM1,3 are cross coupled together.

3. Only one of the PWM pairs (PWM[0,2] or PWM[1,3]) are active at a time in this 
configuration.

In this configuration, only one of the SMED pairs is active at the same time (i.e. inside the 
pair only one SMED is active, the other is in HOLD state), while the other pair is inactive 
(both SMEDs frozen in HOLD state).

The control switch between the two SMEDs of the same pair is done by using the 
HoldJump/HoldExit mechanism. Due to signal handshaking, after one SMED of the pair 
enters the HOLD state, the other will become active at after 2 clock periods

The control switch between the two pairs is done through the SMED Asy_Enable input that 
has to be programmed in the level sensitive mode, with different polarity for the two pairs 
(refer to SMD<n>_CTR_INP register description).

The switch between pairs occur when the Asy_enable input change is detected and the 
active SMED jumps into the HOLD state (in this timeframe all SMEDs are in HOLD state); 
then the SMED of the next active pair that becomes active (driving the PWM) is the first that 
jumped into the HOLD state. At a startup the behavior is defined by the QCOUP_ST bit (see 
register description).

The Asy_Enable and the InSig[2] input signals are interconnected together to the same 
CONBOX signal but they have a sensitive capture logic programmable independently via 
SMD<n>_CTR_INP control registers. As the InSig lines, the Asy_Enable signal is 
synchronized by a two stage register chain at the input of the SMED. After the Asy_Enable 
changes the state, the activity switches to the other pair within 3 - 4 clock periods (1 - 2 for 
synchronization, 2 for signal handshaking).
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The two coupled SMEDs may generate four separate PWM output signals or two PWM 
output signals depending on the value of the SMD<n>_DRVOUT bits.

1. If these register fields are cleared, each SMED generates its own PWM output signal 
as shown in Figure 48.

Figure 48. Two couple SMEDs with SMD<0,1,2,3>_DRVOUT bits cleared

2. If the pair is active and configured with both SMD<x>_DRVOUTs set to '1', it drives its 
own PWM output signals; else if the pair is inactive, hosts the cross coupled PWM 
signals of the other SMED active pair as detailed by the next expressions and shown in 
Figure 49:

• 1st cross couple:

– If (SMD0_DRVOUT = 1 and SMD2_DRVOUT = 0) then:
PWM0 = (Smed0_Pwm when and [PAIR1 active]) || (Smed2_Pwm and [PAIR2 
active])(l)

– If (SMD2_DRVOUT = 1 and SMD0_DRVOUT = 0) then:
PWM2 = (Smed0_Pwm and [PAIR1 active]) || (Smed2_Pwm and [PAIR2 active])(l)

• 2nd cross couple:

– If (SMD1_DRVOUT = 1 and SMD3_DRVOUT = 0) then:
PWM1 = (Smed1_Pwm and [PAIR1 active]) || (Smed3_Pwm and [PAIR2 active])(l)

– If (SMD3_DRVOUT = 1 and SMD1_DRVOUT = 0) then:
PWM3 = (Smed1_Pwm and [PAIR1 active]) || (Smed3_Pwm and [PAIR2 active])(l)

Note: 1. Only the SMED pair responsible to drive the PWM signal has to be configured with both 
SMD<x>_DRVOUT set at '1'. The other pair must have these register fields cleared.

2. The SMED pairs are interlocked each other avoiding the contemporary timing pulse 
generation on the two active PWM signals.

3. The unused PWM primary pins may be configured alternatively as the GPIO1[x].

l. The meaning of 'PAIR1 active' and 'PAIR2 active' is defined in Section 21.17.2: Chapter assumptions: on 
page 190.



DocID026249 Rev 1 195/335

RM0380 State machine, event driven (SMED)

335

Figure 49. Two couple SMEDs with SMD<x>_DRVOUT bits set

Two asynchronous coupled SMEDs configuration

This configuration is similar to the two synchronous coupled SMEDs with the only difference 
that the first pair and the second pair may have different source clocks; while inside each 
pair the source clock must be the same.

The hold signals exchanged between the two SMED pairs are synchronized by two register 
stages. After the Asy_Enable changes the state, the activity switches to the other pair within 
the 1 - 2 clocks of the lowest frequency pair periods (for synchronization) plus 2 clocks of 
the destination pair (for signal handshaking).

External control SMEDs configuration

In this configuration the SMED units are arranged in the single SMED operating mode and 
the SMED<m> Tmr(S) event normally driven by timer comparison logic, is now sourced by 
the SMED<n> NextHold signal, where the SMED number <n> is got from Table 35 for any 
state.

         

Note that the NextHold is asserted one clock in advance before the HOLD state.

All SMEDs may be configured in the external control mode.

Table 35. Tmr(S) NextHold event assignment

SMED<m> S0 S1 S2 S3

SMED<n> NextHold SMED<n> NextHold SMED<n> NextHold SMED<n> NextHold

0 2 3 4 5

1 2 3 4 5

2 0 1 4 5

3 0 1 4 5

4 0 1 2 3

5 0 1 2 3
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Note: 1. When the external controlled mode is selected, all the involved SMEDs must be 
configured synchronous with the same source clock.

2. If an SMED is configured in the external controlled mode and some other SMEDs present 
in the product device are configured in such a way that doesn't provide their NextHold event, 
the SMED FSM evolution is based only on the Event_Seq(I) and Event_NoSeq(I) events for 
some states.

Asynchronous coupled SMEDs configuration

This configuration is similar to the synchronous coupled SMEDs with the only difference that 
the two SMEDs may have different source clocks. Control signals between the two SMEDs 
are synchronized by two register stages. The Asy_Enable signal has to be configured in this 
case as a 'rising edge' and enabled through the SMD<n>_CTR_INP and SMD<n>_ISEL 
registers, in order to allow the synchronization (via a two-stage chain) of the HOLD control 
signals.

After one SMED of the pair enters the HOLD state, the other will become active after 3 - 4 of 
its clock period (1 - 2 for synchronization and 2 for signal handshaking).

This configuration is applicable only for the next SMED pair:

• SMED4 with SMED5

21.17.4 Unlock feature

In some applications, it may be necessary to have a startup phase where two PWM output 
signals are driven alternatively at each cycle, followed by an operative phase where the two 
PWM outputs are driven alternatively each one for a configurable period. To support this 
behavior the FSM implements the unlock feature.

The unlock feature is a special extension of the SMED behavior, applicable only to 
synchronous coupled SMEDs, that switches dynamically between two different handling 
behavior of the HoldJump/HoldExit mechanism. This feature cannot be reversed; i.e.: it's 
not possible restore the synchronous coupled mode for an SMED pair that has been 
unlocked. Once the SMED pair has been unlocked, the corresponding coupled SMEDs start 
to operate in the single mode.

The selection of different operation is handled automatically by the SMED expansion 
interface logic that switches the two operating modes without undesired effects on the 
output signals.

The usage of the unlock feature requires that SW application executes the following step 
sequences (SMED<n> and SMED<n+1> are considered):

1. Configure the two SMEDs in the synchronous coupled mode for the startup phase. In 
this configuration the InSig[2] event must be configured to enter the HOLD state on the 
high level for the SMED<n> and to enter the HOLD state on the low level for the 
SMED<n+1> (or vice versa: this depends on the hardwired values and has to be 
considered as an example; see the step 2). The HOLD_EXIT bit of the state causing 
the transition to the HOLD state has to be set to '1'.

2. Enable the unlock register setting the Use_Unlock bit. This temporarily forces the 
status of the InSig[2] signal internally to 0 for the SMED<n> and to 1 for the 
SMED<n+1> independently from the status of the physical lines (the levels of this 
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unlock-hardwired InSig[2] signal for a pair of the SMEDs can be reversed in the 
implementation but they are always opposite; check the product datasheet for details).

3. Enable the SMED FSM and counter to proceed with the startup phase. In this phase 
the control is switched between the two SMEDs depending on the programmed 
configuration of the Event_NoSeq(I), Event_Seq(I) and Tmr(S) events.

4. To enter the operative phase, set the unlock bit. At the next control switch after the 
unlock bit is set, the SMED behavior is changed in that the control is switched between 
the two SMEDs only by the InSig[2] event.

An example of the unlock sequence is shown in Figure 50.

Figure 50. SMED unlock sequence

21.17.5 Connection box

The connection box is a switch matrix implemented in order to extend the connectivity of 
any input coming from external/internal input lines to each input signals of the SMEDs.

With this logic it is possible to configure more than one driving signal for each one of the 
InSig[2:0] lines, expanding the FSM capabilities and giving to the application programmer 
a more flexible solution for the SMED configuration.

The connection box allows multiplexing up to four different input signals for each one of the 
InSig lines of each SMED. The same input signal is available for multiplexing on more than 
one InSig line, giving to the application programmer a wide possibility of the triggering event 
selection.
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To simplify the configuration of the multiplexer, each SMED has a corresponding connection 
box configuration register. Through the configuration registers it is possible to select one out 
of four input signals for each of the three InSig[2:0] lines. 

• The input signals are chosen from four group's families (refer to Figure 51):

• DIGINs fast digital input

• CPPs analog comparators

• PWMs logical output signal coming from other SMEDs

• SW<n> software event

Figure 51. Interconnection matrix for one SMED

Switch matrix interconnection

The connection between input signals and SMED InSig lines is based on a programmable 
associative scheme. A simplified connection matrix has been implemented in order to 
reduce the amount of logic.

Every SMED unit has three con-box selection lines, one for each input, configurable with the 
MSC_CBOXS<n> registers (refer to MSC_CBOXS<n> (connection box selection 
SMED<n>) in Section 21.18.2: SMED environment configuration registers on page 215). 
The selection lines choose the interconnection between one of the possible four con-box 
signals and the SMD<n> input event InSig[<y>]); the general scheme for the connection 
configuration for an SMED is shown in Table 36.

         

Note: The Asy_Enable and the InSig[2] input signals may be interconnected together at the same 
CONBOX output signal.

Table 36. Connection box interconnection matrix

Conb_s<n>_<y>

SMED<n> Matrix selection

y Signal 00 01 10 11

0 InSig[0] Input<0><0> Input<0><1> Input<0><2> Input<0><3>

1 InSig[1] Input<1><0> Input<1><1> Input<1><2> Input<1><3>

2 InSig[2] Input<2><0> Input<2><1> Input<2><2> Input<2><3>
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SW events

To increase the flexibility of configuration of the SMEDs FSM, the MSC_SMSWEV register 
provides up to eight SW event flags.

These SW flags are usually interconnected to the connection box matrix and may be 
selected as InSig signals for each SMEDs FSM. This gives the application program the 
capability to modify the SMED finite state machine evolution like any other HW events 
interconnected to the InSig lines.

21.17.6 FSM diagnostic trace

The MSC_IOMXSMD register offers the capability to trace the SMED FSM variable state 
during the debug phase of an application program.

By configuring the MSC_IOMXSMD register, it is possible to select the state variable of one 
of the six SMEDs to be multiplexed on three primary P0 output lines. Refer to 
MSC_IOMXSMD (SMED I/O MUX control register) in Section 21.18.2: SMED environment 
configuration registers on page 215 for details about the register configuration.

Note: 1. Selecting the FSM variable state lines as output on the P0 overrides the MSC_IOMXP0 
configuration.

2. The trace signals evolution rate cannot exceed the maximum pad toggle frequency (for 
further information refer to the product datasheet).

21.18 SMED registers description

The SMEDs are accessible to the application programmer through a set of dedicated 
registers located in the microcontroller registers area. The physical address of this area is 
product specific.

• The first paragraph contains a detailed description of the SMED core registers used to 
configure each SMED units.

• The second paragraph describes the SMED environment configuration registers used 
to configure the SMED subsystem (e.g.: connection box, clock source selection, etc.). 
These registers allow configuring the SMED external interface, managing the unlock 
procedure and defining the external connections through the connection box matrix.

21.18.1 SMED core registers

SMED core registers base address

The set of registers for the SMED configuration is replicated at modular addresses in the 
microcontroller registers space for each one on the instantiated SMEDs.

The base address of each set of registers is obtained from the following formula:

Equation 23

SMED<n>_base_address = SMEDs_physical_base + (0x40 * n)

where <n> is the SMEDs instance number from <0> to <n>, and SMEDs_physical_base is 
the physical address of the first register of the first SMED instantiated. Refer to the specific 
product datasheet to obtain this address.
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In the following registers description for each control register it is indicated the hexadecimal 
offset of the register with respect to the SMED<n>_base_address.

SMD<n>_CTR (control register)

Offset: 0x00

Default value:0x00

         

Bit 0: START_CNT start counter (R/W).

When '0' the counter evolution is stopped and put in reset condition, anyway the FSM is 
still active and can react to the external events if these have been previously enabled.

When '1' and the FSM_ENA bit is set to '1' starts the counter activity.

Note: Initial transition from the IDLE state is handled as all other state transitions with the only 
exception that the Tmr(S) event is immediately generated when the START_CNT bit is set; 
all the other actions are controlled by the SMD<n>_PRM_ID0 and SMD<n>_PRM_ID1 
register contents.

Bit 1: FSM_ENA synchronous FSM enable (R/W).

When '1' enables the FSM to run; otherwise forces the FSM controller in the IDLE state 
synchronously.

Bit 7-2: RFU reserved; must be kept 0 during register writing for future compatibility.

SMD<n>_CTR_TMR (control time register)

Offset: 0x01

Default value:0x00

         

Bit 0: TIME_T0_VAL validation of the SMD<n>_TMR_T0 register.

When written to '1' validates SMD<n>_TMR_T0 register content enabling shadow 
register updating.

This bit is cleared by hardware when the corresponding shadow register is updated.

Bit 1: TIME_T1_VAL validation of the SMD<n>_TMR_T1 register.

When written to '1' validates SMD<n>_TMR_T1 register content enabling shadow 
register updating.

This bit is cleared by hardware when the corresponding shadow register is updated.

Bit 2: TIME_T2_VAL validation of the SMD<n>_TMR_T2 register.

When written to '1' validates SMD<n>_TMR_T2 register content enabling shadow 
register updating.

This bit is cleared by hardware when the corresponding shadow register is updated.

7 6 5 4 3 2 1 0

RFU RFU RFU RFU RFU RFU FSM_ENA START_CNT

r r r r r r r/w r/w

7 6 5 4 3 2 1 0

RFU DITHER_VAL TIME_T3_VAL TIME_T2_VAL TIME_T1_VAL TIME_T0_VAL

r r/w r/w r/w r/w r/w
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Bit 3: TIME_T3_VAL validation of the SMD<n>_TMR_T3 register.

When written to '1' validates SMD<n>_TMR_T3 register content enabling shadow 
register updating.

This bit is cleared by hardware when the corresponding shadow register is updated.

Bit 4: DITHER_VAL validation of the SMD<n>_CTR_DTHR register.

When written to '1' validates SMD<n>_CTR_DTHR register content enabling shadow 
register updating.

This bit is cleared by hardware when the corresponding shadow register is updated.

Bit 7-5: RFU reserved; must be kept 0 during register writing for future compatibility.

SMD<n>_CTR_INP (control input register)

Offset: 0x02

Default value:0x00

         

Bit 0: RS_INSIG[0] external event (0) input polarity level definition (R/W).

This field configures the InSig[0] input signal active mode:

• Edge mode:
0: input active on the falling edge.
1: input active on the rising edge.

• Level mode:
0: input active on the low level.
1: input active on the high level.

Bit 1: RS_INSIG[1] external event (1) input polarity level definition (R/W).

This field configures the InSig [1] input signal active mode:

• Edge mode:
0: input active on the falling edge.
1: input active on the rising edge.

• Level mode:
0: input active on the low level.
1: input active on the high level.

Bit 2: RS_INSIG[2] external event (2) Input polarity level definition (R/W).

This field configures the InSig [2] input signal active mode:

• Edge mode:
0: input active on the falling edge.
1: input active on the rising edge.

• Level mode:
0: input active on the low level.
1: input active on the high level.

Bit 3: RAIS_EN Asy_Enable input polarity level definition (R/W).

7 6 5 4 3 2 1 0

EL_EN EL_INSIG[2] EL_INSIG[1] EL_INSIG[0] RAIS_EN RS_INSIG[2] RS_INSIG[1] RS_INSIG[0]

r/w r/w r/w r/w r/w r/w r/w r/w
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This field configures the Asy_Enable input signal active mode:

• Edge mode:
0: input active on the falling edge.
1: input active on the rising edge.

• Level mode:
0: input active on the low level.
1: input active on the high level.

Bit 4: EL_INSIG[0] external InSig[0] input characteristic definition (R/W).

0: input signal configured in the edge mode.

1: input signal configured in the level mode.

Bit 5: EL_INSIG[1] external InSig[1] input characteristic definition (R/W).

0: input signal configured in the edge mode.

1: input signal configured in the level mode.

Bit 6: EL_INSIG[2] external InSig[2] input characteristic definition (R/W).

0: input signal configured in the edge mode.

1: input signal configured in the level mode.

Bit 7: EL_EN Asy_Enable input characteristic definition (R/W).

0: input signal configured in the edge mode.

1: input signal configured in the level mode.

SMD<n>_CTR_DTHR (dithering register)

Offset: 0x03

Default value:0x00

         

Bit 7-0: DITH[7:0] dithering register (R/W).

SMD<n>_TMR_T<i>L (time T<i> lsb register)

Offset: 0x04+<i*2>

Default value:0x00

         

The index <i> ranges from 0 to 3.

Bit 7-0: TIM_T<i>L[7:0] time constant LSB register (R/W).

Lower byte of time constant TIM_T<i>(1).

7 6 5 4 3 2 1 0

DITH [7:0]

r/w

7 6 5 4 3 2 1 0

TIM_T<i>L [7:0]

r/w
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SMD<n>_TMR_T<i>H (time T<i> msb register)

Offset: 0x05+<i*2>

Default value:0x00

         

The index <i> ranges from 0 to 3.

Bit 7-0: TIM_T<i>H[7:0] time constant MSB register (R/W).

Upper byte of time constant TIM_T<i>(1);

Note: The TIM_T<i>x (TIM_T<i>H and TIM_T<i>L) value 0x0000 is reserved for future use.

SMD<n>_PRM_ID0 (parameter0 register)

Offset: 0x0C

Default value:0x00

         

Refer to SMD<n>_PRM_<st>0 (parameter0 register) register parameter descriptions.

SMD<n>_PRM_ID1 (parameter1 register)

Offset: 0x0D

Default value:0x00

         

Refer to SMD<n>_PRM_<st>1 (parameter1 register) descriptions.

SMD<n>_PRM_ID2 (parameter2 register)

Offset: 0x0E

Default value:0x00

         

Bit 0: LATCH_RS latch reset definition (R/W).

0: no action is done.

1: the latch of InSig[0] capture will be reset when the FSM enters the HOLD state.

7 6 5 4 3 2 1 0

TIM_T<i>H [7:0]

r/w

7 6 5 4 3 2 1 0

AND_OR HOLD_JMP PULS_EDG CNT_RSTE EDGE[1:0] NX_STAT[1:0]

r/w r/w r/w r/w r/w r/w

7 6 5 4 3 2 1 0

RFU HOLD_EXIT PULS_CMP CNT_RSTC CEDGE[1:0] RFU RFU

r r/w r/w r/w r/w r r

7 6 5 4 3 2 1 0

QCOUP_ST RFU RFU RFU RFU RFU RFU LATCH_RS

r/w r r r r r r r/w
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Bit 6-1: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 7: QCOUP_ST quad couple start mode configuration. 

This field is applicable only in quad couple SMED configuration; it is ignored in other 
modes (refer to the product datasheet to see if this configuration is supported)

0: selects the standard start in the two coupled mode; the SMED masks the PWM 
output (keeping it at the IDLE value) until it exits from the HOLD state for the first time.

1: selects the fast start in the two coupled mode; the SMED starts to drive the PWM 
output immediately on exiting from the IDLE state.

Note: 1. If the QCOUP_ST field is cleared, the basic flow used to start the two couple of SMEDs is 
to program within each couple one SMED active and the other one to enter the HOLD state 
from IDLE; then select the active couple with the Asy_Enable signal value, and activate the 
four SMEDs through the SMD<n>_CTR[1:0] register fields. The first SMED which drives its 
PWM output is the first one of the active coupled that exits from the HOLD state.

2. If the QCOUP_ST is set, the user has to program only one SMED active at the start time, 
while the other three have to be programmed to enter the HOLD state from IDLE. The 
Asy_Enable signal must be programmed accordingly, in order to select the SMED couple of 
the first active SMED as active. Finally the user can activate the four SMEDs through the 
SMD<n>_CTR[1:0] register fields with the advice to insert a delay of at least 2tSMED 
between the starts of the two SMEDs initially in the HOLD state (i.e.: those of the couple 
inactive).

SMD<n>_PRM_<st>0 (parameter0 register)

Offset: 0x0F+os(<st>)*3

Default value:0x00

         

The index <st> may assume the values S0, S1, S2, S3 corresponding respectively to the 
states S0, S1, S2 and S3. The address offset is defined as: os(S0) = 0 … os(S3) = 3.

Note: For the IDLE state the Tmr(S) event is to all intents and purposes substituted by the 
activation of the FSM timer (refer to SMD<n>_CTR (control register) in Section 21.18.1: 
SMED core registers on page 199).

Bit 1-0: NX_STAT[1:0] next event controlled state definition (R/W).

It defines the next state to jump in case of the Event_NoSeq(I) jumping cause or the 
Tmr(S)/Event_Seq(I) when “AND” function is selected; the coding is shown below:

“00” = S1

“01” = S2

“10” = S3

“11” = S0

7 6 5 4 3 2 1 0

AND_OR HOLD_JMP PULS_EDG CNT_RSTE EDGE[1:0] NX_STAT[1:0]

r/w r/w r/w r/w r/w r/w
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Bit 3-2: EDGE[1:0] external edge jumping selection (R/W).

The InSig input signal used to jump out the state towards any state S<x> x = 0, 1, 2, 3 
as Event_NoSeq(I) transition; the coding is shown below:

“00” = no InSig used

“01” = inSig[0] used

“10” = inSig[1] used

“11” = inSig[2] used

Bit 4: CNT_RSTE counter reset definition (R/W).

0: counter reset disable.

1: the counter will be reset in case of the Event_NoSeq(I) jumping cause.

Bit 5: PULS_EDG PWM pulse out level definition (R/W).

0: PWM pulse output will be driven low in case of the Event_NoSeq(I) jumping cause.

1: PWM pulse output will be driven high in case of the Event_NoSeq(I) jumping cause.

Bit 6: HOLD_JMP hold state definition (R/W).

This bit is used in conjunction with the AND_OR bit to determine SMED transition 
behavior.

When '0': the next state is determined as discussed under the AND_OR bit description.

When '1': in case the jump to the next state occurs in one of the following conditions:

– The jump is caused by an Event_NoSeq(I)

– A coupled SMED configuration is used for this SMED

– The bit AND_OR of this register is set

then the next state will be the HOLD state and the state following the HOLD state is 
specified by NX_STAT[1:0] bits.

otherwise: like for '0' setting.

Bit 7: AND_OR jumping Boolean function definition (R/W).

When '0' there are two chances to jump out of the state (if the HOLD_JMP bit is set, 
see the exceptions listed in the description of that bit):

1. The Event_Seq(I) or Tmr(S) event, whichever comes first, to jump into the next 
sequential state.

2. The Event_NoSeq(I) event to jump into the state selected by NX_STAT[1:0] bits of 
this register. If EDGE[1:0] selection of this register is “00”, this type of transition is 
disabled.

When '1' both Event_NoSeq(I) and either Tmr(S) or Event_Seq(I) conditions must be 
true to jump into the state selected by NX_STAT[1:0] bits of this register or into the 
HOLD state if the HOLD_JMP bit is set. If EDGE[1:0] selection of this register is “00”, 
the Event_NoSeq(I) condition is considered always true.
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SMD<n>_PRM_<st>1 (parameter1 register)

Offset: 0x10+os(<st>)*3

Default value: 0x00

         

The index <st> may assume the values S0, S1, S2, S3 corresponding respectively to the 
states S0, S1, S2 and S3. The address offset is defined as: os(S0) = 0 … os(S3) = 3.

Note: For the IDLE state the Tmr(S) event is to all intents and purposes substituted by the 
activation of the FSM timer (refer to SMD<n>_CTR (control register) in Section 21.18.1: 
SMED core registers on page 199).

Bit 1-0: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 3-2: CEDGE[1:0] external edge jumping selection (R/W).

The edge input signal used to force jumping out the state sequentially as the Tmr(S) is 
called Event_Seq(I); the coding is shown below:

“00” = no InSig used

“01” = InSig[0] used

“10” = InSig[1] used

“11” = InSig[2] used

Bit 4: CNT_RSTC counter reset definition (R/W).

0: counter reset disable.

1: the counter will be reset in case of the Tmr(S) or Event_Seq(I) jumping cause.

Bit 5: PULS_CMP PWM pulse out level definition (R/W).

0: PWM pulse output driven low in case of the Tmr(S) or Event_Seq(I) jumping cause.

1: PWM pulse output driven high in case of the Tmr(S) or Event_Seq(I) jumping cause.

Bit 6: HOLD_EXIT HOLD state exit cause definition (R/W).

1: the SMED exits from the HOLD state when the corresponding coupled/paired SMED 
enters the HOLD state (refer to Section 21.10.4: Hold exit on page 181).

0: the SMED exit from the HOLD state depends on the “exit InSig” programming mode 
(including SMED coupled configuration). In all cases the EDGE[1:0] field relative to the 
state preceding the HOLD state has to be different from “00” to allow the SMED exit 
from HOLD state. Refer to Section 21.10.4: Hold exit.

– If the level mode is used, the SMED exits the HOLD state when the “exit InSig” 
becomes false.

– If the edge mode is used, the SMED exits the HOLD when a second edge of the 
same polarity on the “exit InSig” is detected. 

Bit 7: RFU reserved; must be kept 0 during register writing for future compatibility.

7 6 5 4 3 2 1 0

RFU HOLD_EXIT PULS_CMP CNT_RSTC CEDGE[1:0] RFU RFU

r r/w r/w r/w r/w r r
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SMD<n>_PRM_<st>2 (parameter2 register)

Offset: 0x11+os(<st>)*3

Default value:0x00

         

The index <st> may assume the values S0, S1, S2, S3 corresponding respectively to the 
states S0, S1, S2 and S3. The address offset is defined as: os(S0) = 0 … os(S3) = 3.

Bit 0: LATCH_RS latch reset definition (R/W).

When '1' the latch on InSig[0] will be reset when entering the <st> state.

Bit 7-1: RFU reserved; must be kept 0 during register writing for future compatibility.

SMD<n>_CFG (timer configuration register)

Offset: 0x1B

Default value:0x00

         

Bit 1-0: TIM_NUM[1:0] time registers to be temporary incremented selection (R/W).

Time register to be temporary incremented by one; values are:

When “00” => SMD<N>_TMR_T3

When “01” => SMD<N>_TMR_T0

When “10” => SMD<N>_TMR_T1

When “11” => SMD<N>_TMR_T2

Bit 3-2: TIM_UPD[1:0] time registers update mode (R/W).

While in the HOLD state: instantly (= at the next SMED clock pulse)

While not in the HOLD state:

“00”: instantly (= at the next SMED clock pulse)

“01”: on the rising edge of the PWM output

“10”: on the falling edge of the PWM output

“11”: on counter reset

Bit 7-4: RFU reserved; must be kept 0 during register writing for future compatibility.

7 6 5 4 3 2 1 0

RFU RFU RFU RFU RFU RFU RFU LATCH_RS

r r r r r r r r/w

7 6 5 4 3 2 1 0

RFU RFU RFU RFU TIM_UPD [1:0] TIM_NUM [1:0]

r r r r r/w r/w
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SMD<n>_DMP_L (dump counter LSB register)

Offset: 0x1C

Default value:0x00

         

Bit 7-0:CNT_LO[7:0] counter dump LSB value (read only).

Counter lower byte value, frozen when the selected external event (see SMD<n>_DMP 
bit [2:0]) occurs. The content is related to the first event if the SMD<n>_DMP bit [3] is 
low, otherwise is the last frozen.

SMD<n>_DMP_H (dump counter MSB register)

Offset: 0x1D

Default value:0x00

         

Bit 7-0:CNT_HI[7:0] counter dump MSB value (read only).

Counter higher byte value, frozen when the selected external event (see 
SMD<n>_DMP bit [2:0]) occurs. The content is related to the first event if the 
SMD<n>_DMP bit [3] is low, otherwise is the last frozen.

SMD<n>_GSTS (general status register)

Offset: 0x1E

Default value:0x00

         

Bit 0: EX0_DUMP dumping cause flag (R/W1)(m)

0: no pending dump.

1: the dump flag set due to the FSM transition state triggered by the InSig[0] capture 
condition; the dumped counter value is stored into the SMD<n>_DMP_L/H registers.

7 6 5 4 3 2 1 0

CNT_LO [7:0]

r

7 6 5 4 3 2 1 0

CNT_HI [7:0]

r

7 6 5 4 3 2 1 0

RFU EVENT_OV DMP_LK [1:0] CNT_FLAG EX2_DUMP EX1_DUMP EX0_DUMP

r r r r_w1 r_w1 r_w1 r_w1

m. SMD<n>_GSTS bits are read/write-clear; when the register bits are written, the data are used as bit-clear; so 
writing '1' the corresponding bit is cleared, writing '0' the bit doesn't change; in reading the register contents is 
preserved.
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Bit 1: EX1_DUMP dumping cause flag (R/W1)(m), (n)

0: no pending dump.

1: the dump flag set due to the FSM transition state triggered by the InSig[1] capture 
condition; the dumped counter value is stored into the SMD<n>_DMP_L/H registers.

Bit 2: EX2_DUMP dumping cause flag (R/W1)(m), (n)

0: no pending dump.

1: the dump flag set due to the FSM transition state triggered by the InSig[2] capture 
condition; the dumped counter value is stored into the SMD<n>_DMP_L/H registers.

Bit 3: CNT_FLAG counter reset flag when dump is enabled (R/W1)(m)

0: no pending dump.

1: when at least one SMD<n>_DMP[2:0] bit is active, the SMED internal counter is 
reset by the FSM or by the counter overflow.

Bit 5-4: DMP_LK [1:0] counter dump status (read only)

The counter dump register locked, values are:

“00”: unlocked (free)

“01”: locked, means SMD<n>_DMP_L just read

“10”: locked, means SMD<n>_DMP_H just read

When the SMD<n>_DMP[3] bit is low the dump registers never locks; otherwise when 
the SMD<n>_DMP[3] bit is high the 1st read access to either the SMD<n>_DMP_L or 
SMD<n>_DMP_H locks both these registers. To unlock them it is necessary to read the 
register not yet read.

Bit 6: EVENT_OV event overflow flag (read only)(o)

0: no dump overflow event detected.

1: this field is set when an external event requires the updating of SMD<n>_DMP_L/H 
registers but these resources are already busy for a previous event which generated 
a counter dump. The SMED is not able to manage two consecutive counters dump 
values when the SMD<n>_DMP[3] is low; if the DUMP_EVER bit is selected 
(SMD<n>_DMP[3]='1') the EVENT_OV bit is never set. The SMD<n>GSTS[2:0] bit 
fields show the input event that froze the counter dump register.

Bit 7: RFU reserved; must be kept 0 during register writing for future compatibility.

n. If the SMD<n>_DMP[4] bit is set, the SMD<n>GSTS[2:0] bit fields are also reset by clearing the corresponding 
bit field of the SMD<n>_IRQ[3:1] register.

o. The EVENT_OV bit is reset each time the system detects a write clear access of any of the SMD<n>_GSTS bit 
[2:0] (or also when clearing any of the SMD<n>_IRQ[3:1] bit fields if the SMD<n>_DMP bit 4 is set).
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SMD<n>_IRQ (interrupt request register)

Offset: 0x1F

Default value:0x00

         

Bit 0: CNT_OVER interrupt cause flag (R/W1)(p)

0: interrupt request not asserted.

1: counter overflow interrupt request.

Bit 1: EXT0_INT interrupt cause flag (R/W1)(p), (q)

0: interrupt request not asserted.

1: interrupt request asserted for a transition occurred on InSig[0] capture condition.

Bit 2: EXT1_INT interrupt cause flag (R/W1)(p), (q).

0: interrupt request not asserted.

1: interrupt request asserted for a transition occurred on InSig[1] capture condition.

Bit 3: EXT2_INT interrupt cause flag (R/W1)(p), (q).

0: interrupt request not asserted.

1: interrupt request asserted for a transition occurred on InSig[2] capture condition.

Bit 4: STA_S0_IT interrupt cause flag (R/W1)(p).

0: interrupt request not asserted.

1: interrupt request asserted for a Tmr(0) transition.

Bit 5: STA_S1_IT interrupt cause flag (R/W1)(p).

0: interrupt request not asserted.

1: interrupt request asserted for a Tmr(1) transition.

Bit 6: STA_S2_IT interrupt cause flag (R/W1)(p).

0: interrupt request not asserted.

1: interrupt request asserted for a Tmr(2) transition.

Bit 7: STA_S3_IT Interrupt cause flag (R/W1)(p).

0: interrupt request not asserted.

1: interrupt request asserted for a Tmr(3) transition.

7 6 5 4 3 2 1 0

STA_S3_IT STA_S2_IT STA_S1_IT STA_S0_IT EXT2_INT EXT1_INT EXT0_INT CNT_OVER

r_w1 r_w1 r_w1 r_w1 r_w1 r_w1 r_w11 r_w1

p. SMD<n>_IRQ bits are read/write-clear; when the register bits are written, the data are used as bit-clear; so 
writing '1' the corresponding bit is cleared, writing '0' the bit doesn't change; in reading the register contents is 
preserved.

q. If the SMD<n>_DMP[4] bit is set, the SMD<n>IRQ[3:1] bit fields are also reset by clearing the corresponding bit 
field of the SMD<n>_GSTS[2:0] register.
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SMD<n>_IER (interrupt enable register)

Offset: 0x20

Default value:0x00

         

Bit 0: CNT_OV_E mask bit for CNT_OVER flag (R/W)

0: interrupt disable request.

1: internal counter overflow interrupt enabled.

Bit 1: IT_EN_EX0 mask bit for EXT0_INT flag (R/W)

0: interrupt disable request.

1: interrupt enable for a transition occurred on InSig[0] capture condition.

Bit 2: IT_EN_EX1 mask bit for EXT1_INT flag (R/W)

0: interrupt disable request.

1: interrupt enable for a transition occurred on InSig[1] capture condition.

Bit 3: IT_EN_EX2 mask bit for EXT2_INT flag (R/W)

0: interrupt disable request.

1: interrupt enable for a transition occurred on InSig[2] capture condition.

Bit 4: IT_STA_S0 mask bit for STA_S0_IT flag (R/W)

0: interrupt disable request.

1: interrupt enable for a Tmr(0) transition.

Bit 5: IT_STA_S1 mask bit for STA_S1_IT flag (R/W)

0: interrupt disable request.

1: interrupt enable for a Tmr(1) transition.

Bit 6: IT_STA_S2 mask bit for STA_S2_IT flag (R/W)

0: interrupt disable request.

1: interrupt enable for a Tmr(2) transition.

Bit 7: IT_STA_S3 mask bit for STA_S3_IT flag (R/W)

0: interrupt disable request.

1: interrupt enable for a Tmr(3) transition.

7 6 5 4 3 2 1 0

IT_STA_S3 IT_STA_S2 IT_STA_S1 IT_STA_S0 IT_EN_EX2 IT_EN_EX1 IT_EN_EX0 CNT_OV_E

r/w r/w r/w r/w r/w r/w r/w r/w
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SMD<n>_ISEL (external event control register)

Offset: 0x21

Default value:0x00

         

Bit 0: INPUT0_EN InSig[0] input enable (R/W)

0: input signal disable (unused and masked).

1: input signal enable to interact with the SMED internal logic.

Bit 1: INPUT1_EN InSig[1] input enable (R/W)

0: input signal disable (unused and masked).

1: input signal enable to interact with the SMED internal logic.

Bit 2: INPUT2_EN InSig[2] input enable (R/W)

0: input signal disable (unused and masked).

1: input signal enable to interact with the SMED internal logic.

Bit 3: INPUT_LAT enable latch function on InSig[0] input (R/W)

0: disable input signal latch functionality.

1: a latch is added to the InSig[0] input. When this latch is added, and an InSig[0] 
occurs, it remains stored until the FSM resets it; this feature is useful to maintain an 
event memorized until it can be managed later on by SW.

Bit 7-4: RFU reserved; must be kept 0 during register writing for future compatibility

SMD<n>_DMP (dump enable register)

Offset: 0x22

Default value:0x00

         

Bit 0: DMPE_EX0 dump update mode (R/W)

0: dump register disable.

1: the dump register update is triggered when a state transition occurs due to the 
InSig[0] input event.

Bit 1: DMPE_EX1 dump update mode (R/W)

0: dump register disable.

1: the dump register update is triggered when a state transition occurs due to the 
InSig[1] input event.

7 6 5 4 3 2 1 0

RFU RFU RFU RFU INPUT_LAT INPUT2_EN INPUT1_EN INPUT0_EN

r r r r r/w r/w r/w r/w

7 6 5 4 3 2 1 0

RFU RFU RFU CPL_IT_GE DMP_EVER DMPE_EX2 DMPE_EX1 DMPE_EX0

r r r r/w r/w r/w r/w r/w
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Bit 2: DMPE_EX2 dump update mode (R/W)

0: dump register disable.

1: the dump register update is triggered when a state transition occurs due to the 
InSig[2] input event.

Bit 3: DMP_EVER dump update mode (R/W)

0: the earlier (first) between the selected events updates the dump register, the 
following ones do nothing.

1: the dump register is updated any time one of the configured events from the bit field 
[2:0] is triggered.

Bit 4: CPL_IT_GE lock together SMD<n>_GSTS and SMD<n>_IRQ reset signal (R/W)

0: the reset of SMD<n>_GSTS [2:0] bit fields and SMD<n>_IRQ[3:1] register fields is 
independent.

1: when clearing one of the SMD<n>_GSTS [2:0] bit fields, the corresponding bits of 
the SMD<n>_IRQ[3:1] register are automatically reset and vice versa. Moreover the 
EVENT_OV bit of SMD<n>_GSTS register is reset each time the system detects 
a write clear access of any of the SMD<n>_IRQ bit [3:1].

Bit 7-5: RFU reserved; must be kept 0 during register writing for future compatibility.

SMD<n>_FSM_STS (FSM status register)

Offset:0x23

Default value:0x00

         

Bit 2-0: FSM[2:0] SMED finite state machine state variable (R)

This field reflects the current status of finite state machine state variable contents. 
Refer to Table 34: SMED coupled interface configuration scheme on page 190 for 
coding value.

Bit 3: PWM PWM output signal (R)

This filed reflects the current status of the SMED PWM internal output signal value.

Bit 6-5: EVINP[2:0] event input signals (R)

This field reflects the current status of the three SMED input signal lines InSig[2:0].

Bit 7: RFU reserved for future use.

7 6 5 4 3 2 1 0

RFU EVINP [2:0] PWM FSM [2:0]

r r r r



State machine, event driven (SMED) RM0380

214/335 DocID026249 Rev 1

SMED core registers map

Table 37 shows the SMEDs internal registers (<n> represents the SMED IPs instance) 
starting from the base address reported in the corresponding device datasheet; for detailed 
registers description refer to Section 21.18.1: SMED core registers on page 199.

Table 37. SMED core register overview

Name Description Offset Type Reset value

SMD<n>_CTR Control register 0x00 R/W 0x00

SMD<n>_CTR_TMR Control timer register 0x01 R/W 0x00

SMD<n>_CTR_INP Control input register 0x02 R/W 0x00

SMD<n>_CTR_DTRH Dithering register 0x03 R/W 0x00

SMD<n>_TMR_T0L Time T0 LSB register 0x04 R/W 0x00

SMD<n>_TMR_T0H Time T0 MSB register 0x05 R/W 0x00

SMD<n>_TMR_T1L Time T1 LSB register 0x06 R/W 0x00

SMD<n>_TMR_T1H Time T1 MSB register 0x07 R/W 0x00

SMD<n>_TMR_T2L Time T2 LSB register 0x08 R/W 0x00

SMD<n>_TMR_T2H Time T2 MSB register 0x09 R/W 0x00

SMD<n>_TMR_T3L Time T3 LSB register 0x0A R/W 0x00

SMD<n>_TMR_T3H Time T3 MSB register 0x0B R/W 0x00

SMD<n>_PRM_ID0 Parameter 0 IDLE register 0x0C R/W 0x00

SMD<n>_PRM_ID1 Parameter 1 IDLE register 0x0D R/W 0x00

SMD<n>_PRM_ID2 Parameter 2 IDLE register 0x0E R/W 0x00

SMD<n>_PRM_S00 Parameter 0 S0 register 0x0F R/W 0x00

SMD<n>_PRM_S01 Parameter 1 S0 register 0x10 R/W 0x00

SMD<n>_PRM_S02 Parameter 2 S0 register 0x11 R/W 0x00

SMD<n>_PRM_S10 Parameter 0 S1 register 0x12 R/W 0x00

SMD<n>_PRM_S11 Parameter 1 S1 register 0x13 R/W 0x00

SMD<n>_PRM_S12 Parameter 2 S1 register 0x14 R/W 0x00

SMD<n>_PRM_S20 Parameter 0 S2 register 0x15 R/W 0x00

SMD<n>_PRM_S21 Parameter 1 S2 register 0x16 R/W 0x00

SMD<n>_PRM_S22 Parameter 2 S2 register 0x17 R/W 0x00

SMD<n>_PRM_S30 Parameter 0 S3 register 0x18 R/W 0x00

SMD<n>_PRM_S31 Parameter 1 S3 register 0x19 R/W 0x00

SMD<n>_PRM_S32 Parameter 2 S3 register 0x1A R/W 0x00

SMD<n>_CFG Timer configuration register 0x1B R/W 0x00

SMD<n>_DMP_L Dump counter LSB register 0x1C R 0x00

SMD<n>_DMP_H Dump counter MSB register 0x1D R 0x00
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21.18.2 SMED environment configuration registers

This set of registers defines the SMED environment configuration and are located into 
a dedicated area register address space. These registers concern the functionalities that 
allow the user to manage the SMED external interface from/to other coupled SMEDs, to 
control the unlock mechanism and to define the InSig[2:0] input connection for each FSM. 
The MSC_SMSWEV register controlling the software events is also placed in this area.

MSC_SMDCFG01 (SMED0 to SMED1 global configuration register)

Offset:0x15

Default value:0x00

         

Bit 0:SMD0_DRVOUT PWM0 control merge output signal in the coupled mode(r), (s), (t)

Bit 3-1:SMD0_GLBCONF[2:0] SMED0 global configuration(r), (s), (t)

Bit 4:SMD1_DRVOUT PWM1 control merge output signal in the coupled mode(r), (s), (t)

Bit 7-5:SMD1_GLBCONF[2:0] SMED1 global configuration(r), (s), (t)

SMD<n>_GSTS General status register 0x1E R/W1 0x00

SMD<n>_IRQ Interrupt request register 0x1F R/W1 0x00

SMD<n>_IER Interrupt enable register 0x20 R/W 0x00

SMD<n>_ISEL External event control register 0x21 R/W 0x00

SMD<n>_DMP Dump enable register 0x22 R/W 0x00

SMD<n>_FSM_STS FSM status register 0x23 R 0x00

Table 37. SMED core register overview (continued)

Name Description Offset Type Reset value

7 6 5 4 3 2 1 0

SMD1_GLBCONF [2:0] SMD1_DRVOUT SMD0_GLBCONF [2:0] SMD0_DRVOUT

r/w r/w r/w r/w

r. For register field description and the configuration values, refer to the SMED global configuration parameter 
shown in Table 34: SMED coupled interface configuration scheme on page 190.

s. This register is backward compatible with STLUX385 devices; in the current product the 
SMEDx_GLBCONF[3:0] has been split into two separates fields (SMDx_GLBCONF[2:0] and SMDx_DRVOUT) 
for better configurability.

t. Not all SMED peripherals, PWM signals and coupling schemes may be available depending on the product 
device. Refer to the product datasheet to find the device features supported. In case the SMED units are not 
available on the current product, the related register fields have to be considered reserved and must fill with 0 
during writing the register.
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MSC_SMDCFG23 (SMED2 to SMED3 global configuration register)

Offset:0x16

Default value:0x00

         

Bit 0:SMD2_DRVOUT PWM2 control merge output signal in the coupled mode(r), (s), (t)

Bit 3-1:SMD2_GLBCONF[2:0] SMED2 global configuration(r), (s), (t)

Bit 4:SMD3_DRVOUT PWM3 control merge output signal in the coupled mode(r), (s), (t)

Bit 7-5:SMD3_GLBCONF[2:0] SMED3 global configuration(r), (s), (t)

MSC_SMDCFG45 (SMED4 to SMED5 global configuration register)

Offset:0x17

Default value:0x00

         

Bit 0: SMD4_DRVOUT PWM4 control merge output signal in the coupled mode(u), (v), (w)

Bit 3-1: SMD4_GLBCONF[2:0] SMED4 global configuration(u), (v), (w)

Bit 4: SMD5_DRVOUT PWM5 control merge output signal in the coupled mode(u), (v), (w)

Bit 7-5: SMD5_GLBCONF[2:0] SMED5 global configuration(u), (v), (w)

7 6 5 4 3 2 1 0

SMD3_GLBCONF [2:0] SMD3_DRVOUT SMD2_GLBCONF [2:0] SMD2_DRVOUT

r/w r/w r/w r/w

7 6 5 4 3 2 1 0

SMD5_GLBCONF [2:0] SMD5_DRVOUT SMD4_GLBCONF [2:0] SMD4_DRVOUT

r/w r/w r/w r/w

u. For register field description and the configuration values, refer to the SMED global configuration parameter 
shown in Table 34: SMED coupled interface configuration scheme on page 190.

v. This register is backward compatible with STLUX385 devices; in the current product the 
SMEDx_GLBCONF[3:0] has been split in two separates fields (SMDx_GLBCONF[2:0] and SMDx_DRVOUT) 
for better configurability.

w. Not all SMED peripherals, PWM signals and coupling schemes may be available depending on the product 
device. Refer to the product datasheet to find the device features supported. In case the SMED units are not 
available on the current product, the related register fields have to be considered reserved and must fill with 0 
during writing the register.
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MSC_SMSWEV (SMEDs SW events)

Offset: 0x18

Default value: 0x00

         

Bit 0: SW0 software event on SMED0

0: SW0 SMED event cleared.

1: SW0 SMED event asserted.

Bit 1: SW1 software event on SMED1

0: SW1 SMED event cleared.

1: SW1 SMED event asserted.

Bit 2: SW2 software event on SMED2

0: SW2 SMED event cleared.

1: SW2 SMED event asserted.

Bit 3: SW3 software event on SMED3

0: SW3 SMED event cleared.

1: SW3 SMED event asserted.

Bit 4: SW4 software event on SMED4

0: SW4 SMED event cleared.

1: SW4 SMED event asserted.

Bit 5: SW5 software event on SMED5

0: SW5 SMED event cleared.

1: SW5 SMED event asserted.

Bit 7-6: RFU reserved; must be kept 0 during register writing for future compatibility.

Note: Not all SMED SW events may be available on current product. Refer to the product 
datasheet to find the device features supported. In case the SMED units are not available on 
the current product, the related register fields have to be considered reserved and must fill 
with 0 during writing the register.

7 6 5 4 3 2 1 0

RFU SW5 SW4 SW3 SW2 SW1 SW0

r r/w r/w r/w r/w r/w r/w
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MSC_SMULOCK (SMEDs unlock)

Offset: 0x19

Default value: 0x00

         

Bit 0: Use_Unlock_01

0: unlock feature disables.

1: enable unlock features for the SMED couple #1 (SMED0, 1). This configuration is 
applicable only for synchronous coupled SMEDs configuration.

Bit 1: Use_Unlock_23

0: unlock feature disables.

1: enable unlock features for the SMED couple #2 (SMED2, 3). This configuration is 
applicable only for synchronous coupled SMEDs configuration.

Bit 2: Use_Unlock_45 

0: unlock feature disables.

1: enable unlock features for the SMED couple #3 (SMED4, 5). This configuration is 
applicable only for synchronous coupled SMEDs configuration.

Bit 3: Unlock_01

0: unlock feature command disables.

1: asserted unlock command for the SMED couple #1 (SMED0, 1). This configuration is 
applicable only for synchronous coupled SMEDs configuration.

Bit 4: Unlock_23 

0: unlock feature command disables.

1: asserted unlock command for the SMED couple #2 (SMED2, 3). This configuration is 
applicable only for synchronous coupled SMEDs configuration.

Bit 5: Unlock_45 

0: unlock feature command disables.

1: asserted unlock command for the SMED couple #3 (SMED4, 5). This configuration is 
applicable only for synchronous coupled SMEDs configuration.

Bit 7-6: RFU reserved; must be kept 0 during register writing for future compatibility.

Note: Not all SMED couples configuration may be available on the current product. Refer to the 
product datasheet to find the device features supported. In case the SMED units are not 
available on the current product, the related register fields have to be considered reserved 
and must fill with 0 during writing the register.

7 6 5 4 3 2 1 0

RFU Unlock_45 Unlock_23 Unlock_01 Use_Unlock_45 Use_Unlock_23 Use_Unlock_01

r r/w r/w r/w r/w r/w r/w
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MSC_CBOXS<n> (connection box selection SMED<n>)

Offset: 0x1A+<n>

Default value: 0x00

         

<n> ranges from 0 to 5.

For register configuration refer to the layout of the connection box signal definition present in 
the product datasheet.

Bit 1-0: Conb_s<n>_0[1:0] connection box selection line for the SMED<n> input InSig[0].

Bit 3-2: Conb_s<n>_1[1:0] connection box selection line for the SMED<n> input InSig[1].

Bit 5-4: Conb_s<n>_2[1:0] connection box selection line for the SMED<n> input InSig[2].

Bit 7-6: RFU reserved; must be kept 0 during register writing for future compatibility.

Note: Not all SMED peripherals may be available depending on the product device. Refer to the 
product datasheet to find the device features supported. In case the SMED units are not 
available on the current product, the related register fields have to be considered reserved 
and must fill with 0 during writing the register.

MSC_IOMXSMD (SMED I/O MUX control register)

Offset: 0x20

Default value: 0x00

         

This register selects the SMED finite state machine (FSM) internal status signals to be 
interconnected for probing on the primary P0s signals.

Bit 2-0: Smd_fsms0[2:0] SMED FSM status multiplexing output selection line for P0[2:0]:

000: select SMED0 FSM status signals

001: select SMED1 FSM status signals

010: select SMED2 FSM status signals

011: select SMED3 FSM status signals

100: select SMED4 FSM status signals

101: select SMED5 FSM status signals

Bit 3: Sel_fsmen0 enable SMED FSM status signals multiplexing on P0[2:0]:

0: disable SMED FSM status signals multiplexing

1: enable SMED FSM status signal multiplexing

7 6 5 4 3 2 1 0

RFU Conb_s<n>_2 [1:0] Conb_s<n>_1 [1:0] Conb_s<n>_0 [1:0]

r r/w r/w r/w

7 6 5 4 3 2 1 0

Sel_fsmen1 Smd_fsmsl1[2:0] Sel_fsmen0 Smd_fsmsl0[2:0]

r/w r/w r/w r/w
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Bit 6-4: Smd_fsms1[2:0] SMED FSM status multiplexing output selection line for P0[5:3]:

000: select SMED0 FSM status signals

001: select SMED1 FSM status signals

010: select SMED2 FSM status signals

011: select SMED3 FSM status signals

100: select SMED4 FSM status signals

101: select SMED5 FSM status signals

Bit 7: Sel_fsmen1 enable SMED finite state machine multiplexing output signal on P0[5:3]:

0: disable SMED FSM status signals multiplexing

1: enable SMED FSM status signal multiplexing

Note: Not all SMED peripherals may be available depending on the product device. Refer to the 
product datasheet to find the device features supported.

SMED environment configuration registers map

Table 38 shows the SMED environment configuration registers starting from the base 
address specified in the corresponding product datasheet; for detailed register description 
refer to Section 21.18.2: SMED environment configuration registers on page 215.

         

Table 38. SMED environment configuration register overview

Name Description Offset Type Reset value

MSC_SMDCFG01 SMED0,1 global config. reg. 0x15 R/W 0x00

MSC_SMDCFG23 SMED2, 3 global config. reg. 0x16 R/W 0x00

MSC_SMDCFG45 SMED4, 5 global config. reg. 0x17 R/W 0x00

MSC_SMSWEV SMED SW event register 0x18 R/W 0x00

MSC_SMULOCK SMED unlock register 0x19 R/W 0x00

MSC_CBOXS0 SMED0 ConBox config. reg. 0x1A R/W 0x00

MSC_CBOXS1 SMED1 ConBox config. reg. 0x1B R/W 0x00

MSC_CBOXS2 SMED2 ConBox config. reg. 0x1C R/W 0x00

MSC_CBOXS3 SMED3 ConBox config. reg. 0x1D R/W 0x00

MSC_CBOXS4 SMED4 ConBox config. reg. 0x1E R/W 0x00

MSC_CBOXS5 SMED5 ConBox config. reg. 0x1F R/W 0x00

MSC_IOMXSMD SMED FSM trace ctr. reg. 0x20 R/W 0x00
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22 General purpose I/O port (GPIO)

General purpose input/output ports are used for signaling and generic data transfer between 
the device and the external world. 

Each port pin can be individually programmed as a digital input or a digital output; different 
optional modes can be selected in both cases. In addition, some ports may host alternative 
functionality like analog inputs, external interrupts, the input/output for on-chip peripherals. 
For further details on the specific port configuration pin, refer to the product datasheet.

Basically each port is a group of up to six pins, configured and managed by means of five 
8-bit registers which define the status and the behavior of the port pins:

• Output data register

• Input data register

• Data direction register

• Two control registers

A particular port pin will behave as an input or output depending on the value of the relevant 
bit of the port data direction register (DDR). 

22.1 GPIO main features

• Port bits can be configured individually

• Selectable input modes: floating input or input with pull-up

• Selectable output modes: push-pull output or pseudo open drain(x)

• Separate registers for data input and output

• External interrupts can be enabled and disabled individually trough the miscellaneous 
registers

• Output slope control for reduced EMC noise(y)

• Alternate function I/Os for on-chip peripherals

• Read-modify-write possible on data output latch

22.2 Port configuration and usage

The I/O signals are configured and controlled by the output data register (ODR), input data 
register (IDR) and data direction register (DDR).

The control register 1 (CR1) and control register 2 (CR2) allow configuring the input/output 
optional features. The functionality of each I/O pin is programmed through the 
corresponding bits of the DDR, ODR, CR1 and CR2 registers.

Some port pins have an associated alternate function. To enable the alternate function refer 
to the product datasheet.

x. Pseudo open drain feature not available for PWM output signals.

y. A feature not available for PWM and GPIO1[5:0] output signals.
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Table 39 summarizes all possible GPIO signal configurations.

         

22.2.1 Input modes

Clearing the DDR<x> bit configures the corresponding port pin as input. In this mode, 
reading an IDR bit returns the digital value of the pin as driven by external logic.

As shown in Table 39, four different input modes can be theoretically configured by 
software: the floating without interrupt, floating with interrupt, pull-up without interrupt or pull-
up with interrupt. However in practice not all ports have the external interrupt capability or 
pull-ups.

You should refer to the datasheet pinout description for details on the actual hardware 
capability of each port.

22.2.2 Output modes

Setting the DDR<x> bit selects the output mode. In this mode, writing to the ODR bits 
applies a digital value to the I/O through the output latch. Reading the IDR bit returns the 
digital value from the corresponding I/O pin. Using the CR1, CR2 registers different output 
modes can be configured by software: push-pull output, pseudo open drain output.

22.2.3 Slope control

The maximum output pad toggle frequency is programmable by SW through the P0_CR2 
control register. After reset the pad is configured in the low-speed mode (2 MHz) reducing 
EMC noise injection. Higher frequency (up to 10 MHz) can be selected if needed. This 
feature can be applied to the output port configured either in pseudo open drain or in the 
push-pull output mode. 

Note that the slope control feature of the I/Os of the port P1 is not programmable.

Table 39. GPIO port signal configuration

Mode
DDR 
bit

CR2 
bit

CR1 
bit

Function Pull-up P-buffer
Diodes

to VDD to VSS

Input

0 0 0 Floating without interrupt(1) Off

Off

On On

0 0 1 Pull-up without interrupt(1) On

0 1 0 Floating with interrupt(1) Off

0 1 1 Pull-up with interrupt(1) On

Output

1 0 0 Open drain output limited to 2 MHz(2)

1 0 1 Push pull output limited to 2 MHz

Off

Off

On

1 1 0 Open drain output limited to 10 MHz(2), (3) Off

1 1 1 Push pull output limited to 10 MHz(3) On

1. The interrupt functionality is available for P0 and P2 ports and is configured through the miscellaneous registers; note that 
the CR2 register controls the interrupt mask feature for the input ports depending on the configuration of MSC_INPP2AUX1 
and MSC_INPP2AUX2 registers. Refer to the product datasheet for further details.

2. Pseudo open drain pad configuration.

3. The configuration of I/O buffer speed is applicable only to the port P0.
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22.2.4 Reset configuration

After reset almost all port-P0 I/Os are generally floating input signals although few pins may 
have a different behavior. The port P1 I/Os are configured as output pins. Refer to the 
product datasheet pinout description for all details.

22.2.5 Unused I/O pins

Unused I/O pins must be connected to fixed voltage levels and configured as input floating. 
Either connect a pull-up or pull-down to the unused I/O pins, or use the internal weak pull-up 
if it is available on the pins.

22.2.6 Low power modes

         

Note: When P02/P03 pins are used to connect an external oscillator, to improve the power save in 
the Halt mode these pins3 should be configured as input with pull-up enabled.

22.3 Alternate output function

Alternate function outputs provide a direct path from a peripheral to an output or to an I/O 
pad, taking precedence over the output data register (Px_ODR) programming.

An alternate function output can be push-pull or pseudo open drain depending on the 
peripheral and control register 1 (Px_CR1) and slope can be controlled depending on the 
control register 2 (Px_CR2) values. For further detail refer to the product datasheet 
information.

22.4 Interrupt functionality

Every GPIO input signal is capable to generate an interrupt request by configuring the 
corresponding miscellaneous register; for further detail refer to the product datasheet.

22.5 Interrupt masking

An interrupt polling sequence may be selected on each individual pin by setting the 
corresponding bit in the configuration register (Px_CR2). When the Px_CR2[y] bit is cleared, 
the interrupt request asserted by the flag of the miscellaneous status register is masked. 
After reset, the interrupts are masked. The mask feature of the port-P0 has to be enabled 
via the miscellaneous register (for further information refer to the product datasheet).

Note: The interrupt capability on the port-P1 is available only on some device model.

Table 40. Effect of low power modes on GPIO ports

Low power mode

Mode Description

Wait No effect on I/O ports. External interrupts cause the device to exit from the wait mode.

Halt No effect on I/O ports. External interrupts cause the device to wake up from the Halt mode.
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22.6 GPIO registers description

Where: <n> is the index port.

<baseaddr>is the port base address reported by the datasheet.

22.6.1 P<n>_ODR (port output data register)

Offset: <baseaddr> + 0x00

Default value: 0x00

         

Bit 7-0: ODR[7:0] output data register

Writing to the P<n>_ODR register when in the output mode applies a digital value to 
the I/O through the latch. Reading the P<n>_ODR returns the previously latched value 
in the register.

In the input mode, writing in the P<n>_ODR register, latches the value in the register 
but does not change the pin state. The P<n>_ODR register is always cleared after 
reset; the bit read-modify-write instructions (BSET, BRST) can be used with the 
P<n>_ODR register to drive an individual pin without affecting the others.

22.6.2 P<n>_IDR (port input data register)

Offset: <baseaddr> + 0x01

Default value: 0xXX

         

Bit 7-0: IDR[7:0] input data register

This register (RO) can be used to read the pin value irrespective of whether port is in 
the input or output mode. 

0: input pad low voltage level.

1: input pad high voltage level.

Note: P<n>_IDR reset value depends on the external circuitry.

7 6 5 4 3 2 1 0

ODR [7:0]

r/w

7 6 5 4 3 2 1 0

IDR [7:0]

r
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22.6.3 P<n>_DDR (port data direction register)

Offset: <baseaddr> + 0x02

Default value: 0x00

         

Bit 7-0: DDR[7:0] data direction register

These bits are set and cleared by software to select the input or output mode for 
a particular Port<n> pin.

0: configure the GPIO port in input mode.

1: configure the GPIO port in output mode.

22.6.4 P<n>_CR1 (port control register1)

Offset: <baseaddr> + 0x03

Default value: 0x00

         

Bits 7:0: C1[7:0]: control bits

This register configurable by SW is used in conjunction with the P<n>DDR register to 
select different input/output port features:

In input mode (DDR = 0):

0: floating input.

1: input with pull-up.

In output mode (DDR = 1):

0: pseudo open drain.

1: push-pull, slope control for the output depends on the corresponding P<n>_CR2 bit.

Note: The pseudo open drain feature is not applicable to the PWMs output signals.

7 6 5 4 3 2 1 0

DDR [7:0]

r/w

7 6 5 4 3 2 1 0

C1 [7:0]

r/w
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22.6.5 P<n>_CR2 (port control register2)

Offset: <baseaddr> + 0x04

Default value: 0x00

         

Bits 7:0: C2[7:0]: control bits

These bits are set and cleared by software. They select different functions in the input 
mode and output mode. 

– In the input mode, the P<n>_CR2 bit selects the polling or the interrupt mode. If 
the I/O does not have the interrupt capability, setting the P<n>_CR2 bit has no 
effect. 

– In the output mode, these bits control the I/O speed.

• In output mode (DDR = 1)(z), (aa):

0: output speed up to 2 MHz.

1: output speed up to 10 MHz.

• In input mode (DDR = 0)(ab), (ac):

0: interrupt mask enable (polling mode).

1: interrupt mask disable.

7 6 5 4 3 2 1 0

C2 [7:0]

r/w

z. This feature is available only for the Port0 (GPIO0).

aa. The output speed of the Port1 (GPIO1) is not configurable and can sustain a toggle-rate up to 12 MHz.

ab. The interrupt mask feature of the port-P0 is enabled by the miscellaneous register (refer to the product 
datasheet). If the mask feature is disabled, the interrupt logic is permanently enabled. When the interrupt 
capability is available on the port-P1, the mask features controllable via the P1_CR2 doesn't require additional 
enabling.

ac. The interrupt mask feature of the auxiliary/basic timers (when available) is controlled by the bit 0, 1 and 5 of the 
P1_CR2 while the interrupt detection logic is configured through the miscellaneous registers (refer to 
Section 14.12: Miscellaneous interrupt registers on page 127).
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22.7 GPIO registers overview

Table 41 shows the GPIO internal registers (<n> represents the GPIO IPs instance) starting 
from the base address reported in the corresponding device datasheet; for detailed registers 
description refer to Section 21.9: State transition on page 171.

         

Table 41. GPIO internal registers overview

Name Description Offset Type Reset value

P<n>_ODR Output data register 0x00 R/W 0x00

P<n>_IDR Input data register 0x01 R 0xXX

P<n>_DDR Data direction register 0x02 R/W 0x00

P<n>_CR1 Control register 1 0x03 R/W 0x00

P<n>_CR2 Control register 2 0x04 R/W 0x00
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23 Inter-integrated circuit interface (I2C)

23.1 I2C introduction

The I2C (inter-integrated circuit) bus interface serves as an interface between the 
microcontroller and the serial I2C bus. It provides a multi-master capability, and controls all 
I2C bus-specific sequencing, protocol, arbitration and timing. It supports standard and fast 
speed modes.

23.2 I2C main features

• Parallel-bus/I2C protocol converter

• Multi-master capability: the same interface can act as a master or slave

• I2C master features:

– Clock generation

– Start and stop generation

• I2C slave features:

– Programmable I2C address detection

– Stop bit detection

• Generation and detection of 7-bit/10-bit addressing and general call

• Supports different communication speeds:

– Standard speed (up to 100 kHz)

– Fast speed (up to 400 kHz)

• Status flags:

– Transmitter/receiver mode flag

– End of byte transmission flag

– I2C busy flag

• Error flags:

– Arbitration lost condition for master mode

– Acknowledgment failure after address/ data transmission

– Detection of misplaced start or stop condition

– Overrun/underrun if clock stretching is disabled

• 3 types of interrupts:

– 1 communication interrupt

– 1 error condition interrupt

– 1 control interrupt

• Wakeup capability:

– MCU wakes up from low power mode on address detection in slave mode

• Optional clock stretching
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23.3 I2C signal interface

The I2C_scl and I2C_sda signals are multifunction pins configured through the I/O multiplex 
mechanism described in the product datasheet. The users can program an internal (weak) 
pull-up on the I2C signal lines in accordance with the selected pins.

23.4 I2C general description

This peripheral converts the data to be transmitted from the parallel to the serial format and 
vice-versa in case of the data reception. Data transfer and control events may be handled 
both in the polling mode and in interrupt mode.

This peripheral is connected to the I2C bus by a data pin (SDA) and by a clock pin (SCL); 
the peripheral supports both the standard (up to 100 kHz), and the fast (up to 400 kHz) I2C 
line speed.

Mode selection

The interface can operate in one of the four following modes:

• Slave transmitter

• Slave receiver

• Master transmitter

• Master receiver

By default, it operates in the slave mode. The interface automatically switches from the 
slave to the master, after it generates a START condition and from the master to the slave, if 
an arbitration loss or a STOP generation occurs, allowing the multi-master capability.

23.5 Communication flow

In the master mode, the I2C interface initiates a data transfer and generates the clock 
signal. A serial data transfer always begins with a start condition and ends with a stop 
condition. Both start and stop conditions are generated in the master mode by software.

In the slave mode, the interface is capable of recognizing its own addresses (7- or 10-bit), 
and the general call address. The general call address detection may be enabled or 
disabled by software.

Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the 
start condition contain the address (one byte in 7-bit mode, two bytes in 10-bit mode). The 
address is always transmitted in the master mode. 

A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must 
send an acknowledge bit to the transmitter. Refer to Figure 52.
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Figure 52. I2C bus protocol

Acknowledge may be enabled or disabled by software. The I2C interface addresses 
(7-bit/10-bit and/or general call address) can be selected by software.

23.6 I2C functional description

By default the I2C interface operates in the slave mode. To switch from the default slave 
mode to the master mode a start condition generation is needed.

23.6.1 I2C slave mode

The peripheral input clock must be programmed in the I2C_FREQR register in order to 
generate correct timings. The peripheral input clock frequency must be at least:

• 1 MHz in standard mode

• 4 MHz in fast mode

As soon as a start condition is detected, the address is received from the SDA line and sent 
to the shift register. Then it is compared with the address of the interface (OARL and OARH) 
or the general call address (if ENGC = 1). 

Note: In the 10-bit addressing mode, the comparison includes the header sequence (11110xx0), 
where xx denotes the two most significant bits of the address.

Header or address not matched: the interface ignores it and waits for another start 
condition.

Header matched (10-bit mode only): the interface generates an acknowledge pulse if the 
ACK bit is set and waits for the 8-bit slave address.

Address matched: the interface generates in sequence:

An acknowledge pulse if the ACK bit is set.

• The ADDR bit is set by hardware and an interrupt is generated if the ITEVTEN bit is 
set.

In the 10-bit mode, after receiving the address sequence the slave is always in the receiver 
mode. It will enter the transmitter mode on receiving a repeated start condition followed by 
the header sequence with matching address bits and the least significant bit set (11110xx1).

The TRA bit indicates whether the slave is in the receiver or transmitter mode.
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Slave transmitter

Following the address reception and after clearing the ADDR, the slave sends bytes from 
the DR register to the SDA line via the internal shift register.

The slave stretches the SCL low until the ADDR is cleared and the DR filled with the data to 
be sent (see transfer sequencing EV1 EV3 in Figure 54).

When the acknowledge pulse is received:

• The TxE bit is set by hardware with an interrupt if the ITEVTEN and the ITBUFEN bits 
are set.

If the TxE is set and a data was not written in the DR register before the end of the next data 
transmission, the BTF bit is set and the interface waits for a write in the DR register, 
stretching the SCL low.

In Figure 54 it is shown the slave transmitter transfer sequence.

Figure 53. Transfer sequence diagram for slave transmitter

Note: 1.Legend:

a) S = start, Sr = repeated start, P = stop, A = acknowledge, NA = non-acknowledge, 
EVx = event (with interrupt if ITEVTEN = 1).

b) EV1: ADDR = 1, cleared by reading the SR1 register followed by reading the SR3.

c) EV3-1: TXE = 1, the shift register empty, the data register empty, write Data1 in the 
DR.

d) EV3: TXE = 1, the shift register not empty, the data register empty, cleared by 
writing the DR.

e) EV3-2: AF = 1, the AF is cleared by writing '0' in the AF bit of the SR2 register.

2. EV1 and EV3-1 events stretch the SCL low until the end of the corresponding software 
sequence.

3. The EV3 software sequence must be performed before the end of the current byte 
transfer. In case EV3 software sequence cannot be managed before the end of the current 
byte transfer, it is recommended to use the BTF instead of the TXE with the drawback of 
slowing the communication.
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Slave receiver

Following the address reception and after clearing the ADDR, the slave receives bytes from 
the SDA line into the DR register via the internal shift register. After each byte the interface 
generates in sequence:

• An acknowledge pulse if the ACK bit is set.

• The RxNE bit is set by hardware and an interrupt is generated if the ITEVTEN and 
TBUFEN bit is set.

If the RxNE is set and the data in the DR register is not read before the end of the next data 
reception, the BTF bit is set and the interface waits for a read of the DR register, stretching 
the SCL low (see Figure 54).

Figure 54. Transfer sequence diagram for slave receiver

Note: 1. Legend:

a) S = Start, Sr = repeated start, P = stop, A = acknowledge, NA = non-acknowledge, 
EVx = Event (with interrupt if ITEVTEN=1)

b) EV1: ADDR =1, cleared by reading SR1 register followed by reading SR3.

c) EV2: RXNE=1, cleared by reading DR register.

d) EV4: STOPF=1, cleared by reading SR1 register followed by writing CR2 register

2. The EV1 event stretches the SCL low until the end of the corresponding software 
sequence.

3. The EV2 software sequence must be performed before the end of the current byte 
transfer.

4. After checking the SR1 register content, the user should perform the complete clearing 
sequence for each flag found set. Thus, for the ADDR and STOPF flags, the following 
sequence is recommended inside the I2C interrupt routine:

READ SR1

if (ADDR == 1) {READ SR1; READ SR3}

if (STOPF == 1) {READ SR1; WRITE CR2}

The purpose is to make sure that both ADDR and STOPF flags are cleared if both are found 
set.

Closing slave communication

After the last data byte is transferred, a stop condition is generated by the master. The 
interface detects this condition and sets, the STOPF bit and generates an interrupt if the 
ITEVTEN bit is set. Then the interface waits for a read of the SR1 register followed by 
a write to the CR2 register (refer to transfer sequencing EV4 in Figure 54). 
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23.6.2 I2C master mode

In the master mode, the I2C interface initiates a data transfer and generates the clock 
signal. A serial data transfer always begins with a start condition and ends with a stop 
condition. The master mode is selected as soon as the start condition is generated on the 
bus with a START bit.

The following is the required sequence in the master mode.

• Program the peripheral input clock in the I2C_FREQR register in order to generate 
correct timings

• Configure the clock control registers

• Configure the rise time register

• Program the I2C_CR1 register to enable the peripheral

• Set the START bit in the I2C_CR2 register to generate a start condition

The peripheral input clock frequency must be at least:

• 1 MHz in standard mode

• 4 MHz in fast mode

Start condition 

Setting the START bit while the BUSY bit is cleared causes the interface to generate a start 
condition and switch to the master mode (MSL bit set).

Note: In the master mode, setting the START bit causes the interface to generate a restart 
condition at the end of the current byte transfer.

Once the start condition is sent:

• The SB bit is set by hardware and an interrupt is generated if the ITEVTEN bit is set.

Then the master waits for a read of the SR1 register followed by a write in the DR register 
with the slave address (refer to Figure 55 and Figure 56 for transfer sequencing EV5).

Slave address transmission

In this mode the slave address is sent to the SDA line via the internal shift register.

• In the 10-bit addressing mode, sending the header sequence causes the following 
event:

– The ADD10 bit is set by hardware and an interrupt is generated if the ITEVTEN bit 
is set. 
Then the master waits for a read of the SR1 register followed by a write in the DR 
register with the second address byte (refer to the next two figures Figure 20 4 and 
Figure 20 5 Transfer sequencing EV9).
The ADDR bit is set by hardware and an interrupt is generated if the ITEVTEN bit 
is set. Then the master waits for a read of the SR1 register followed by a read in 
the SR3 register (refer to the Figure 55 and Figure 56 for transfer sequencing 
EV6).

• In the 7-bit addressing mode, one address byte is sent.
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As soon as the address byte is sent,

– The ADDR bit is set by hardware and an interrupt is generated if the ITEVTEN bits 
set. 

Then the master waits for a read of the SR1 register followed by a read in the SR3 
register (see the next two figures Figure 55 and Figure 56 for transfer sequencing 
EV6). 

The master can decide to enter the transmitter or receiver mode depending on the LSB of 
the slave address sent.

• In the 7-bit addressing mode:

– To enter the transmitter mode, a master sends the slave address with the LSB 
reset.

– To enter the receiver mode, a master sends the slave address with the LSB set.

• In the 10-bit addressing mode:

– To enter the transmitter mode, a master sends the header (11110xx0) and then the 
8 LSB slave address.

– To enter the receiver mode, a master sends the (11110xx0) header and then the 
8 LSB slave address. Then it should send a repeated start condition followed by 
the header sequence with matching address bits and the least significant bit set 
(11110xx1).

The TRA bit indicates whether the master is in the receiver or transmitter mode.

Note: The xx denotes the two most significant bits of the 10 bit address.

Master transmitter

Following the address transmission and after clearing the ADDR, the master sends bytes 
from the DR register to the SDA line via the internal shift register.

The master waits until the first data byte is written in the DR register (TxE is cleared), refer 
to Figure 55 for transfer sequencing EV8_1.

When the acknowledge pulse is received:

• The TxE bit is set by hardware and an interrupt is generated if the ITEVTEN and 
ITBUFEN bits are set.

If TxE is set and a data byte was not written in the DR register before the end of the next 
data transmission, the BTF is set and the interface waits until the BTF is cleared by reading 
the SR1 register and then writing to the DR register, stretching the SCL low.

Closing the communication

After writing the last byte to the DR register, the STOP bit is set by software to generate 
a stop condition (refer to Figure 55 for transfer sequencing EV8_2). The interface goes 
automatically back to the slave mode (MSL bit cleared).

Note: Stop condition should be programmed during the EV8_2 event, when either the TxE or BTF 
is set.
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Figure 55. Transfer sequence diagram for master transmitter

Note: 1. Legend:

a) S = start, Sr = repeated start, P = stop, A = acknowledge, NA = non-acknowledge, 
EVx = event (with interrupt if ITEVTEN = 1).

b) EV5: SB = 1, cleared by reading the SR1 register followed by writing the DR 
register with the address.

c) EV6: ADDR = 1, cleared by reading the SR1 register followed by reading the SR3.

d) EV8_1: TXE = 1, the shift register empty, the data register empty, write the DR 
register.

e) EV8: TXE = 1, the shift register not empty, the data register empty, cleared by 
writing the DR register.

f) EV8_2: TXE = 1, BTF = 1, a program STOP request. The TXE and BTF are 
cleared by HW by stop condition.

g) EV9: ADD10 = 1, cleared by reading the SR1 register followed by writing the DR 
register. 

2. EV8 software sequence must be performed before the end of the current byte transfer. In 
case EV8 software sequence cannot be managed before the end of the current byte 
transfer, it is recommended to use the BTF instead of the TXE with the drawback of slowing 
the communication.

Master receiver

Following the address transmission and after clearing the ADDR, the I2C interface enters 
the master receiver mode. In this mode the interface receives bytes from the SDA line into 
the DR register via the internal shift register. After each byte the interface generates in 
sequence:

• An acknowledge pulse if the ACK bit is set.

• The RxNE bit is set and an interrupt is generated if the ITEVTEN and ITBUFEN bits are 
set (refer to Figure 56 for transfer sequencing EV7). 

If the RxNE bit is set and the data were not read in the DR register before the end of the 
next data reception, the BTF bit is set by hardware and the interface waits for the BTF bit to 
be cleared by reading the I2C_SR1 and then the I2C_DR, stretching the SCL low.
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Closing the communication

Method 1: This method is for the case when the I2C is used with interrupts that have the 
highest priority in the application.

The master sends a NACK for the last byte received from the slave. After receiving this 
NACK, the slave releases the control of the SCL and SDA lines. Then the master can send 
a stop/restart condition.

• In order to generate the non-acknowledge pulse after the last received data byte, the 
ACK bit must be cleared just after reading the second last data byte (after second last 
RxNE event).

• In order to generate the stop/restart condition, software must set the STOP/ START bit 
just after reading the second last data byte (after the second last RxNE event).

• In case a single byte is to be received, the acknowledge deactivation and the STOP 
condition generation are made just after the EV6 (in EV6-1 just after ADDR is cleared).

After the stop condition generation, the interface goes automatically back to the slave mode 
(MSL bit cleared).

Figure 56. Transfer sequence diagram for master receiver
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Note: 1. Legend: 
a) S = start, Sr = repeated start, P = stop, A = acknowledge, NA = non-acknowledge, 

EVx = event (with interrupt if ITEVTEN = 1).

b) EV5: SB = 1, cleared by reading the SR1 register followed by writing the DR 
register.

c) EV6: ADDR = 1, cleared by reading the SR1 register followed by reading the SR3. 
In the 10-bit master receiver mode, this sequence should be followed by writing 
the CR2 with START = 1.

d) EV6_1: no associated flag event, used for 1 byte reception only. Program the 
ACK = 0 and STOP = 1 after clearing the ADDR.

e) EV7: RxNE = 1, cleared by reading the DR register.

f) EV7_1: RxNE = 1, cleared by reading the DR register, program the ACK = 0 and 
the STOP request.

g) EV9: ADD10 = 1, cleared by reading the SR1 register followed by writing the DR 
register.

2. If the DR and shift registers are full, the next data reception (I2C clock generation for 
slave) is performed after the EV7 event is cleared. In this case, the EV7 does not overlap 
with data reception.

3. The EV5, EV6 and EV9 events stretch the SCL low until the end of the corresponding 
software sequence.

4. The EV7 software sequence must be completed before the end of the current byte 
transfer. In case the EV7 software sequence cannot be managed before the current byte 
end of transfer, it is recommended to use the BTF instead of the RXNE with the drawback of 
slowing the communication.

5. The EV6_1 or EV7_1 software sequence must be completed before the ACK pulse of the 
current byte transfer.

Method 2: This method is for the case when the I2C is used with interrupts that do not have 
the highest priority in the application or when the I2C is used with polling.

With this method:

• The DataN-2 is not read, so that after the DataN-1, the communication is stretched 
(both RxNE and BTF are set).

• Then, the ACK bit must be cleared before reading the DataN-2 in the DR to make sure 
this bit has been cleared before the DataN acknowledge pulse.

• After that, just after reading the DataN 2, software must set the STOP/START bit and 
read the DataN 1. After the RxNE is set, read the DataN.

The next session describes the transfer data of different frame data length.
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When 3 bytes remain to be read (procedure applicable when N > 2):

• RxNE = 1 => nothing (DataN 2 not read).

• DataN 1 received

• BTF = 1 because both shift and data registers are full: the DataN 2 in the DR and the 
DataN 1 in the shift register => the SCL tied low: no other data will be received on the 
bus.

• Clear ACK bit

• Read the DataN 2 in the DR => this launches the DataN reception in the shift register

• DataN received (with a NACK)

• Program START/STOP

• Read DataN 1

• RxNE = 1

• Read DataN

Figure 57. Method 2 - transfer sequence diagram for master receiver when N > 2

Note: 1. Legend: 
a) S = start, Sr = repeated start, P = stop, A = acknowledge, NA = non-acknowledge, 

EVx= event (with interrupt if ITEVTEN = 1).

b) EV5: SB = 1, cleared by reading the SR1 register followed by writing the DR 
register.

c) EV6: ADDR1, cleared by reading the SR1 register followed by reading the SR3. In 
the 10-bit master receiver mode, this sequence should be followed by writing the 
CR2 with START = 1.

d) EV7: RxNE=1, cleared by reading the DR register.

e) EV7_2: BTF = 1, the DataN-2 in DR and DataN-1 in the shift register, program 
ACK = 0, read the DataN-2 in the DR. Program STOP = 1, read the DataN-1.

f) EV9: ADD10= 1, cleared by reading SR1 register followed by writing DR register.

2. The EV5, EV6 and EV9 events stretch the SCL low until the end of the corresponding 
software sequence.

3. The EV7 software sequence must be completed before the end of the current byte 
transfer. In case the EV7 software sequence cannot be managed before the current byte 
end of transfer, it is recommended to use the BTF instead of the RXNE, with the drawback 
of slowing the communication.
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When 2 bytes remain to be read (procedure applicable when N = 2):

• Set POS and ACK

• Wait for the ADDR flag to be set

• Clear ADDR

• Clear ACK

• Wait for BTF to be set

• Program STOP

• Read DR register twice times

Figure 58. Method 2 - transfer sequence diagram for master receiver when N = 2

Note: 1. Legend: 

a) S = start, Sr = repeated start, P = stop, A = acknowledge, NA = non-acknowledge, 
EVx = event (with interrupt if ITEVTEN = 1).

b) EV5: SB = 1, cleared by reading the SR1 register followed by writing the DR 
register.

c) EV6: ADDR1, cleared by reading the SR1 register followed by reading the SR3. In 
the 10-bit master receiver mode, this sequence should be followed by writing the 
CR2 with START = 1.

d) EV6_1: no associated flag event. The acknowledge should be disabled just after 
the EV6, that is after the ADDR is cleared.

e) EV7_3: BTF = 1, program STOP = 1, read the DR twice (read Data1 and Data2) 
just after programming the STOP.

f) EV9: ADD10 = 1, cleared by reading the SR1 register followed by writing the DR 
register.

2. The EV5, EV6 and EV9 events stretch the SCL low until the end of the corresponding 
software sequence.

3. The EV6_1 software sequence must be completed before the ACK pulse of the current 
byte transfer.
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When 1 byte remains to be read (procedure applicable when N = 1):

• In the ADDR event, clear the ACK bit.

• Clear ADDR

• Program the STOP/START bit.

• Read the data after the RxNE flag is set.

•

Figure 59. Method 2- transfer sequence diagram for master receiver when N = 1

Note: 1. Legend:

a) S = start, Sr = repeated start, P = stop, A = acknowledge, NA = non-acknowledge, 
EVx = event (with interrupt if ITEVTEN = 1).

b) EV5: SB = 1, cleared by reading the SR1 register followed by writing the DR 
register.

c) EV6: ADDR = 1, cleared by reading the SR1 resister followed by reading the SR3 
register.

d) EV6_3: ADDR = 1, program ACK = 0, clear the ADDR by reading the SR1 register 
followed by reading the SR3 register, program STOP = 1 just after the ADDR is 
cleared.

e) EV7: RxNE = 1, cleared by reading the DR register.

f) EV9: ADD10 = 1, cleared by reading the SR1 register followed by writing the DR 
register.

2. The EV5, EV6 and EV9 events stretch the SCL low until the end of the corresponding 
software sequence.

3. The EV6_3 software sequence must be completed before the the ACK pulse of the 
current byte transfer.
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23.6.3 Error conditions

The following are the error conditions which may cause communication to fail.

Bus error (BERR)

This error occurs when the I2C interface detects an external stop or a start condition during 
an address or data transfer. In this case:

• The BERR bit is set and an interrupt is generated if the ITERREN bit is set.

• In the case of the slave: data are discarded and the lines are released by hardware:

– In the case of a misplaced start, the slave considers it is a restart and waits for an 
address or a stop condition.

– In the case of a misplaced stop, the slave reacts in the same way as for a stop 
condition and the lines are released by hardware.

• In the case of the master: the lines are not released and there is no effect in the state of 
the current transmission: software can decide if it wants to abort the current 
transmission or not.

Acknowledge failure (AF)

This error occurs when the interface detects a non-acknowledge bit. In this case:

• The AF bit is set and an interrupt is generated if the ITERREN bit is set.

• A transmitter which receives a NACK must reset the communication:

– If slave: lines are released by hardware.

– If master: a stop condition or repeated start must be generated by software.

Arbitration lost (ARLO)

This error occurs when the I2C interface detects an arbitration lost condition. In this case:

• The ARLO bit is set by hardware (and an interrupt is generated if the ITERREN bit is 
set).

• The I2C interface goes automatically back to the slave mode (the MSL bit is cleared).

• When the I2C loses the arbitration, it is not able to acknowledge its slave address in the 
same transfer, but it can acknowledge it after a repeated start from the master.

• Lines are released by hardware.

Overrun/underrun error (OVR)

Overrun error can occur in the slave mode when clock stretching is disabled and the I2C 
interface is receiving data. The interface has received a byte (RXNE = 1) and the data in the 
DR has not been read, before the next byte is received by the interface. In this case:

• The last received byte is lost.

• In case of overrun error, software should clear the RXNE bit and the transmitter should 
retransmit the last received byte.
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Underrun error can occur in the slave mode when clock stretching is disabled and the I2C 
interface is transmitting data. The interface has not updated the DR with the next byte 
(TXE = 1), before the clock comes for the next byte. In this case:

• The same byte in the DR register will be sent again.

• The user should make sure that data received on the receiver side during an underrun 
error is discarded and that the next bytes are written within the clock low time specified 
in the I2C bus standard.

• For the first byte to be transmitted, the DR must be written after the ADDR is cleared 
and before the first SCL rising edge. If it is not possible, the receiver must discard the 
first data.

23.6.4 SDA/SCL line control

• If clock stretching is enabled:

– Transmitter mode: If TXE = 1 and BTF = 1: the interface holds the clock line low 
before transmission to wait for the microcontroller to read the SR1 and then write 
the byte in the data register (both buffer and shift register are empty).

– Receiver mode: If RXNE = 1 and BTF = 1: the interface holds the clock line low 
after reception to wait for the microcontroller to read the SR1 and then read the 
byte in the data register or write to the CR2 (both buffer and shift register are full).

• If clock stretching is disabled in the slave mode:

– Overrun error in case of RXNE = 1 and no read of the DR has been done before 
the next byte is received. The last received byte is lost.

– Underrun error in case TXE = 1 and no write into the DR has been done before the 
next byte must be transmitted. The same byte will be sent again.

– Write collision not managed.

23.7 Limitations on I2C peripheral usage

23.7.1 I2C event management

As described in the previous sections, the application firmware has to manage several 
software events before the current byte is transferred. If the EV7, EV7_1, EV6_1, EV6_3, 
EV2, EV8, and EV3 events are not managed before the current byte is transferred, 
problems may occur such as receiving an extra byte, reading the same data twice, or 
missing data.

When the EV7, EV7_1, EV6_1, EV6_3, EV2, EV8, and EV3 events cannot be managed 
before the current byte transfer, and before the acknowledge pulse when the ACK control bit 
changes, it is recommended to use I2C interrupts in the nested mode and to make them 
uninterruptible by increasing their priority to the highest priority in the application.
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23.7.2 Corrupted last received data in master receiver mode

In the master receiver mode, when the communication is closed using the method 2, the 
content of the last read data may be corrupted. The following two sequences are concerned 
by the limitation:

Sequence 1: transfer sequence for the master receiver when N = 2

a) BTF = 1 (data N-1 in the DR and data N in the shift register)

b) Program STOP = 1

c) Read DR twice (read data N-1 and data N) just after programming the STOP bit.

Sequence 2: transfer sequence for the master receiver when N > 2

a) BTF = 1 (data N-2 in the DR and data N-1 in the shift register)

b) Program ACK = 0

c) Read data N-2 in the DR

d) Program STOP bit to 1

e) Read data N-1.

In this conditions the content of the shift register (data N) is corrupted (data N is shifted 1 bit 
to the left) if the user software is not able to read data N-1 before the STOP condition is 
generated on the bus. In this case, reading data N returns a wrong value.

Workaround 1

Sequence 1

When sequence 1 is used to close communication using the method 2, mask all 
active interrupts between the STOP bit programming and read data N-1.

Sequence 2

When sequence 2 is used to close communication using the method 2, mask all 
active interrupts between read data N-2, the STOP bit programming and read data 
N-1.

Workaround 2

Manage the I2C RxNE and TxE events with interrupts of the highest priority level, so 
that the condition BTF = 1 never occurs.

23.7.3 Wrong behavior of I2C peripheral in master mode after misplaced STOP

The I2C peripheral does not enter the master mode properly if a misplaced STOP is 
generated on the bus. This can happen in the following conditions:

• If a void message is received (START condition immediately followed by a STOP): the 
BERR (bus error) flag is not set, and the I2C peripheral is not able to send a START 
condition on the bus after writing to the START bit in the I2C_CR2 register.

• In the other cases of a misplaced STOP, the BERR flag is set in the IC2_CR2 register. 
If the START bit is already set in the I2C_CR2, the START condition is not correctly 
generated on the bus and can create bus errors.
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Workaround

In the I2C standard, it is not allowed to send a STOP before the full byte is transmitted 
(8 bits + acknowledge). Other derived protocols like the CBUS allow it, but they are not 
supported by the I2C peripheral.

In case of a noisy environment in which unwanted bus errors can occur, it is 
recommended to implement a timeout to ensure that the SB (start bit) flag is set after 
the START control bit is set. In case the timeout has elapsed, the peripheral must be 
reset by setting the SWRST bit in the I2C_CR2 control register. The I2C peripheral 
should be reset in the same way if a BERR is detected while the START bit is set in the 
I2C_CR2.

23.7.4 Violation of I2C “setup time for repeated START condition” parameter

In case of a repeated start, the “setup time for repeated START condition” parameter 
(named tSU;STA in the datasheet and tSU;STA in the I2C specifications) may be slightly 
violated when the I2C operates in the master standard mode at a frequency ranging from 
88 to 100 kHz. tSU;STA minimum value may be 4 µs instead of 4.7 µs.

The issue occurs under the following conditions:

1. The I2C peripheral operates in the master standard mode at a frequency ranging from 
88 to 100 kHz (no issue in fast mode).

2. And the SCL rise time meets one of the following conditions:

– The slave does not stretch the clock and the SCL rise time is more than 300 ns 
(the issue cannot occur when the SCL rise time is less than 300 ns).

– Or the slave stretches the clock.

Workaround

Reduce the frequency down to 88 kHz or use the I2C fast mode if it is supported by the 
slave.

23.7.5 In I2C slave “NOSTRETCH” mode, underrun errors may not be detected 
and may generate bus errors

The data valid time (tVD;DAT, tVD;ACK) described by the I2C specifications may be violated as 
well as the maximum current data hold time (tHD;DAT) under the conditions described below.

In addition, if the data register is written too late and close to the SCL rising edge, an error 
may be generated on the bus: the SDA toggles while the SCL is high. These violations 
cannot be detected because the OVR flag is not set (no transmit buffer underrun is 
detected).

This issue occurs under the following conditions:

1. The I2C peripheral operates in the slave transmit mode with clock stretching disabled 
(NOSTRETCH = 1).

2. The application is late to write the DR data register, but not late enough to set the OVR 
flag (the data register is written before the SCL rising edge).

Workaround

If the master device supports it, use the clock stretching mechanism by programming 
the bit NOSTRETCH = 0 in the I2C_CR1 register.
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If the master device does not support it, ensure that the write operation to the data register 
is performed just after the TXE or ADDR events. You can use an interrupt on the TXE or 
ADDR flag and boost its priority to the higher level.

Using the “NOSTRETCH” mode with a slow I2C bus speed can prevent the application from 
being late to write the DR register (second condition).

Note: The first data to be transmitted must be written into the data register after the ADDR flag is 
cleared, and before the next SCL rising edge, so that the time window to write the first data 
into the data register is less than tLOW.

If this is not possible, a possible workaround can be the following:

1. Clear the ADDR flag.

2. Wait for the OVR flag to be set.

3. Clear the OVR and write the first data.

The time window for writing the next data is then the time to transfer one byte. In that case, 
the master must discard the first received data.

23.7.6 I2C pulse missed

When the I2C interface is used for long transmit/receive transactions, the MCU may return 
a NACK somewhere during the transaction instead of returning an ACK for all data. The 
received data may also be corrupted. In the master mode the I2C may not detect an 
incoming ACK. This is due to a weakness in the noise filter of the I/O pad which in certain 
conditions may cause the I2C to miss a pulse.

Workaround

Since the data corruption is caused by noise generated by the CPU, the CPU activity should 
be minimized during data reception and/or transmission. This is done by performing 
physical data transmission (master mode) and reception (slave mode) in the WFI state (wait 
for interrupt).

To allow the device to be woken up from the WFI, I2C transmission and reception routines 
must be implemented through interrupt routines instead of polling mechanisms. Receive 
and transmit interrupts (received data processing) must be triggered only by the BTF bit flag 
(byte transfer finished) in the I2C_SR1 register. This flag indicates that the I2C is in the 
stretched state (data transfers are stretched on the bus).

Clock stretching must be enabled to allow data transfers from the slave to be stopped and to 
allow the CPU to be woken up to read the received byte.

To recover from possible errors, periodically check if the I2C does not remain in the busy 
state for too long (BUSY bit set in I2C_SR3 register). If so, it should be reinitialized.
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23.8 I2C low power modes
         

23.9 I2C interrupts

Table 43 summarizes the I2C interrupt events and their capability to exit form the CPU wait 
or Halt mode.

         

Table 42. I2C low power mode

Mode Description

Wait
No effects on the I2C interface.

I2C interrupts cause the device to exit from the wait mode.

Halt

In the slave mode: communication is reset, except for configuration registers. Device is in the slave 
mode. Wakeup from the Halt interrupt is generated if the ITEVTEN = 1 and the address matched (including 
allowed headers). The matched address is not acknowledged in the Halt mode so the master has to send 
it again when the CPU is woken up to receive an acknowledge. If the NOSTRETCH = 0, the SCLH will be 
stretched after acknowledge pulse in the Halt mode until the WUFH is cleared by software; none of the 
flags are set by the address which wakes up the CPU.

In the master mode: communication is frozen until the CPU is woken up. Wakeup from Halt flag and 
interrupt are generated if the ITEVTEN = 1 and there is a HALT instruction.

Note: It is forbidden to enter Halt mode while a communication is ongoing.

Table 43. I2C interrupt requests

Interrupt event Event flag Enable control bit Exit from wait Exit from Halt

Start bit sent (master) SB

ITEVTEN

Yes

No

Address sent (master) or address matched 
(slave)

ADDR

10-bit header sent (master) ADD10

Stop received (slave) STOPF

Data byte transfer finished BTF

Wakeup from Halt WUFH ITEVTEN Yes

Receive buffer not empty RXNE ITEVTEN

and

ITBUFEN

No

Transmit buffer empty TXE

Bus error BERR ITERREN

Arbitration loss (master) ARLO

Acknowledge failure AF

Overrun/underrun OVR
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Figure 60 shows an outline view of the I2C internal interrupt request.

Figure 60. I2C interrupt mapping diagram

23.10 I2C registers description

23.10.1 I2C_CR1 (control register1)

Offset: 0x00

Default value: 0x00

         

Bit 0: PE peripheral enable

0: peripheral disable.

1: peripheral enable: see device product datasheet for correct configuration of 
corresponding I/O pins alternate function.

Note: 1. If this bit is reset while a communication is ongoing, the peripheral is disabled at the end 
of the current communication, when back to the IDLE state.

2. All bit resets due to PE = 0 occur at the end of the communication.

Bit 5-1: RFU reserved; must be kept 0 during register writing for future compatibility.

7 6 5 4 3 2 1 0

NOSTRETCH ENGC RFU PE

r/w r/w r r/w
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Bit 6: ENGC general call enable

0: general call disabled. Address 0x00 is NACKed.

1: general call enabled. Address 0x00 is ACKed.

Bit 7: NOSTRETCH clock stretching disable (slave mode)

This bit is used to disable clock stretching in the slave mode when the ADDR or BTF 
flag is set, until it is reset by software.

0: clock stretch enabled.

1: clock stretch disabled.

23.10.2 I2C_CR2 (control register2)

Offset: 0x01

Default value: 0x00

         

Bit 0: START start generation

This bit is set and cleared by software, cleared by hardware when the START is sent, 
or PE = 0.

– In master mode:

0: no start generation.

1: repeated start generation.

– In slave mode:

0: no start generation.

1: start generation when the bus is free.

Note: When the STOP or START is set, the user must not perform any write access to the 
I2C_CR2 before the control bit is cleared by hardware. Otherwise, a second STOP or 
START request may occur.

Bit 1: STOP stop generation.

This bit is set and cleared by software, cleared by hardware when a STOP condition is 
detected.

– In master mode:

0: no stop generation.

1: stop generation after the current byte transfer or after the current start condition 
is sent.

– In slave mode:

0: no stop generation.

1: release the SCL and SDA lines after the current byte transfer.

Bit 2: ACK acknowledgment enable

This bit is set and cleared by software and cleared by hardware when PE = 0.

0: no acknowledgment returned.

1: acknowledgment returned after a byte is received (matched address or data).

7 6 5 4 3 2 1 0

SWRST RFU POS ACK STOP START

r/w r r/w r/w r/w r/w
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Bit 3: POS Acknowledgment position (for data reception).

This bit is set and cleared by software and cleared by hardware when PE = 0.

0: the ACK bit controls the (N)ACK of the current byte being received in the shift 
register.

1: the ACK bit controls the (N)ACK of the next byte which will be received in the shift 
register.

Note: The POS bit is used when the procedure for reception of 2 bytes (see Figure 58: Method 2 - 
transfer sequence diagram for master receiver when N = 2 on page 239) is followed. It must 
be configured before data reception starts. In this case, to NACK the 2nd byte, the ACK bit 
must be cleared just after the ADDR is cleared.

Bit 6-4: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 7: SWRST software reset

When active, the I2C is in the reset state. Before resetting this bit, make sure the I2C 
lines are released and the bus is free.

0: the I2C peripheral not under reset.

1: the I2C peripheral under the reset state.

Note: This bit can be used in case the BUSY is set to '1' when no stop condition has been 
detected on the bus.

23.10.3 I2C_FREQR (frequency register)

Offset: 0x02

Default value: 0x00

         

Bit 5-0: FREQ[5:0] peripheral clock frequency

Input clock frequency must be programmed to generate correct timings:

The allowed range is between 1 MHz and 50 MHz.

000000: not allowed

000001: 1 MHz

000010: 2 MHz

000011: 3 MHz

…

110010: 50 MHz

Higher values: not allowed

Note: The minimum peripheral frequencies (fMASTER) for respecting the I2C bus timings are: 
1 MHz for the standard mode and 4 MHz for the fast mode.

Bit 7-6: RFU reserved; must be kept 0 during register writing for future compatibility.

7 6 5 4 3 2 1 0

RFU FREQ [5:0]

r r/w
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23.10.4 I2C_OARL (own add. LSB register)

Offset: 0x03

Default value: 0x00

         

Bit 0: ADD0 interface lower address

7-bit addressing mode: don't care.

10-bit addressing mode: bit 0 of the address.

Bit 7-1:ADD[7:1] interface address; a common address field for both 7/10-bit addressing 
modes.

23.10.5 I2C_OARH (own add. MSB register)

Offset: 0x04

Default value: 0x00

         

Bit 0: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 2-1: ADD[9:8] interface upper address

The upper address field in the 10-bit addressing mode.

Bit 5-3: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 6: ADDCONF address configuration must be configured and kept at '1'

Bit 7: ADDMODE addressing mode (slave mode)

0: the 7 bit slave address (10-bit address not acknowledged).

1: the 10 bit slave address (7-bit address not acknowledged).

7 6 5 4 3 2 1 0

ADD[7:1] ADD0

r/w r/w

7 6 5 4 3 2 1 0

ADDMODE ADDCONF RFU ADD [9:8] RFU

r/w r/w r r/w r
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23.10.6 I2C_DR (data register)

Offset: 0x06

Default value: 0x00

         

Bit 7-0: DR[7:0] data register

Byte received or to be transmitted to the bus.

– Transmitter mode: byte transmission starts automatically when a byte is written in 
the DR register. A continuous transmit stream can be maintained if the next data to 
be transmitted is put in the DR once the transmission is started (TxE = 1).

– Receiver mode: received byte is copied into the DR (RxNE = 1). A continuous 
transmit stream can be maintained if the DR is read before the next data are 
received (RXNE = 1).

Note: 1. In the slave mode, the address is not copied into DR.

2. Write collision is not managed (the DR can be written if the TXE = 0).

3. If an ARLO event occurs on the ACK pulse, the received byte is not copied into the DR 
and so cannot be read.

23.10.7 I2C_SR1 (status register1)

Offset: 0x07

Default value: 0x00

         

Bit 0: SB start bit (master mode)(ad)

0: no start condition.

1: start condition generated:

– Set when a start condition is generated.

– Cleared through the software by reading the SR1 register followed by writing the 
DR register, or by hardware when PE = 0.

7 6 5 4 3 2 1 0

DR [7:0]

r/w

7 6 5 4 3 2 1 0

TxE RxNE RFU STOPF ADD10 BTF ADDR SB

r r r r r r r r
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Bit 1: ADDR address sent (master mode)/matched (slave mode)(ad),(ae)

This bit is cleared by software reading the SR1 register followed reading the SR3, or by 
hardware when PE = 0.

• Address matched (slave):

0: address mismatched or not received

1: received address matched:

Set by hardware as soon as the receiver slave address matched with the OAR 
registers content or a general call is recognized (when enabled depending on 
configuration).

•  Address sent (master):

0: no end of address transmission

1: end of address transmission

– For 10-bit addressing, the bit is set after the ACK of the 2nd byte.

– For 7-bit addressing, the bit is set after the ACK of the address byte.

Note: The ADDR is not set after a NACK reception.

Bit 2: BTF byte transfer finished(af), (ad)

0: data byte transfer not done

1: data byte transfer succeeded

– Set by hardware when NOSTRETCH = 0.

– In reception when a new byte is received (including the ACK pulse) and the DR 
has not been read yet (RxNE = 1).

– In transmission when a new byte should be sent and the DR has not been written 
yet (TxE = 1).

– Cleared by software reading the SR1 followed by either a read or write in the DR 
register or by hardware after a start or a stop condition in transmission or when 
PE = 0.

ad. Due to timing constraints, when in the standard mode if the CCR is less than 9 (i.e.: with the peripheral clock 
below 2 MHz) with fMASTER = fCPU and the event interrupt disabled, the following procedure must be followed: 
modify the reset sequence in order to insert at least 5 cycles between each operations in the flag clearing 
sequence. For example, when fMASTER = fCPU = 1 MHz, use the following sequence to poll the SB bit:

_label_wait: BTJF I2C_SR1,SB,_label_wait

NOP

NOP

NOP

NOP

NOP

LD A, I2C_SR3; once executed, the SB bit is then cleared.

ae. In the slave mode, it is recommended to perform the complete clearing sequence (READ SR1 then READ 
SR3) after the ADDR is set.

af. The BTF bit is not set after a NACK reception, or in case of an ARLO event.
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Bit 3: ADD10 10-bit header sent (master mode)(ag)

0: no ADD10 event occurred

1: master has sent first the address byte (header)

– Set by hardware when the master has sent the first byte in the 10-bit address 
mode.

– Cleared by software reading the SR1 register followed by a write in the DR 
register of the second address byte, or by the hardware when PE = 0.

Bit 4: STOPF stop detection (slave mode)(ah), (ai)

0: no stop condition detected

1: stop condition detected

– Set by hardware when a stop condition is detected on the bus by the slave after an 
acknowledgment (if ACK = 1).

– Cleared by software reading the SR1 register followed by a write in the CR2 
register, or by hardware when PE = 0.

Bit 5: RFU reserved for future use

Bit 6: RxNE data register not empty (receivers)(aj), (ak)

0: data register empty

1: data register not empty

– Set when the data register is not empty in the receiver mode. The RxNE is not set 
during the address phase.

– Cleared by software reading or writing the DR register or by hardware when 
PE = 0.

Note: The RXE cannot be cleared by reading data when the BTF bit is set as the DR register is 
still full in this case.

Bit 7: TxE data register empty (transmitters)(al)

0: data register not empty.

1: data register empty.

– Set when the DR is empty in transmission. The TxE is not set during the address 
phase.

– Cleared by software writing to the DR register or by hardware after a start or 
a stop condition or when PE = 0.

ag. The ADD10 bit is not set after a NACK reception.

ah. The STOPF bit is not set after a NACK reception.

ai. It is recommended to perform the complete clearing sequence (READ SR1 then WRITE CR2) after the STOPF 
is set.

aj. The interrupt will be generated when the shift register is copied into the DR after an ACK pulse.

ak. The RXNE is not set in case of an ARLO event.

al. The interrupt will be generated when the DR is copied into the shift register after an ACK pulse. If a NACK is 
received, copy is not done and the TXE is not set.
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23.10.8 I2C_SR2 (status register2)

Offset: 0x08

Default value: 0x00

         

Bit 0: BERR bus error

0: no misplaced start or stop condition.

1: misplaced start or stop condition.

– Set by hardware when the interface detects a misplaced start or stop condition.

– Cleared by software writing 0, or by hardware when PE = 0.

Bit 1: ARLO arbitration lost (master mode)

0: no arbitration lost detected.

1: arbitration lost detected.

– Set by hardware when the interfaces lose the arbitration of the bus to another 
master on in the SMBUS mode when the ENARP = 1 and the slave loses the 
arbitration.

– Cleared by software writing 0, or by hardware when PE = 0. 

After an ARLO event the interface switches back automatically to the slave mode 
(M/SL = 0).

Bit 2: AF acknowledgment failure

0: no acknowledgment failure.

1: acknowledgment failure.

– Set by hardware when no acknowledgment is returned.

– Cleared by software writing 0, or by hardware when PE = 0.

Bit 3: OVR overrun (underrun)

0: no overrun/underrun

1: overrun/underrun

– Set by hardware in the slave mode when the NOSTRETCH = 1 and:

– In reception when a new byte is received (including the ACK pulse) and the DR 
register has not been read yet. A new received byte is lost.

– In transmission when a new byte should be sent and the DR register has not been 
written yet. The same byte is sent twice.

– Cleared by software writing 0, or by hardware when PE = 0.

Note: If the DR write occurs very close to the SCL rising edge, the sent data are unspecified and 
a hold timing error occurs.

Bit 4: RFU reserved; must be kept 0 during register writing for future compatibility.

7 6 5 4 3 2 1 0

RFU WUFH RFU OVR AF ARLO BERR

r rc/w0 r rc/w0 rc/w0 rc/w0 rc/w0
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Bit 5: WUFH wakeup from Halt

0: no wakeup from the HALT mode

1: the 7-bit address or header match in the HALT mode (slave mode) or the HALT 
entered when in the master mode.

Note: 1. This bit is set asynchronously in the slave mode (during the HALT mode).

2. This bit is set only if the ITEVTEN = 1 and cleared by software, or by hardware when the 
PE = 0.

Bit 7-6: RFU reserved; must be kept 0 during register writing for future compatibility.

23.10.9 I2C_SR3 (status register3)

Offset: 0x09

Default value: 0x00

         

Bit 0: MSL master/slave

0: slave mode

1: master mode

– Set by hardware as soon as the interface is in the master mode (SB = 1).

– Cleared by hardware after detecting a stop condition on the bus or loss arbitration 
(ARLO = 1), or by hardware when PE = 0.

Note: Reading the I2C_SR3 after reading the I2C_SR1 clears the ADDR flag, even if the ADDR 
flag was set after reading the I2C_SR1. Consequently, the I2C_SR3 must be read only 
when the ADDR is found set in the I2C_SR1 or when the STOPF bit is cleared.

Bit 1: BUSY bus busy

0: no communication on the bus.

1: communication ongoing on the bus.

Set by hardware on detection of the SDA or the SCL low.

Cleared by hardware on detection of a stop condition.

It indicates a communication in progress on the bus. This information is still updated 
when the interface is disabled (PE = 0).

Bit 2: TRA transmitter/receiver

0: data bytes received.

1: data bytes transmitted.

This bit is set depending on the R/W bit of the address byte, at the end of the total 
address phase.

It is also cleared by hardware after detection of stop condition (STOPF = 1), repeated 
start condition, loss of bus arbitration (ARLO = 1), or when the PE = 0.

Bit 3: RFU reserved for future use

7 6 5 4 3 2 1 0

RFU GENCALL RFU TRA BUSY MSL

r r r r r r
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Bit 4: GENCALL general call header (slave mode)

Cleared by hardware after a stop condition or repeated start condition, or when the 
PE = 0.

0: no general call.

1: general call header received when ENGC = 1.

Bit 7-5: RFU reserved; must be kept 0 during register writing for future compatibility.

23.10.10 I2C_ITR (interrupt register)

Offset: 0x0A

Default value: 0x00 

         

Bit 0: ITERREN error interrupt enable

0: error interrupt disabled.

1: error interrupt enabled.

This interrupt is generated in case of the following events:

- BERR = 1

- ARLO = 1

- AF = 1

- OVR = 1

Bit 1: ITEVTEN event interrupt enable

0: event interrupt disabled.

1: event interrupt enabled.

This interrupt is generated in case of the following events:

- SB = 1 (master)

- ADDR = 1 (master/slave)

- ADD10 = 1 (master)

- STOPF = 1(slave)

- BTF = 1 with no TxE or RxNE event

- TxE event to 1 if ITBUFEN = 1

- RxNE event to 1 if ITBUFEN = 1

- WUFH = 1 (asynchronous interrupt to wake up from Halt)

Bit 2: ITBUFEN buffer interrupt enable

0: interrupt disable (TxE and RxNE are masked).

1: interrupt enable in case of TxE = 1 or RxNE = 1 events.

Bit 7-3:RFU reserved; must be kept 0 during register writing for future compatibility.

7 6 5 4 3 2 1 0

RFU ITBUFEN ITEVTEN ITERREN

r r/w r/w r/w
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23.10.11 I2C_CCRL (clock control low)

Offset: 0x0B

Default value: 0x00

         

Bit 7-0: CCR[7:0] clock control register (master mode)

Controls the SCLH clock in master mode

• Standard mode:

Period (I2C) = 2 * CCR * tMASTER

tHIGH = CCR * tMASTER

tLOW = CCR * tMASTER

• Fast mode:

If DUTY = 0:

Period (I2C) = 3* CCR * tMASTER

tHIGH = CCR * tMASTER

tLOW = 2 * CCR * tMASTER

If DUTY = 1: (to reach 400 kHz)

Period (I2C) = 25 * CCR * tMASTER

tHIGH = 9 * CCR * tMASTER

tLOW = 16 * CCR * tMASTER

Note: tCK = 1 / fMASTER: where fMASTER is the input clock to the peripheral configured using the 
clock control register.

The minimum allowed value is 0x04, except in the FAST DUTY mode, where the minimum 
allowed is 0x01.

thigh = tr(SCL) + tw(SCLH). See product datasheet for the definitions of parameters.

tlow = tf(SCL) + tw(SCLL). See product datasheet for the definitions of parameters.

I2C communication speed, Fscl = 1 / (tHIGH + tLOW).

7 6 5 4 3 2 1 0

CCR [7:0]

r/w
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23.10.12 I2C_CCRH (clock control high)

Offset: 0x0C

Default value: 0x00

         

Bit 3-0: CCR[11:8] clock control register in the fast/standard mode (master mode)

Controls the SCLH clock in the master mode.

• Standard mode:

Period (I2C) = 2 * CCR * tMASTER

tHIGH = CCR * tMASTER

tLOW = CCR * tMASTER

• Fast mode:

If DUTY = 0:

Period (I2C) = 3 * CCR * tMASTER

tHIGH = CCR * tMASTER

tLOW = 2 * CCR * tMASTER

If DUTY = 1: (to reach 400 kHz)

Period (I2C) = 25 * CCR * tMASTER

tHIGH = 9 * CCR * tMASTER

tLOW = 16 * CCR * tMASTER

For instance: in the standard mode, to generate a 100 kHz SCL frequency:

If FREQR = 08, tMASTER = 125 ns, so CCR must be programmed with 0x28

 (0x28 → 40d x 125 ns = 5000 ns).

Note: thigh = tr(SCL) + tw(SCLH). See the product datasheet for the definitions of parameters.

tlow = tf(SCL) + tw(SCLL). See the product datasheet for the definitions of parameters.

The CCR registers must be configured only when the I2C is disabled (PE = 0).

fMASTER = multiple of 10 MHz is required to generate the fast clock at 400 kHz.

fMASTER ≥ 1 MHz is required to generate the standard clock at 100 kHz.

Bit 5-4 RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 6: DUTY fast mode duty cycle

0: fast mode tLOW / tHIGH = 2

1: fast mode tLOW / tHIGH = 16/9 (see CCR) 

Bit 7: F/S I2C master mode selection

0: standard mode I2C

1: fast mode I2C

7 6 5 4 3 2 1 0

F/S DUTY RFU CCR [11:8]

r/w r/w r r/w
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23.10.13 I2C_TRISER (time rise register)

Offset: 0x0D

Default value: 0x02

         

Bit 5-0: TRISE[5:0] maximum rise time in the fast/standard mode (master mode)

These bits must be programmed with the maximum SCL rise time given in the I2C bus 
specification, incremented by 1.

For instance: in the standard mode, the maximum allowed SCL rise time is 1000 ns. If 
the value in the I2CFREQR register = 0x08, then tMASTER = 125 ns, therefore the 
TRISE bits must be programmed with 0x09.

(1000 ns / 125 ns = 8 + 1).

The filter value can also be added to the TRISE[5:0] if the result is not an integer, the 
TRISE[5:0] must be programmed with the integer part, in order to respect the tHIGH 
parameter.

Bit 7-6: RFU reserved; must be kept 0 during register writing for future compatibility.

Note: The TRISE[5:0] must be configured only when the I2C is disabled (PE = 0).

7 6 5 4 3 2 1 0

RFU TRISE [5:0]

r r/w
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23.11 I2C registers overview

Table 44 details the I2C internal registers starting from the base address specified on the 
corresponding device datasheet (DS); for detailed registers description refer to 
Section 23.10.

         

Table 44. I2C internal registers overview

Name Description Offset Type Reset value

I2C_CR1 Control register1 0x00 R/W 0x00

I2C_CR2 Control register2 0x01 R/W 0x00

I2C_FREQ Control frequency register 0x02 R/W 0x00

I2C_OARL Own address register LSB 0x03 R/W 0x00

I2C_OARH Own address register MSB 0x04 R/W 0x00

RFU Reserved 0x05

I2C_DR Data register 0x06 R/W 0x00

I2C_SR1 Status register1 0x07 R 0x00

I2C_SR2 Status register2 0x08 R/WC 0x00

I2C_SR3 Status register3 0x09 R 0x00

I2C_ITR Interrupt register 0x0A R/W 0x00

I2C_CCRL Clock control register low 0x0B R/W 0x00

I2C_CCRH Clock control register high 0x0C R/W 0x00

I2C_TRISER Time rise register 0x0D R/W 0x02
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24 Universal asynchronous receiver transmitter (UART)

24.1 UART main features

The following section describes the UART main features:

• SW flow control operating mode

• Full duplex, asynchronous communications

• High precision baud rate generator system

– Common programmable transmit and receive baud rates up to fMASTER/16

• Programmable data word length (8 or 9 bits)

• Configurable stop bits - support for 1 or 2 stop bits

• Separate enable bits for transmitter and receiver

• Transfer detection flags:

– Receive buffer full

– Transmit buffer empty

– End of transmission flags

• Parity control:

– Transmits parity bit

– Checks parity of received data byte

• 4 error detection flags:

– Overrun error

– Noise error

– Frame error

– Parity error

• 6 interrupt sources with flags:

– Transmit data register empty

– Transmission complete

– Receive data register full

– Idle line received

– Overrun error

– Parity error

• 2 interrupt vectors:

– Transmitter interrupt

– Receiver interrupt

• Reduced power consumption mode

• Wakeup from the mute mode (by idle line detection or address mark detection)

• 2 receiver wakeup modes:

– Address bit (MSB)

– Idle line
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24.2 UART functional description

The UART interface is based on two primary signals: 

UART_RX is the serial data input. Oversampling techniques are used for data recovery by 
discriminating between valid incoming data and noise.

UART_TX is the serial data output. When the transmitter is disabled, the output pin returns 
to its I/O port configuration. When the transmitter is enabled and there is no transmission, 
this pin stays at a high level.

The UART_TX and UART_RX lines are alternate multifunction signals assigned to 
predefined device pins through the I/O multiplex mechanism described in the product 
datasheet. 

Through these pins, serial data are transmitted and received in the normal UART mode as 
frames comprising:

• An idle line prior to transmission or reception

• A start bit

• A data word (8 or 9 bits) least significant bit first

• 1 or 2 stop bits indicating that the frame is complete

The UART logic interface uses the following internal group of registers:

• A status register (UART_SR)

• Control registers (UART_CRx)

• A data register (UART_DR)

• A 16-bit baud rate prescaler (UART_BRR)

24.2.1 UART character description

Word length may be selected as being either 8 or 9 bits by programming the M bit in the 
UART_CR1 register.

The UART_TX pin is in the low state during the start bit. It is in the high state during the stop 
bit.

An idle character is interpreted as an entire frame of 1's (the number of 1's includes the 
start bit, the number of data bits and the number of stop bits).

A break character is interpreted on receiving 0's for a frame period. At the end of the break 
frame the transmitter inserts either 1 or 2 stop bits (logic “1” bit) to acknowledge the start bit.

Transmission and reception are driven by a common baud rate generator; the clock is 
generated when the enable bit is set respectively for the transmitter and receiver.
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Figure 61. Word length programming

24.2.2 UART transmitter

The transmitter can send data words of either 8 or 9 bits depending on the M bit status. 
When the M bit is set, word length is 9 bits and the 9th bit (the MSB) is stored in the T8 bit in 
the UART_CR1 register.

When the transmit enable (TEN) bit of the UART_CR2 register is set, the data in the 
transmit shift register is the output on the UART_TX pin. 

Character transmission

During an UART transmission, data shift out the least significant bit first on the UART_TX 
pin. In this mode, the UART_DR register consists of a buffer (TDR) between the internal bus 
and the transmit shift register.

Every character is preceded by a start bit which is a logic level low for one bit period. The 
character is terminated by a configurable number of stop bits.

Note: 1. The TEN bit should not be reset during transmission of data. Resetting the TEN bit during 
the transmission will corrupt the data on the UART_TX pin as the baud rate counters will get 
frozen. The current data being transmitted will be lost.

2. An idle frame will be sent after the TEN bit is enabled.

Configurable stop bits

The number of stop bits to be transmitted with every character can be programmed in the 
control register 3, bits 5, 4.

• 1 stop bit: This is the default value of number of stop bits.

• 2 stop bits.
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An idle frame transmission will include the stop bits. 

A break transmission consists of 10 low bits followed by the configured number of stop bits 
(when m = 0) and 11 low bits followed by the configured number of stop bits (when m = 1). It 
is not possible to transmit long breaks (break of length greater than 10/11 low bits).

TX firmware procedure:

1. Program the M bit in the UART_CR1 to define the word length.

2. Program the number of stop bits in the UART_CR3.

3. Select the desired baud rate by programming the baud rate registers in the following 
order:

a) UART_BRR2

b) UART_BRR1

4. Set the TEN bit in the UART_CR2 to enable the transmitter mode.

5. Write the data to send in the UART_DR register (this clears the TXE bit). Repeat this 
for each data to be transmitted. 

6. Once the last data are written to the UART_DR register, wait until the TC bit of the 
UART_SR register is set to '1', which means that the last data transmission is 
completed. This last step is required, for instance, to avoid the last data transmission 
corruption when disabling the UART or entering the Halt mode.

Single byte communication

Clearing the TXE bit is always performed by a write to the data register. 

The TXE bit is set by hardware and it indicates:

• The data has been moved from the TDR to the shift register and the data transmission 
has started. 

• The TDR register is empty. 

• The next data can be written in the UART_DR register without overwriting the previous 
data.

This flag generates an interrupt if the TIEN bit is set.

While transmission is taking place, a write instruction to the UART_DR register stores the 
data in the TDR register. The data are copied in the shift register at the end of the current 
transmission.

When no transmission is taking place, a write instruction to the UART_DR register places 
the data directly in the shift register, the data transmission starts, and the TXE bit is 
immediately set.

If a frame transmission is complete (after the stop bit) and the TXE bit is set, the TC bit is 
set. An interrupt is generated if the TCIEN is set in the UART_CR2 register. After writing the 
last data in the UART_DR register, it is mandatory to wait until the TC is set to '1' before 
entering the Halt mode or disabling the UART (see Figure 62).

The following software sequence is required to clear the TC bit:

• Read from the UART_SR register.

• Write to the UART_DR register.



DocID026249 Rev 1 265/335

RM0380 Universal asynchronous receiver transmitter (UART)

335

Figure 62. TC/TXE behavior when transmitting

Note: The TC bit can also be cleared by writing a '0' to it.

Break character

Setting the SBK bit transmits a break character. The break frame length depends on the M 
bit (see Figure 61).

If the SBK bit is set to '1' a break character is sent on the UART_TX line after completing the 
current character transmission. This bit is reset by hardware when the break character is 
completed (during the stop bit of the break character). The UART inserts a logic 1 bit at the 
end of the last break frame to guarantee the recognition of the start bit of the next frame.

Note: 1. The break character is sent without taking into account the number of stop bits. If the 
UART is programmed with 2 stop bits, the TX line is pulled low until the end of the first stop 
bit only. Then 2 logic 1 bits are inserted before the next character.

2. If the software resets the SBK bit before the start of break transmission, the break 
character is not transmitted. For two consecutive breaks, the SBK bit should be set after the 
stop bit of the previous break.

Idle character

Setting the TEN bit drives the UART to send an idle frame before the first data frame.

24.2.3 UART receiver

The UART can receive data words of either 8 or 9 bits. When the M bit is set, word length is 
9 bits and the MSB is stored in the R8 bit in the UART_CR1 register.

Start bit detection

In the UART, the start bit is detected when a specific sequence of samples is recognized. 
The start bit detection sequence shown in Figure 63.
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Figure 63. Start bit detection

Note: If the sequence is not complete, the start bit detection aborts and the receiver returns to the 
idle state (no flag is set), where it waits for a falling edge.

If only 2 out of the 3 bits are at 0 (sampling on the 3rd, 5th and 7th bits or sampling on the 8th, 
9th and 10th bits), the start bit is validated but the NF noise flag bit is set. 

The start bit is confirmed if the last 3 samples bits are at 0 (sampling on the 8th, 9th, and 10th 
bits).

Character reception

During a UART reception, data shift in the least significant bit first through the UART_RX 
pin. In this mode, the UART_DR register consists of a buffer (RDR) between the internal bus 
and the received shift register.

RX firmware procedure

1. Program the M bit in the UART_CR1 to define the word length. 

2. Program the number of stop bits in the UART_CR3.

3. Select the desired baud rate by programming the baud rate registers in the following 
order:

a) UART_BRR2 

b) UART_BRR1

4. Set the REN bit UART_CR2. This enables the receiver which begins searching for 
a start bit.
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When a character is received:

• The RXNE bit is set. It indicates that the content of the shift register is transferred to the 
RDR.

• An interrupt is generated if the RIEN bit is set.

• The error flags can be set if a frame error, noise or an overrun error has been detected 
during reception.

• Clearing the RXNE bit is performed by software reading the UART_DR register. The 
RXNE flag can also be cleared by writing a zero to it. The RXNE bit must be cleared 
before the end of the reception of the next character to avoid an overrun error.

Note: The REN bit should be not reset while receiving data. If the REN bit is disabled during 
reception, the reception of the current byte will be aborted.

Break character

When a break character is received, the UART handles it as a framing error.

Idle character

When an idle frame is detected, there is the same procedure as a data received character 
plus an interrupt if the ILIEN bit is set.

Overrun error

An overrun error occurs when a character is received when the RXNE has not been reset. 
Data cannot be transferred from the shift register to the RDR register until the RXNE bit is 
cleared.

When an overrun error occurs:

• The OR bit is set.

• The RDR content will not be lost. The previous data are available when a read to the 
UART_DR is performed.

• The shift register will be overwritten. The second data received during the overrun is 
lost.

• An interrupt is generated if the RIEN bit is set.

• The OR bit is reset by a read to the UART_SR register followed by a UART_DR 
register read operation.

Noise error

Oversampling techniques are used for data recovery by discriminating between valid 
incoming data and noise.
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Figure 64. Data sampling for noise detection

Note: The sample clock frequency is 16 x the baud rate.

         

When noise is detected in a frame:

• The NF is set at the rising edge of the RXNE bit.

• The invalid data are transferred from the shift register to the UART_DR register.

This bit rises at the same time as the RXNE bit which generates an interrupt. The NF bit is 
reset by a UART_SR register read operation followed by a UART_DR register read 
operation.

Framing error

A framing error is detected when:

The stop bit is not recognized on reception at the expected time, following either
a desynchronization or excessive noise.

When the framing error is detected:

• The FE bit is set by hardware

• The invalid data are transferred from the shift register to the UART_DR register.

• No interrupt is generated in case of single byte communication. However, this bit rises 
at the same time as the RXNE bit which itself generates an interrupt.

The FE bit is reset by a UART_SR register read operation followed by a UART_DR register 
read operation.

Table 45. Noise detection from sampled data

Sampled value NF status Received bit value Data validity

000 0 0 Valid

001 1 0 Not valid

010 1 0 Not valid

011 1 1 Not valid

100 1 0 Not valid

101 1 1 Not valid

110 1 1 Not valid

111 0 1 Valid
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Configurable stop bits during reception:

The number of stop bits to be received can be configured through the control bits of the 
UART_CR3 register to the following possible values:

1. Stop bit: default value. Sampling for 1 stop bit is done on the 8th, 9th and 10th samples.

2. Stop bits: sampling for 2 stop bits is done on the 8th, 9th and 10th samples of the first 
stop bit. If a framing error is detected during the first stop bit, the framing error flag will 
be set. The second stop bit is not checked for framing error. The RXNE flag will be set 
at the end of the first stop bit.

Baud rate generator

The receiver and transmitter (Rx and Tx) are both set to the same baud rate register, 
programmed by a 16-bit divider UART_DIV according to the following formula:

Equation 24

          

The UART_DIV baud rate divider is an unsigned integer, coded in the UART_BRR1 and 
UART_BRR2 registers as shown in Figure 65.

Figure 65. UART baud rate generator

Note: The baud counters will be updated with the new value of the baud registers after a write to 
the BRR1. Hence the baud register value should not be changed during a transaction. The 
UART_BRR2 should be programmed before the UART_BRR1 register.

The UART_DIV must be greater than or equal to 16d.

UART _DIV
f   rate baudRx Tx/ MASTER=
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24.2.4 Parity control

Parity control (generation of the parity bit in transmission and parity checking in reception) 
can be enabled by setting the PCEN bit in the UART_CR1 register. Depending on the frame 
length defined by the M bit, the possible UART frame formats are as listed in Table 47.

         

Note: 1. Legends: SB: start bit, STB: stop bit, PB: parity bit.

In case of wakeup by an address mark, the MSB bit of the data is taken into account and not 
the parity bit.

Even parity:

The parity bit is calculated to obtain an even number of “1s” inside the frame made of 
the 7 or 8 LSB bits (depending on whether the M is equal to 0 or 1) and the parity bit.

Example 1

Data = 00110101; 4 bits set => the parity bit will be 0 if even parity is selected (the PS 
bit in the UART_CR1 = 0).

Table 46. Baud rate programming and error calculation

Baud rate 
in kbps

fMASTER = 10 MHz(1) fMASTER = 16 MHz(1)

Actual %error(2) UART_DIV BRR1 BRR2 Actual %error(2) UART_DIV BRR1 BRR2

2.4 2.399 -0.008% 0x1047 0x04 0x17 2.399 -0.005% 0x1A0B 0xA0 0x1B

9.6 9.596 -0.032% 0x0412 0x41 0x02 9.598 -0.020% 0x0693 0x68h 0x03

19.2 19.193 -0.032% 0x0209 0x20 0x09 19.208 -0.040% 0x0341 0x34 0x01

57.6 57.471 -0.224% 0x00AE 0x0A 0x0E 57.554 -0.080% 0x0116 0x11 0x06

115.2 114.942 -0.224% 0x0057 0x05 0x07 115.108 -0.080% 0x008B 0x08 0x0B

230.4 232.558 -0.937% 0x002B 0x02 0x0B 231.884 -0.644% 0x0045 0x04 0x05

460.8 454.545 -1.358% 0x0016 0x01 0x06 457.143 -0.794% 0x0023 0x02 0x03

921.6 NA NA NA NA NA 941.176 -2.124% 0x0011 0x01 0x01

1. The lower the fMASTER frequency, the lower will be the accuracy for a particular baud rate. The upper limit of the achievable 
baud rate is shown in the table.

2. Error % = the (calculated - desired) baud rate / the desired baud rate.

Table 47. Frame format

M bit PCEN bit UART frame

0 0 | SB | 8 bit data | STB |

0 1 | SB | 7-bit data | PB | STB |

1 0 | SB | 9-bit data | STB |

1 1 | SB | 8-bit data PB | STB |
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Odd parity:

The parity bit is calculated to obtain an odd number of “1s” inside the frame made of the 
7 or 8 LSB bits (depending on whether the M is equal to 0 or 1) and the parity bit.

Example 2

Data = 00110101; 4 bits set => the parity bit will be 1 if odd parity is selected (the PS bit 
in the UART_CR1 = 1).

Transmission:

If the PCEN bit is set in the UART_CR1 then the MSB bit of the data written in the data 
register is not transmitted but is changed by the parity bit to give an even number of '1's 
if even parity is selected (PS = 0) or an odd number of '1's if odd parity is selected 
(PS = 1).

Reception:

If the parity check fails, the PE flag is set in the UART_SR register and an interrupt is 
generated if the PIEN bit is set in the UART_CR1 register.

24.2.5 Multi-processor communication

It is possible to perform multi-processor communication with the UART (several UARTs 
connected in a network). For example, one of the UARTs can be the master and its TX 
output is connected to the RX input of the other UART. The others are slaves and their 
respective TX outputs are logically ANDed together and connected to the RX input of the 
master.

In multi-processor configurations it is often desirable that only the intended message 
recipient should actively receive the full message contents, thus reducing redundant UART 
service overhead for all non-addressed receivers.

The non-addressed devices may be placed in the mute mode by means of the muting 
function.

In mute mode:

• None of the reception status bits can be set.

• All the receive interrupts are inhibited.

• The RWU bit in the UART_CR1 register is set to 1. the RWU can be controlled 
automatically by hardware or written by the software under certain conditions.

The UART can enter or exit from the mute mode using one of two methods, depending on 
the WAKE bit in the UART_CR1 register:

• Idle line detection if the WAKE bit is reset,

• Address mark detection if the WAKE bit is set.

Idle line detection (WAKE = 0)

The UART enters the mute mode when the RWU bit is written to 1. It wakes up when an idle 
frame is detected. Then the RWU bit is cleared by hardware but the IDLE bit is not set in the 
UART_SR register. The RWU can also be written to 0 by software. 

An example of the mute mode behavior using idle line detection is given in Figure 66.
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Figure 66. Mute mode using idle line detection

Address mark detection (WAKE = 1)

In this mode, bytes are recognized as addresses if their MSB is a '1', else they are 
considered as data. In an address byte, the address of the targeted receiver is put on the 4 
LSB. This 4-bit word is compared by the receiver with its own address which is programmed 
in the ADD bits in the UART_CR4 register.

The UART enters the mute mode when an address character is received which does not 
match its programmed address. The RXNE flag is not set for this address byte and no 
interrupt request is issued as the UART would have entered the mute mode.

It exits from the mute mode when an address character is received which matches the 
programmed address. Then the RWU bit is cleared and subsequent bytes are received 
normally. The RXNE bit is set for the address character since the RWU bit has been 
cleared.

The RWU bit can be written to 0 or 1 when the receiver buffer contains no data (RXNE = 0 in 
the UART_SR register). Otherwise the write attempt is ignored.

An example of the mute mode behavior using address mark detection is given in Figure 67.

Figure 67. Mute mode using address mark detection

Note: If parity control is enabled, the parity bit remains in the MSB and the address bit is put in the 
“MSB - 1" bit.

For example, with 7-bit data, the address mode and parity control:

SB I 7-bit data I ADD I PB I STB where:

SB = start bit, STB = stop bit, ADD = address bit, PB = parity bit.
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24.3 UART low power mode
         

24.4 UART interrupts
         

Note: 1. The UART interrupt events are connected to two interrupt vectors (see Figure 68).

a) Transmission complete or transmit data register empty interrupt.

b) Idle line detection, overrun error, receive data reg. full, parity error interrupt, and 
noise flag.

These events generate an interrupt if the corresponding enable control bit is set and the 
interrupt mask in the CC register is reset (RIM instruction).

Table 48. UART low power mode

UART interface behavior in low power modes

Mode Description

Wait
No effect on the UART.

UART interrupts cause the device to exit from the wait mode.

Halt
UART registers are frozen.

In the Halt mode, the UART stops transmitting/receiving until the Halt mode is exited.

Table 49. UART interrupt request

Interrupt event Event flag Enable control bit Exit from wait Exit from Halt

Transmit data register empty TXE TIEN Yes No

Transmission complete TC TCIEN Yes No

Received data ready to be read RXNE RIEN Yes No

Overrun error detected OR Yes No

Idle line detected IDLE ILIEN Yes No

Parity error PE PIEN Yes No
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Figure 68. UART Interrupt mapping diagram

24.5 UART registers description

24.5.1 UART_SR (status register)

Offset: 0x00

Default value: 0xC0

         

Bit 0: PE parity error

This bit is set by hardware when a parity error occurs in the receiver mode. It is cleared 
by a software sequence (a read to the status register followed by a read to the 
UART_DR data register). An interrupt is generated if the PIEN = 1 in the UART_CR1 
register.

0: no parity error.

1: parity error.

7 6 5 4 3 2 1 0

TXE TC RXNE IDLE OR NF FE PE

r rc_w0 rc_w0 r r r r r
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Bit 1: FE framing error(am)

This bit is set by hardware when a desynchronization, excessive noise or a break 
character is detected. It is cleared by a software sequence (a read to the UART_SR 
register followed by a read to the UART_DR register).

0: no framing error is detected.

1: framing error or break character is detected.

Bit 2: NF noise flag(an)

This bit is set by hardware when noise is detected on a receiver frame. It is cleared by 
a software sequence (a read to the UART_SR register followed by a read to the 
UART_DR register).

0: no noise is detected.

1: noise is detected.

Bit 3: OR overrun error(ao)

This bit is set by hardware when the word currently being received in the shift register is 
ready to be transferred into the RDR register while the RXNE = 1. An interrupt is 
generated if the RIEN = 1 in the UART_CR2 register. It is cleared by a software 
sequence (a read to the UART_SR register followed by a read to the UART_DR 
register).

0: no overrun error.

1: overrun error is detected.

Bit 4: IDLE IDLE line detected(ap)

This bit is set by hardware when an idle line is detected. An interrupt is generated if the 
ILIEN = 1 in the UART_CR2 register. It is cleared by a software sequence 
(a read to the UART_SR register followed by a read to the UART_DR register).

0: no idle line is detected.

1: idle line is detected.

Bit 5: RXNE read data register not empty

This bit is set by hardware when the content of the RDR shift register has been 
transferred to the UART_DR register. An interrupt is generated if the RIEN = 1 in the 
UART_CR2 register. It is cleared by a read to the UART_DR register.

0: data are not received.

1: receiver data are ready to be read.

am.This bit does not generate interrupt as it appears at the same time as the RXNE bit which itself generates an 
interrupt. If the word currently being transferred causes both frame error and overrun error, it will be transferred 
and only the OR bit will be set.

an. This bit does not generate interrupt as it appears at the same time as the RXNE bit which itself generates an 
interrupt.

ao. When this bit is set, the RDR register content will not be lost but the shift register will be overwritten.

ap. The IDLE bit will not be set again until the RXNE bit has been set itself (i.e. a new idle line occurs).
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Bit 6: TC transmission complete

This bit is set by hardware when transmission of a frame containing data is complete. 
An interrupt is generated if the TCIEN = 1 in the UART_CR2 register. It is cleared by 
a software sequence (a read to the UART_SR register followed by a read to the 
UART_DR register).

0: transmission is not complete.

1: transmission is complete.

Bit 7: TXE transmit data register empty

This bit is set by hardware when the content of the TDR register has been transferred 
into the shift register. An interrupt is generated if the TIEN bit = 1 in the UART_CR2 
register. It is cleared by a write to the UART_DR register.

0: data are not transferred to the shift register.

1: data are transferred to the shift register.

24.5.2 UART_DR (data register)

Offset: 0x01

Default value: -

         

Bit 7-0: DR[7:0] data value

Contains the received or transmitted data character, depending on whether it is read 
from or written to.

The data register performs a double function (read and write) since it is composed of 
two registers, one for transmission (TDR) and one for reception (RDR).

The TDR register provides the parallel interface between the internal bus and the 
output shift register.

The RDR register provides the parallel interface between the input shift register and the 
internal bus.

24.5.3 UART_BRR1 (baud rate 1 register)

Offset: 0x02

Default value: 0x00

         

The baud rate registers are common to both the transmitter and the receiver. The baud rate 
is programmed using two registers UART_BRR1 and UART_BRR2. Writing of the 
UART_BRR2 (if required) should precede the UART_BRR1, since a write to the 
UART_BRR1 will update the baud counters.

7 6 5 4 3 2 1 0

DR [7:0]

r/w

7 6 5 4 3 2 1 0

UART_DIV [11:4]

r/w
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Bit 7-0: UART_DIV[11:4] LSB mantissa of UART_DIV

These bits define the LSB value of the mantissa of the UART divider (UART_DIV).

The rounded mantissa is:

0x00: UART clock disabled

0x01: 1

0x02: 2

0x03: 3

…

0xFE: 254

0xFF: 255

Note: The baud counters stop counting if the TEN or REN bits are disabled respectively.

24.5.4 UART_BRR2 (baud rate 2 register)

Offset: 0x03

Default value: 0x00

         

Bit 3-0: UART_DIV[3:0] fraction bits of UART_DIV

These bits define the value of the fraction of the UART divider (UART_DIV).

The fraction is:

0x0: 0

0x1: 1/16

0x2: 2/16

0x3: 3/16

…

0xE: 14/16

0xF: 15/16

Bit 7-4: UART_DIV[15:12] MSB mantissa of UART_DIV

These bits define the MSB value of the mantissa of the UART divider (UART_DIV).

7 6 5 4 3 2 1 0

UART_DIV [15:12] UART_DIV [3:0]

r/w r/w
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24.5.5 UART_CR1 (control register 1)

Offset: 0x04

Default value: 0x00

         

Bit 0: PIEN parity interrupt enable

This bit is set and cleared by software.

0: parity interrupt disabled.

1: parity interrupt enable; an interrupt is generated whenever the PE = 1 in the 
UART_SR register.

Bit 1: PS parity selection

This bit selects the odd or even parity when the parity generation/detection is enabled 
(the PCEN bit set). It is set and cleared by software. The parity will be selected after the 
current byte.

0: even parity.

1: odd parity.

Bit 2: PCEN parity control enable

This bit selects the hardware parity control (generation and detection). When the parity 
control is enabled, the computed parity is inserted at the MSB position (9th bit if M = 1, 
8th bit if M = 0) and parity is checked on the receiver data. This bit is set and cleared by 
software. Once it is set, the PCEN is active after the current byte (in reception and in 
transmission).

0: parity control disabled.

1: parity control enabled.

Bit 3: WAKE wakeup method

This bit determinates the UART wakeup method; it is set and cleared by software.

0: idle line.

1: address mark.

Bit 4: M word length

This bit determinates the word length. It's set and cleared by software.

0: 1 start bit, 8 data bits, n stop bits.

1: 1 start bit, 9 data bits, 1 stop bit.

Note: The M bit must not be modified during a data transfer (both transmission and reception).

Bit 5: UARTD UART disable (for low power consumption)

When this bit is set, the UART outputs are stopped at the end of the current byte 
transfer in order to reduce power consumption. This bit is set and cleared by software.

0: UART enabled.

1: UART prescaler and output disabled.

7 6 5 4 3 2 1 0

R8 T8 UARTD M WAKE PCEN PS PIEN

r/w r/w r/w r/w r/w r/w r/w r/w
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Bit 6: T8 transmit data bit 8.

This bit is used to store the 9th bit of the transmitted word when M = 1.

Bit 7: R8 receive data bit 8.

This bit is used to store the 9th bit of the receiver word when M = 1.

24.5.6 UART_CR2 (control register 2)

Offset: 0x05

Default value: 0x00

         

Bit 0: SBK send break

This bit is used to send break characters. It is set and cleared by software. It should be 
set by software, and will be reset by hardware during the stop bit of the break.

0: no break character is transmitted.

1: break character is transmitted.

Bit 1: RWU receiver wakeup.

This bit determines if the UART is in the mute mode or not. It is set by and cleared by 
software and can be cleared by hardware when a wakeup sequence is recognized.

0: receiver in active mode.

1: receiver in mute mode.

Note: 1. Before selecting the mute mode (by setting the RWU bit) the UART must first receive 
a data byte, otherwise it cannot function in the mute mode with wakeup by idle line 
detection.

2. In address mark detection wakeup configuration (WAKE bit = 1) the RWU bit cannot be 
modified by software while the RXNE bit is set.

Bit 2: REN receiver enable

This bit enables the receiver. It is set and cleared by software.

0: receiver is disabled.

1: receiver is enabled and begins searching for a start bit.

Bit 3: TEN transmitter enable

This bit enables the transmitter. It is set and cleared by software.

0: transmitter disable.

1: transmitter is enabled.

Note: 1. During transmission a “0” pulse on the TE bit (“0” followed by “1”) sends a preamble (idle 
line) after the current word.

2. When the TE is set there is a 1 bit-time delay before the transmission starts.

7 6 5 4 3 2 1 0

TIEN TCIEN RIEN ILIEN TEN REN RWU SBK

r/w r/w r/w r/w r/w r/w r/w r/w
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Bit 4: ILIEN IDLE line interrupt enable

This bit is set and cleared by software.

0: interrupt disable.

1: a UART interrupt is generated whenever the IDLE = 1 in the UART_SR register.

Bit 5: RIEN receiver interrupt enable

This bit is set and cleared by software.

0: interrupt disable.

1: a UART interrupt is generated whenever the OR = 1 or RXNE = 1 in the UART_SR 
register.

Bit 6: TCIEN transmission complete interrupt enable

This bit is set and cleared by software.

0: interrupt disable.

1: a UART interrupt is generated whenever the TC = 1 in the UART_SR register.

Bit 7: TIEN transmitter interrupt enable

This bit is set and cleared by software.

0: interrupt disable.

1: a UART interrupt is generated whenever the TXE = 1 in the UART_SR register.

24.5.7 UART_CR3 (control register 3)

Offset: 0x005236

Default value: 0x00

         

Bit 3-0: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 5:4:STOP[1:0] clock enable

These bits are used for programming the stop bits.

00: 1 stop bit

01: reserved

10: 2 stop bits

11: reserved

Bit 7-6: RFU reserved; must be kept 0 during register writing for future compatibility.

7 6 5 4 3 2 1 0

RFU RFU STOP[1:0] RFU RFU RFU RFU

r r r/w r r r r
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24.5.8 UART_CR4 (control register 4)

Offset: 0x07

Default value: 0x00

         

Bit 3-0: ADD[3:0] address of UART node

This bit-field gives the address of the UART node.

This is used in multiprocessor communication during the mute mode, for wakeup with 
address mark detection.

Bit 7-4: RFU reserved; must be kept 0 during register writing for future compatibility.

24.6 UART registers overview

Table 50 shows the UART internal registers starting from the base address specified on the 
corresponding device datasheet (DS); for detailed register description refer to Section 24.5.

         

7 6 5 4 3 2 1 0

RFU RFU RFU RFU ADD[3:0]

r r r r r/w

Table 50. UART internal registers overview

Name Description Offset Type Reset value

UART_SR Status register 0x00 R_W 0xC0

UART_DR Data register 0x01 R/W Undefined

UART_BRR1 Baud rate register1 0x02 R/W 0x00

UART_BRR2 Baud rate register2 0x03 R/W 0x00

UART_CR1 Control register1 0x04 R/W 0x00

UART_CR2 Control register2 0x05 R/W 0x00

UART_CR3 Control register3 0x06 R/W 0x00

UART_CR4 Control register4 0x07 R/W 0x00
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25 Digital addressable lighting interface (DALI)

The DALI (“Digital Addressable Lighting Interface”), standardized as IEC 62386, is the 
standard interface for lighting controls solutions defined by the lighting industry.

The DALI communication module (DCM) is a serial communication circuit designed for 
controllable electronic ballasts. Ballast is the common name for circuit topologies used to 
provide the required starting voltage and operating current for fluorescent, mercury or other 
electronic-discharge lamps.

25.1 DALI main features

• 8-bit forward address register for addressing

• Interoperability with different forward message length: 16, 17, 18 and 24 bits

• 8-bit forward and backward data registers

• 1.2, 2.4 and 4.8 kHz speed line rate ± 10%

• Bi-directional communications type

• Monitor receiver line timeout 500 ms ± 10%

• Polarity configurable on DALI_rx, DALI_tx signal lines

• Configurable noise rejection filter on DALI_rx input line

• DALI peripheral clock is slowdown to 153.6 kHz in low-speed mode

• Maskable interrupt
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25.2 DALI block diagram

Figure 69 shows the block description of DALI communication module.

Figure 69. DALI block diagram

25.3 DALI functional overview

The DALI protocol uses the bi-phase Manchester asynchronous serial data format. All the 
bits of the frame are bi-phase encoded except the two stop bits. The default transmission 
rate is about 1.2 kHz. The bi-phase bit period is 833.33 μs ± 10%.

A forward frame consists of 19, 20, 21 or 27 bi-phase encoded bits, depending on message 
length configuration:

• 1 start bit (0->1: logical '1')

• A message body that takes 16, 17, 18 or 24 bits depending on message length

• 2 high level stop bits (no change of the phase)

A backward frame consists of 11 bi-phase encoded bits:

• 1 start bit (0->1: logical '1')

• 1 data byte (8-bit data)

• 2 high level stop bits (no change of the phase).
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An outline picture of the DALI frame format and transfer sequences is shown in Figure 70.

Figure 70. DALI transfer sequences

A forward frame consists of a 1 bi-phase encoded start bit (logical '1') and a message body; 
the message body could be 16, 17, 18 or 24 bi-phase encoded bits depending on the 
programmed length. The frame is terminated by 2 stop bits (idle). The stop bits do not 
contain any change of the phase. The configuration of the forward frame length is fixed by 
register programming. The receiver expects a frame of the exact programmed length. 
Currently it's not possible to manage a shorter frame as a subset. E.g.: if a 17-bit length is 
configured, the peripheral cannot manage 16-bit frames and treats the case as an error. 
Anytime users can reset and reprogram the peripheral in order to change the length of the 
accepted forward frame.

A backward frame consists of 11 bi-phase encoded bits: a 1 start bit (logical '1') and a 1 data 
byte. The frame is terminated by 2 stop bits (idle). The stop bits do not contain any change 
of the phase.

The DALI speed rate may be configured at 1.2, 2.4 or 4.8 kHz for both the forward and 
backward channels.

The settling time between two subsequent forward frames is 9.17 ms (minimum). The 
settling time between forward and backward frames is between 2.92 ms and 9.17 ms. If 
a backward frame has not been started after 9.17 ms, this is interpreted as “no answer”.

In case of code violation, the frame is ignored and the error flag bit EF in the DALI_CSR 
register is set.

After a code violation has occurred, the system is ready again for a new data reception.
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25.4 Monitor receiver line

An internal watchdog timer monitors the activity of the receiver line; if the DALI receiver line 
is not idle within an elapse time of ~500 ms ± 10%, an interrupt request is asserted to the 
processor notifying that the DALI receiver line is in the hang state. This functionality is 
configured through the DALI internal registers (refer to Section 25.10: DALI registers 
description on page 291).

25.5 DALI signal interface

The DALI_rx and DALI_tx signals are multifunction pins configured through the I/O multiplex 
mechanism described in the product datasheet.

25.5.1 Polarity configurable signal interface

This feature allows programming independently the reverse polarity of the DALI_tx and 
DALI_rx signal lines in accordance with the DALI standard requirements to extend the 
interoperability with different external transceivers.

The default configuration after the reset corresponds to the DALI standard, where both 
transmit and receive lines are set to 1 while in the idle state.

25.5.2 Start bit handling

To correctly support waking up from the Halt mode using the DALI Rx line without losing 
incoming forward frames, the start bit recognition may be configured in two distinct modes 
(refer to the SMK bit in Section 25.10.7: DALI_CR (control register) on page 293).

In the HALT mode the wakeup time is particularly long and there is the possibility that the 
DALI device is awakened too late to sample a standard start bit (1 * Te low time). In this 
case the first frame is ignored and the system must wait for the frame repetition to accept 
a valid frame.

To avoid this problem when the DALI receive input signal is used to awake the device, the 
SMK bit in the DALI_CR register must be set to 0; this forces the DALI receiver to accept 
a valid start bit also if the signal width of the low phase is less than 1 * Te low.

To correctly set this functionality, the system must enter the HALT mode when the DALI 
device is already in a stable idle condition, that is, the minimum idle time must be already 
elapsed. This condition can be easily verified testing the RDY_REC bit in the DALI_CSR1 
register.

If the system never enters the HALT mode, or if the DALI input line is not used to awake the 
system, the SMK bit of the DALI_CR register should be set to 1; this configures the DALI 
device to be compliant to DALI standard specifications, handling the start bit as a bit set to 1 
(1 * Te low + 1 * Te high) following the idle condition (4 * Te high).

25.5.3 Digital noise rejection filter

A configurable digital filter may be enabled on the DALI rx line to clean-up noise, glitches, 
and ring oscillations (optional feature, check the availability on the product datasheet). 
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The filter has the following main features:

• Configurable source clock

• Clock prescaler 8 bits

• Filter counter 6 bits

• Configurable filter modes

Filter overview

A digital filter may be enabled on the DALI_Rx line when this signal is affected by a noisy, 
glitch or unstable transitions level.

When the digital filter is enabled, the external input pin (DALI Rx signal) is connected to the 
input filter, and the output filter is connected to the internal DALI Rx line. In this configuration 
the DALI device receives an input signal which is glitch-free and with stable levels.

Figure 71 shows an outline view of the DALI noise rejection filter scheme.

Figure 71. Digital input filter interconnection scheme

Note: 1. The register MSC_DALICKSEL includes the register fields: EN and CLK_SEL[2:0].

2. The register MSC_DALICKDIV includes the register field: DIV[7:0].

3. The register MSC_DALICONF includes the register fields: MODE[1:0] and COUNT[5:0].

4. The DALI noise rejection filter registers description is found in the product datasheet.

The filter module may be configured to work with different source clocks and in different 
modes in order to have flexibility on handling different typologies of input noise.

The filter clock may be any of the source clocks available inside the IC device; after being 
prescaled (if it's necessary), it is used as a base clock for the filter timings operations.

Independently from the selected clock source, the filter logic requires always the activation 
of the PLL clock since this is used for input sampling and the internal stage synchronization.
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Filter operating mode

The filter can be configured in three different operating modes as detailed in the next 
paragraph.

• Debounce: when the input of the filter changes the level, the output signal is 
immediately updated, then the input of the filter is masked for the configured period and 
only at the end of the mask period the filter is again sensible to its input. This mode can 
be used to remove bouncing input signals (e.g.: electromechanical contacts).

• Glitch-free: when the input of the filter changes the level, the starting level is stored 
inside the filter, the output signal is unchanged and the configured period is started; at 
the end of the period if the input level is different from the stored level then the output 
signal is updated with the new level. This mode can be used to ignore short pulses 
(glitches) from the input signal (noisy lines).

• Retrigger: this mode is similar to the glitch-free mode with the difference that the filter 
period is restarted at every change of the input level. Only when there are no changes 
on the input signal for the configured filter period, the output signal is updated.

Figure 72 shows an outline view of the filter basic timing operations for the three 
configuration modes.

Figure 72. Filtering modes

Filter timing

The external input signal is always sampled using the internal high-speed PLL clock 
(96 MHz). All the other internal filter activities are based on the CLKFLT derived from 
a prescaled clock source configuration (CLKFLTSEL) refer to Figure 71.

In detail the timing of the internal filter depends on the selected clock, clock divider, clock 
count and internal synchronization periods.
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The filter timing model is detailed by the next equations:

Equation 25

tFLTMIN = 2 * tPLL + 1 * tFLT + Count * tFLT + 1 * tFLT + 3 * tPLL

tFLTMAX = 3 * tPLL + 1 * tFLT + Count * tFLT + 1 * tFLT + 4 * tPLL

where:

tPLL is the period of the PLL internal clock (1 / 96 MHz)

tFLT is the period of the filter clock (CLKFLT prescaled clock)

Count is the value configured in the filter counter register.

The difference between the tFLTMAX and tFLTMIN value depends on the discrete delay due to 
the data sampling for internal synchronization stages.

The noise rejection filter configuration registers are accessible through the indirect address 
space described in the product datasheet.

25.6 DALI data rate

The DALI data rate is programmed by a 10-bits prescale register (DALI_CLK_L and 
DALI_CLK_H) according to the following formula:

Equation 26

fDATA = fMASTER / [(N + 1) * 16]

Where N is the integer value configured to the registers DALI_CLK_L[7:0] and 
DALI_CLK_H[9:8].

Note: The fDATA rate must be configured for the double of the desired speed due to the bi-phase 
Manchester data encoding.

25.7 DALI low power mode
         

Table 51. DALI low power mode

DALI interface behavior in low power modes

Mode Description

Wait
No effect on the DALI.

DALI interrupts cause the device to exit from the wait mode.

Halt

Active-halt
DALI registers are frozen.

In the Halt or Active-halt mode, the DALI stops transmitting/receiving until the exit from 
Halt or Active-halt modes.
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25.8 DALI interrupts

The following interrupts can be generated by the DALI controller:

• ITF: the “backward frame” transmission end or the “forward frame” reception interrupt 
status flag.

• WDGF: the watchdog interrupt line status flag.

Both interrupts are individually maskable (refer to IEN and WDGE bits of the DALI_CSR 
register in Section 25.10.8: DALI_CSR (control and status register) on page 295) and use 
a single interrupt vector. The ISR checks the ITF or WDGF flags to identify the interrupt 
type.

25.9 DALI programming sequences

25.9.1 DALI initialization procedure

To use the DALI peripheral, the user should perform the following steps:

• Setup CKC peripheral registers to start the DALI internal clock source (PCKEN1[3]).

• Setup the DALI prescaler register (DALI_CLK_H and DALI_CLK_L).

• Write the DALI_CR message length.

• Enable the interrupt (the IEN bit and/or WDGE bit on the DALI_CSR register) if 
necessary.

• Setup line polarity as required by the application (the En_Rev bit on the DALI_REVLN 
register).

• Set DCME bit on the DALI_CR register to start the DALI function.

• Poll the DALI_CSR or DALI_CSR1 register or wait interrupt (if enabled) to handle the 
DALI data events.

Note: After the initialization completion (the DCME bit set to enable the device), the DALI 
peripheral is able to correctly receive an incoming forward frame only after the minimum idle 
time is elapsed (4 * Te high).

25.9.2 Data interrupt handling

The interrupt handling is controlled by two different procedures depending on the availability 
of the backward frame data.

If the backward frame data are immediately available within the ISR (“Interrupt Service 
Routine”) function, the first procedure is applicable. If the backward message frame 
construction requires a long elaboration time not compatible with the execution of the ISR 
function, the second procedure it's preferable. 
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ISR in line procedure-1

• Initialize the DALI device as described in the previous paragraph with the RTS bit of the 
DALI_CR register cleared. This switches the peripheral in the reception mode.

• On forward frame receive interrupt (bits ITF and RTF set in the DALI_CSR register) 
exec the following steps:

– Read the received data (DALI_FBx); this is not mandatory and depends on the 
application requirements.

– Load the transmit data register with the backward frame (DALI_BD).

– Set the RTS bit in the DALI_CR register to prepare the device to the transmit 
mode.

– Set the RTA bit in the DALI_CR register to clear the pending interrupt flag and to 
start the transmission of the backward frame.

• On backward frame transmit interrupt (the bit ITF set and the bit RTF clear in the 
DALI_CSR register) exec the following steps:

– Clear the RTS bit in the DALI CR register to prepare the device to the receive 
mode.

– Set the RTA bit in the DALI_CR register to clear the pending interrupt flag and to 
activate the reception of a new forward frame.

Deferred procedure-2

• Initialize the DALI device as described in the previous paragraph with the RTS bit of the 
DALI_CR register cleared. This switches the peripheral in the reception mode.

• On forward frame receive interrupt (bits ITF and RTF set in the DALI_CSR register) 
exec the following steps:

– Read the received data (DALI_FBx); this is not mandatory and depends on the 
application requirements.

– Set the RTA bit in the DALI_CR register to clear the pending interrupt flag.

– At application level prepare the contents of the backward frame and when ready:

- Load it in the DALI_BD register.

- Set the FTS bit in the DALI_CR register to force the transmission mode.

• On backward frame transmit interrupt (the bit ITF set and bit RTF clear in the 
DALI_CSR register) exec the following steps:

– Clear the FTS bit in the DALI CR register to prepare the device to the receive 
mode.

– Set the RTA bit in the DALI_CR register to clear the pending interrupt flag and to 
activate the reception of a new forward frame.

Note: 1. In this second procedure the FTS bit must be mandatory cleared before 1 * Te time from 
the reception of the interrupt. If this is not feasible (e.g.: the DALI ISR is at low priority and 
can be interrupted from high priority interrupts), than a different handling of the FTS bit is 
required. In this case the FTS bit can be set at the application level and then cleared in the 
following instruction; this grants the FTS signal at the high level for at least one clock cycle 
and it is enough to force the DALI peripheral to the transmit mode. In the ISR function the 
clearing of the FTS bit is not required in this alternative handling mode.

2. The assertion of the RTA interrupt clearing bit must be done only when the ITF interrupt 
flag is set.
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25.10 DALI registers description

25.10.1 DALI_CLK_L (clock prescaler LSB)

Offset: 0x00

Default value: 0x00

         

Bit 7-0: DALI_CLK[7:0] clock prescaler lower bit (LSB)

These 8 bits are the lower part of a wider 10-bit prescaler counter used for tuning the 
DALI data rate fDATA = fMASTER / [(N + 1) * 16], 
where N is the integer value of the DALI_CLK[9:0] entire prescaler.

25.10.2 DALI_CLK_H (clock prescaler MSB)

Offset: 0x01

Default value: 0x00

         

Bit 1-0: DALI_CLK[9:8] clock prescaler upper bit (MSB)

The higher 2 bits of the 10-bit prescaler counter.

Bit 7-2: RFU reserved; must be kept 0 during register writing for future compatibility.

Note: The division factor, to obtain the transmitting frequency, is made up by combining the 
DALI_CLK_H and DALI_CLK_L.

25.10.3 DALI_FB0 [forward message register (7:0)]

Offset: 0x02

Default value: 0x00

Bit 7-0: DALI_FB0[7:0] forward message(7:0)

These 8 bits are the lower byte message received from the DALI_rx line.

7 6 5 4 3 2 1 0

DALI_CLK [7:0]

r/w

7 6 5 4 3 2 1 0

RFU DALI_CLK [9:8]

r rw

7 6 5 4 3 2 1 0

DALI_FB0 [7:0]

r
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25.10.4 DALI_FB1 [forward message register(15:8)]

Offset: 0x03

Default value: 0x00

         

Bit 7-0: DALI_FB1[7:0] forward message(15:8)

These 8 bits are the middle byte message received from the DALI_rx line.

25.10.5 DALI_FB2 [forward message register(23:16)]

Offset: 0x04

Default value: 0x00

         

Bit 0: DALI_FB2[0] forward message(16)

When the DALI_CR [5:4] is equal to “11”, “10” or “01”, it corresponds to the forward 
message bit 16, otherwise it is meaningless.

Bit 1: DALI_FB2[1] forward message(17)

When the DALI_CR [5:4] is equal to “11” or “10”, it corresponds to the forward message 
bit 17, otherwise it is meaningless.

Bit 7-2: DALI_FB2[7:2] forward message(23:18)

When the DALI_CR [5:4] = “11”, it corresponds to the forward message bits 23 - 18, 
otherwise it's meaningless.

25.10.6 DALI_BD [backward message register(7:0)]

Offset: 0x05

Default value: 0x00

Bit 7-0: DALI_BD[7:0] backward message(7:0)

These 8 bits are the byte message transmitted to the DALI_tx line.

The software writes to this register before enabling the transmit operation.

7 6 5 4 3 2 1 0

DALI_FB1 [7:0]

r

7 6 5 4 3 2 1 0

DALI_FB2 [7:0]

r

7 6 5 4 3 2 1 0

DALI_BD [7:0]

r/w
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25.10.7 DALI_CR (control register)

Offset: 0x06

Default value: 0x00

         

Bit 0: FTS force transmit state

When this bit is set, the DALI is forced into the transmit state regardless of the state of 
the RTS bit. The content of the DALI_BD register is immediately transmitted as 
backward frame.

Note: Setting of the FTS bit must be used carefully to guarantee the proper DALI transfer frames. 
The FTS bit must be never asserted during the forward frame receptions.

0: the DALI is not forced to transmit state

1: the DALI is forced to transmit state.

Bit 1: RTS receive/transmit state

This bit must be set to '1' after a forward frame is received, if a backward frame is 
required. This bit must be cleared after a backward frame is transmitted, if a forward 
frame is required.

0: the DALI is set to receive state.

1: the DALI is set to transmit state.

Bit 2: RTA receive/transmit acknowledge

This bit must be set, after a DALI frame reception or transmission, to allow the DALI to 
perform the next DALI data transfer; this bit is reset by hardware after it has been set 
by software.

If users miss to set the RTA bit after completion of a reception or transmission the DALI 
peripheral enters Halt condition.

0: no acknowledge.

1: Interrupt acknowledge bit must be asserted only when the interrupt flag ITF is set.

Bit 3: DCME DALI communication enable

When set, it enables DALI communication; it also resets the entire internal finite state 
machine.

0: DALI disabled (not enabled to receive/transmit, the FSM is put in reset state).

1: DALI enabled to receive/transmit data sequences.

Bit 5-4: MLN[1:0] message length

This field defines the forward message length as detailed by the following bit encoding:

00 = 16-bit message

01 = 17-bit message

10 = 18-bit message

11 = 24-bit message

7 6 5 4 3 2 1 0

LNWDG_EN SMK MLN[1:0] DCME RTA RTS FTS

r/w
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Bit 6: SMK mask start bit

0: (default) the start bit low phase (1st transition) is NOT sampled in the middle, but any 
0 level sequence from 1 sample and up to the maximum allowed by the Manchester 
coding for a single phase is accepted as the start bit condition. This is particularly 
useful when the device is in the HALT condition, and a part of the start bit time is used 
to awake the device. All other phases including the start bit high phase are sampled in 
the middle (Section 25.5.2: Start bit handling on page 285).

1: the start bit low phase (1st transition) is sampled in the middle as for all other 
received bits.

Bit 7: LNWDG_EN monitor watchdog on receiver line.

It's used to monitor the receiver line activity; when enabled an interrupt is asserted in 
case the receiver line is not in the idle state within a period of ~ 500 ms .

0: disable monitor watchdog line.

1: enable monitor watchdog line.

Note: Back-to-back writing register requires the insertion of at least three “NOP” instructions.
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25.10.8 DALI_CSR (control and status register)

Offset: 0x07

Default value: 0x00

         

Bit 1-0: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 2: WDGF watchdog receiver line interrupt status flag

This field reflects the watchdog monitor output overflow signal. If the WDGE interrupt is 
enabled and this bit is asserted, the processor interrupt request line is active. The 
interrupt request is cleared by disabling (resetting) the LNWDG_EN bit field of the 
DALI_CR register.

0: interrupt deasserted.

1: interrupt pending.

Bit 3: WDGE watchdog receiver line interrupt enable 

0: interrupt disable.

1: interrupt enable.

Bit 4: RTF receive/transmit flag

0: the DALI is in transmit state.

1: the DALI is in receive state.

Bit 5: EF error flag

This bit is set when either the DALI data format received is wrong or an interface failure 
is detected. This bit is set by hardware and is cleared by writing it to “1”.

0: no data format error during reception.

1: data format error during reception.

The EF bit is a pure status bit that does not affect the behavior of the DALI internal 
state machine. Valid frames can be accepted also when the flag is set. It is up to 
handling software decides if to ignore the frame due to the error flag or if to ignore the 
error.

Clearing the EF flag does not clear the internal error condition but simply clears the 
DALI_CSR status flag. If one of the two above mentioned conditions is still true when 
clearing the DALI_CSR EF flag, the flag is immediately reasserted again.

Bit 6: ITF interrupt flag

This bit is set after the end of the “backward frame” transmission or the “forward frame” 
reception. It is cleared by setting the RTA bit in the DALI_CR register. 

0: interrupt not asserted.

1: end of reception/transmission data transfer.

Bit 7: IEN interrupt enable

When set, this bit allows the generation of DALI interrupts.

0: DALI interrupts (ITF) disabled.

1: DALI interrupt (ITF) enabled.

7 6 5 4 3 2 1 0

IEN ITF EF RTF WDGE WDGF RFU RFU

r/w r r_wc r r/w r r r
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25.10.9 DALI_CSR1 (control and status register1)

Offset: 0x08

Default value: 0x00

         

Bit 2-0: WDG_PRSC[2:0] watchdog DALI prescaler timer

000: reserved encoding.

001: select 500 ms constant timer assuming speed line 1.2 Kbps.

010: select 500 ms constant timer assuming speed line 2.4 Kbps.

100: select 500 ms constant timer assuming speed line 4.8 Kbps.

Bit 3: RDY_REC ready to receive

0: the DALI receiver is collecting a stream, that's a valid start sequence is received from 
DALI data input.

1: The DALI is ready to check a valid start sequence from DALI data input.

Bit 7-4: CKS[3:0] clock counter value

This is the value of the 4-bit sample clock counter (integer range 0 to 15). The clock 
counter value is loaded in the DALI_CSR register when a DALI change of the phase 
signal is detected (edge trigger).

25.10.10 DALI_REVLN (control reverse signal line)

Offset: 0x09

Default value: 0x00

         

Bit 0: En_Rev reverse DALI reverse signal line:

0: disable reverse functionality.

1: enable reverse functionality.

Bit 1: Rev_Din reverse DALI_rx signal line:

0: reverse functionality disable (DALI_rx normal operating).

1: reverse functionality enable [DALI_rx = not (DALI_rx)].

Bit 2: Rev_Dout reverse DALI_tx signal line:

0: reverse functionality disable (DALI_tx normal operating).

1: reverse functionality enable [DALI_tx = not (DALI_tx)].

Bit 7-3: RFU reserved; must be kept 0 during register writing for future compatibility.

7 6 5 4 3 2 1 0

CKS[3:0] RDY_REC WDG_PRSC[2:0]

r r r/w

7 6 5 4 3 2 1 0

RFU RFU RFU RFU RFU Rev_Dout Rev_Din En_Rev

r r r r r r/w r/w r/w
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25.11 DALI filter control registers

25.11.1 MSC_DALICKSEL (DALI filter clock selection)

Offset:0x05 (MSC INDIRECT AREA)

Default value:0x00

         

Bit 2-0: CLK_SEL[2:0] DALI filter clock source configuration:

000: HSI source clock

001: HSE source clock

010: LSI source clock

011: PLL source clock

1XX: RFU reserved encoding values.

Bit 3: EN DALI filter logic enable:

0: filter logic bypassed; DALI rx line passes through without be filtered.

1: filter logic enabled; the DALI rx line is filtered.

Bit 7-4: RFU reserved; must be kept 0 during register writing for future compatibility.

25.11.2 MSC_DALICKDIV (DALI filter clock division factor)

Offset: 0x06 MSC (INDIRECT AREA)

Default value:0x00

         

Bit 7-0: DIV[7:0] filter clock division factor:

This filed is a clock prescale of the clock source selected by the MSC_DALICKSEL.

Equation 27

CLKFLT = CLKFLTSEL(CLK_SEL) / (DIV + 1)

7 6 5 4 3 2 1 0

RFU EN CLK_SEL [2:0]

r r/w r/w

7 6 5 4 3 2 1 0

DIV [7:0]

r/w
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25.11.3 MSC_DALICONF (DALI filter mode configuration)

Offset: 0x07 (MSC INDIRECT AREA)

Default value:0x00

         

Bit 5-0: COUNT[5:0] filter counter timer value:

This field configures the filter noise masks or delay time referred to the CLKFLT clock; 
the register field is applicable to any filter operating modes.

This value is used to count a time, the base is the filter's clock selected by the 
MSC_DALICKSEL register; this time is used as a mask for the two mode filter.

Bit 7-6: MODE[1:0] filter mode selection:

00: debounce mode; the filter output is set high/low as soon as a rising/falling edge is 
detected at the input; with the first edge input triggered the filter is masked from input 
transitions for an amount of the filter's clock determined by the COUNT.

01: glitch-free mode; the filter output is set high/low only after an amount of time 
determined by the COUNT and based on filter's clock; the time starts with the first edge 
triggered in input and when it ends an input level check is done, if the input is high and 
the trigger was the rise edge or is low and the trigger was falling edge, the output is set 
high or low respectively, otherwise the output is unchanged.

10: retrigger mode; this configuration is similar to the glitch-free mode with the 
exception that the filter logic is retriggered upfront to any input change, if there are no 
changes on the input signal for the configured filter period, the output signal is updated. 

11: RFU reserved encoding value.

7 6 5 4 3 2 1 0

MODE1 MODE0 COUNT [5:0]

r/w r/w r/w



DocID026249 Rev 1 299/335

RM0380 Digital addressable lighting interface (DALI)

335

25.12 DALI registers overview

Table 52 summarizes the DALI internal registers starting from the base address specified in 
the corresponding device datasheet (DS); for detailed register description refer to 
Section 25.10: DALI registers description on page 291 and Section 25.11: DALI filter control 
registers on page 297.

         

         

Table 52. DALI internal registers overview

Name Description Offset Type Reset value

DALI_CLK_L Data rate control register (LSB). 0x00 R/W 0x00

DALI_CLK_H Data rate control register (MSB) 0x01 R/W 0x00

DALI_FB0 Message byte 0 register 0x02 R 0x00

DALI_FB1 Message byte 1 register 0x03 R 0x00

DALI_FB2 Message byte 2 register 0x04 R 0x00

DALI_BD Backward data register 0x05 R/W 0x00

DALI_CR Control register. 0x06 R/W 0x00

DALI_CSR Status and control register 0x07 R/W 0x00

DALI_CSR1 Status and control register1 0x08 R/W 0x00

DALI_REVLN Control reverse signal line 0x09 R/W 0x00

Table 53. DALI filter internal registers overview

Name Description Offset Type Reset value

MSC_FT2CKSEL Filter32 clock selection 0x05 R/W 0x00

MSC_DALICKDIV DALI Filter2 clock division factor 0x06 R/W 0x00

MSC_DALICONF DALI Filter2 mode configuration 0x07 R/W 0x00
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26 Analog comparator unit (ACU)

The analog comparator unit (ACU) consists of up to four DAC comparator subunits. Each 
subunit is composed of two major blocks:

• One high-speed analog comparator CP[x].

• One 4-bit resistive ladder DAC converter DAC[x].

26.1 Overview description

Each DAC output is connected to the negative input of the respective comparator unit 
directly or through a dedicated two input multiplexer stage. The DACs provide an internal 
programmable reference voltage to the associated comparators.

The multiplexer stage allows the user to select an external reference for the relative 
comparator. The comparator positive input lines are always directly interconnected to 
analog CPP primary pins.

Depending on the product the reference voltage interconnected to the comparator negative 
input line may be programmed either to the internal DAC units or to the external CPM pins 
accordingly to two different configuration schemes.

• The STLUX385, STLUX385A, STLUX383A and STLUX325A devices are configured 
as shown in Figure 73 and Figure 74.

• The STLUX285A and all the STNRG devices (refer to the proper product datasheet) 
may be configured as shown in Figure 75.

The external reference voltage lines offer the users the ability to define a precise 
comparison threshold value in order to meet the application target requirement.

The external reference voltage must be comprised in a range from 0 up to 1.25 V. Values 
exceeding1.25 V up to VDDA are allowed but saturate the comparator maximum threshold 
voltage.

Figure 73. Comparator unit native logic
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Figure 74. Comparator unit with external reference voltage native logic

Figure 75. Comparator unit with external reference voltage optimized logic
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26.2 Comparator logic

This section describes the detailed features of the comparator blocks.

26.2.1 Main features

• Fast comparison cycle time.

• Direct connection to SMED high-speed logic.

• Comparator output stages readable from processor interface. 

• Interrupt capable comparator output signal (please refer to product datasheet for 
availability).

• Independently programmable up and down hysteresis (please refer to product 
datasheet for availability).

• ADC trigger functionality (please refer to product datasheet for availability).

The STLUX device family is provided of four independent analog comparator units with fast 
comparison delay time of maximum 50 ns (Vovd = 3 mV) and the following embedded 
characteristics:

• Two stages architecture are used to reach a high gain.

• First stage with positive feedback to achieve high-speed time comparison.

• Inverter output stage to drive capacitive load.

The main purpose of the high-speed comparators logic is to supply the SMED peripherals 
with fast analog input triggered by the application signals and to provide a fast response 
time to external analog signals through the interrupt functionality.

Refer to the product datasheet and to Section 21 on page 165 for further details about the 
comparator interconnection configurability to the SMED units.

26.2.2 DAC and comparator programming

Each comparator stage has the analog positive input port interconnected to the 
corresponding CPP[x] primary pin, while the negative input ports receive a programmable 
reference voltage provided by the associated internal 4-bit DAC logic or by an external 
reference according to the device configurability.

Depending on the product, the negative input port of the comparators may be connected to 
an external analog input reference voltage signal through multiplexer mechanisms 
controlled by SW (refer to Figure 73, Figure 74 and Figure 75 for reference voltage 
configurability schemes).

The internal reference voltage of each comparator depends on the corresponding DAC 
configuration register (MSC_DACIN<x>) placed in the MISC addressing area.

The DAC converters, comparator units and the external comparator reference voltage 
selection are configured by programming the MSC_DACCTR register. Refer to the product 
datasheet to check the device configurability degree.

• In all the STLUX devices except the STLUX285A the comparator3 with external 
reference is enabled through the CP3_EN bit and the reference voltage selection is 
done by the CP3_SEL bit field of the MSC_DACCTR register. The DAC units are 
enabled independently through the DAC<x>_EN fields. The comparators with internal-
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only reference voltage are enabled together with the relatives DACs. The bias circuit of 
both DAC and comparators logics is enabled by the DacBias_en the register bit.

• In all the STNRG devices and in the STLUX285A the layout of the MSC_DACCTR 
register it's different;. the comparator <x> is enabled if either the DAC<x>_EN bit or the 
CP<x>_EN_ERef bit is set; when set the DAC<x>_EN bit selects the internal reference 
voltage, otherwise if it's cleared and the CP<x>_EN_ERef bit is set, the external 
reference voltage is selected. The bias circuitry is enabled by setting at least one of the 
DAC_EN<x> or CP<x>_EN_ERef bits. Table 54 summarizes the new layout register 
encoding bit configuration.

         

Note: 1. Each DAC and comparator unit enabling stages concur to increase the device power 
consumption.

2. Enabling the bias circuitry increases the device consumption (for details on power 
consumption see the product datasheet).

26.2.3 Interrupt and wake up capability

STNGR devices offer the possibility of enabling interrupts on the comparator output signals. 

The interface used to control the interrupt functionality is present in the MISC indirect 
addressing area and is similar to the logic that controls the interrupt features of each port 
(P0, P1 and P2). 

The registers MSC_CFGP3<x> and MSC_STSP3 control and configure the interrupt edge 
detection logic.

In the Halt low-power mode, it's possible leave the ACU unit powered-on and let this to 
generate the wake-up event through an interrupt assertion. Refer to Section 14: Interrupt 
controller (ITC) on page 113 and Section 13: Power management (PM) on page 107 for 
further details about the comparator interrupt programming note and the IC device low-
power modes.

26.2.4 Hysteresis programming

An optional hysteresis voltage may be programmed independently for rising and falling 
signals on STNRG devices (refer to the product datasheet for details about the availability of 
this feature). The hysteresis level is controlled by the MSC_DAC<n>HYS registers, where 
<n> represent the comparator number; the registers are placed in the MISC indirect 
memory area.

Once correctly set, Hysteresis applies to the comparator behavior independently whether it 
works with internal or external reference.

Two register files of three bits (HYSTUP and HYSTDN) control respectively the hysteresis 
amplitude for rising and falling input comparator signals. The hysteresis voltage values are 
shown in the product datasheet.

Table 54. DAC and comparator selection

DAC<X>_EN CP<X>_EN_ERef Description

0 0 DAC and comparator units power-down

0 1 Enable comparator unit with external reference voltage

1 X Enable DAC and comparator units with internal reference voltage
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26.2.5 Processor interface to the comparator outputs

The user may read the comparator output values through the processor interface by 
accessing the memory mapped MSC_INPP3[3:0] register. The register values are double 
synchronized in the clock master domain before being read by the processor.

26.3 DAC converter logic

The DAC unit consists of up to 4 x 4-bit DAC analog macro used to supply the internal 
reference voltage to the corresponding comparators logics as shown in Figure 73, Figure 74 
and Figure 75.

26.4 DAC main features

The DAC architecture is characterized by the following features:

• Four independent 4-bit DAC channels.

• Resistive ladder to achieve high accuracy.

• Digital interface controlled by miscellaneous register.

The input digital value to be converted is programmed independently for each DAC through 
the miscellaneous registers by configuring the DAC_IN[3:0] field of the MSC_DACIN<x> 
registers. Power-on and the enable function of DAC circuits are controlled by the 
DAC_EN[3:0] bit field of the MSC_DACCTR control register.

In STLUX285A and STNRG devices setting the DAC_EN<x> bit selects the internal 
reference for the comparator x (refer to Table 54) and enables the comparator itself, 
irrespectively of the CP<x>_EN_ERef bit value.

The DAC output voltage conversion scale is shown in Table 55.
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Note: For the VIREF value and PVT (“Process, Voltage and Temperature”) variation dependency 
refer to the product datasheet.

26.5 ACU programming sequence

The DAC analog circuits are enabled and biased by programming the MSC_DACCTR 
register; in STLUX devices except STLUX285A the DacBias_en bit must be set first before 
the power-on of the DAC units. 

After bias is supplied and DAC/comparator circuits are enabled, the ACU unit requires about 
400 ns before being operative and performing correctly the functional comparison 
sequence. 

Table 55. DAC conversion voltage scale

Digital input value (DAC_IN[3:0]) Analog output nominal value Unit

0x0 0

V

0x1 1 * VIREF / 15

0x2 2 * VIREF / 15

0x3 3 * VIIREF / 5

0x4 4 * VIREF / 5

0x5 5 * VIREF / 15

0x6 6 * VIREF / 5

0x7 7 * VIREF / 15

0x8 8 * VIREF / 15

0x9 9 * VIREF / 15

0xA 10 * VIREF / 15

0xB 11 * VIREF / 15

0xC 12 * VIREF / 15

0xD 13 * VIREF / 15

0xE 14 * VIREF /15

0xF VIREF
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The ACU unit requires the following programming step sequence:

• Enable the DacBias_en bit field of the MSC_DACCTR register in the STLUX devices 
except for the STLUX285A. In the STLUX285A and STNRG devices the bias circuitry 
is enabled as soon as the user enables a comparator or a DAC comparator subunit.

• Configure the references voltage through the MSC_DACCTR register:

– Internal reference: set the DAC<x>_EN bit. Clear the CP<x>_EN_ERef bit on the 
STLUX285A and STNRG devices. In STLUX devices except the STLUX285A, 
reset the CP<x>_SEL bit and set the CP<x>_EN bit if both are available.

– External reference: clear the DAC<x>_EN bit and the MSC_DACIN<x> register 
then in the STLUX285A and STNRG devices set the CP<x>_EN_ERef bit, while in 
STLUX devices except the STLUX285A set both the CP<x>_SEL and CP<x>_EN 
bits.

• Wait the ACU startup time (at least 400 ns).

• In case of SW polling sequence, check the comparator output values by reading the 
MSC_INPP3 register.

Note that due to the combinatorial nature of the ACU logics changing the internal or external 
comparator reference voltage at runtime requires the following rules:

• Disable the interrupt detection logic (if it's enabled).

• Changing internal DAC reference voltage to a new value: the comparator output signal 
has to be masked for at least 100 ns before being reconsidered by the interconnected 
logics (SMED and the interrupt detectors).

• Changing external reference voltage to the internal one (supposing the DAC sources 
already stable) or vice-versa: the comparator output signal has to be masked for at 
least 50 ns before being reconsidered by the interconnected logics.

• Enable the interrupt detection logic if it's required.

26.6 ACU low power modes
         

The wakeup functionality is implemented by the interrupt control logic connected to the port-
P3, for further details refer to Section 14: Interrupt controller (ITC) on page 113.

26.7 ACU registers description

The registers listed below are located in the miscellaneous memory area. Please refer to the 
product datasheet for details on the memory address space.

Table 56. ACU low power mode

Modes Description

Wait No effect on ACU.

Halt or
Active-halt

Before entering in the Halt/Active-halt mode the ACU block must be configured in 
power-down by SW clearing the MSC_DACCTR register.

In STNRG devices, it's possible to keep the ACU unit active, to enable the wake up 
functionality from the comparator logic.

After waking up from Halt/Active-halt, re-enable the peripheral by following the 
programming sequence described in Section 26.4: DAC main features.
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26.7.1 MSC_DACCTR (DAC comparator control register) 

Offset:0x10

A) STLUX devices except the STLUX285A register layout

Default value:0x00

         

Bit 0: DAC0_EN enable DAC0 and comparator0 logic unit

0: disable DAC and comp unit (default case).

1: enable DAC and comp unit.

Bit 1: DAC1_EN enable DAC1 and comparator1 logic unit

0: disable DAC and comp unit (default case).

1: enable DAC and comp unit.

Bit 2: DAC2_EN enable DAC2 and comparator2 logic unit

0: disable DAC and comp unit (default case).

1: enable DAC and comp unit.

Bit 3: DAC3_EN enable DAC3 logic unit

0: disable DAC unit (default case).

1: enable DAC unit.

Bit 4: CP3_EN enable comparator3 logic unit

0: disable comp unit (default case).

1: enable comp unit.

Bit 5: CP3_SEL comparator3 source reference voltage selection.

0: internal DAC3 reference voltage (default case).

1: enable the CPM3 external signal source reference voltage.

Note: The external reference voltage configuration requires the MSC_DACINx contents to be 
cleared (0x00).

Bit 6: RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 7: DacBias_en DAC bias enable 

The bias is circuit used in conjunction with the external reference voltage.

0: disable DAC bias.

1: enable DAC bias.

7 6 5 4 3 2 1 0

DacBias_en RFU CP3_SEL CP3_EN DAC3_EN DAC2_EN DAC1_EN DAC0_EN

r/w r r/w r/w r/w r/w r/w r/w
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B) Register for the STLUX285A and STNRG devices layout

Default value:0x00

         

Bit 0: DAC0_EN enable the DAC0, Comparator0 logic and selects the internal reference.

0: disable the DAC 0; the Comp0 is disabled if the CP0_En_ERef bit is cleared.

1: enable the DAC0 and Comp0 with the internal DAC reference voltage.

Bit 1: DAC1_EN enable the DAC1, Comparator1 logic and selects the internal reference.

0: disable the DAC1; the Comp1 is disabled if the CP1_En_ERef bit is cleared.

1: enable the DAC1 and Comp1 with the internal DAC reference voltage.

Bit 2: DAC2_EN enable the DAC2, Comparator2 logic and selects the internal reference.

0: disable the DAC2; the Comp2 is disabled if the CP2_En_ERef bit is cleared.

1: enable the DAC2 and Comp2 with the internal DAC reference voltage.

Bit 3: DAC3_EN enable the DAC3, Comparator3 logic and selects the internal reference.

0: disable the DAC3; the Comp3 is disabled if the CP3_En_ERef bit is cleared.

1: enable the DAC3 and Comp3 with the internal DAC reference voltage.

Bit45: CP0_En_ERef ERef enable the Comparator0 logic and selects the external reference 
when the DAC0_EN bit is cleared.

0: the DAC0 and Comp0 are disabled if the DAC0_EN bit is cleared.

1: enable the Comp0 unit and select the external reference if the DAC0_EN bit is 
cleared.

Bit 5: CP1_En_ERef ERef enable the Comparator1 logic and selects the external reference 
when the DAC1_EN bit is cleared.

0: the DAC1 and Comp1 are disabled if DAC1_EN bit is cleared.

1: enable the Comp1 unit and select the external reference if DAC1_EN bit is cleared.

Bit 6: CP2_En_ERef ERef enable the Comparator2 logic and selects the external reference 
when the DAC2_EN bit is cleared.

0: the DAC2 and Comp2 are disabled if the DAC2_EN bit is cleared.

1: enable the Comp2 unit and select the external reference if DAC2_EN bit is cleared.

Bit 7: CP3_En_ERef ERef enable the Comparator3 logic and selects the external reference 
when the DAC3_EN bit is cleared.

0: the DAC3 and Comp3 are disabled if the DAC3_EN bit is cleared.

1: enable the Comp3 unit and select the external reference if DAC3_EN bit is cleared.

Note: 1. Setting any register fields enabling the bias circuitry.

2. The DAC<x>_EN and CP<x>_EN_ERef coding values is shown in Table 54: DAC and 
comparator selection on page 303.

7 6 5 4 3 2 1 0

CP3_En_ERef CP2_En_ERef CP1_En_ERef CP0_En_ERef DAC3_EN DAC2_EN DAC1_EN DAC0_EN

r/w r r/w r/w r/w r/w r/w r/w



DocID026249 Rev 1 309/335

RM0380 Analog comparator unit (ACU)

335

26.7.2 MSC_DACIN<n> (Dac<n> input data register)

Offset: 0x11 + <n>

Default value: 0x00

         

<n> ranges from 0 to 3.

Bit 3-0: DAC_IN<n>[3:0] DAC<n> input digital conversion data.

Bit 7-4: RFU reserved; must be kept 0 during register writing for future compatibility.

26.7.3 MSC_INPP3 (port P3 input data register)

Offset: 0x29

Default value: undefined

         

This register returns the internal value of the comparator[3:0] signals after two 
synchronization stages clocked by fMASTER.

Bit 3-0: COMP[3:0] comparator logic output signal. This field reflects the comparator output 
signal values.

Bit 7-4: RFU reserved for future use.

7 6 5 4 3 2 1 0

RFU DAC_IN<n> [3:0]

r r/w

7 6 5 4 3 2 1 0

RFU COMP [3:0]

r r
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26.7.4 MSC_DAC<n>HYST (DAC <n>hysteresis selection) 

Indirect address:0x0A + <n>

Default value:0x00

         

<n> ranges from 0 to 3

Bit 2-0: HYSTDN comparator hysteresis on falling signals; for the hysteresis voltage values 
refer to the product datasheet.

Bit 3: RFU: reserved for future use

Bit 6-4: HYSTDP comparator hysteresis on rising signals; the hysteresis voltage values 
refer to the product datasheet.

Bit 7: RFU: reserved for future use.

7 6 5 4 3 2 1 0

RFU HYSTUP [2:0] RFU HYSTDN [2:0]

r r/w r r/w
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26.8 ACU registers overview

Table 57 summarizes the ACU registers which are located in the miscellaneous registers 
space.

         

Table 58 lists the MISC indirect address registers related to the ACU peripheral.

         

Table 57. ACU register control unit overview

Name Description Offset Type Reset value

MSC_DACCTR Enable DACs, and CPs units 0x10 R/W 0x00

MSC_DACIN0 Four bit input value for DAC 0 0x11 R/W 0x00

MSC_DACIN1 Four bit input value for DAC 1 0x12 R/W 0x00

MSC_DACIN2 Four bit input value for DAC 2 0x13 R/W 0x00

MSC_DACIN3 Four bit input value for DAC 3 0x14 R/W 0x00

MSC_INPP3 Port P3 input data register 0x29 R N. D.

Table 58. ACU MISC indirect register overview

Name Description Indirect ADD Type Reset value

MSC_DAC0HYS DAC0 hysteresis configuration 0x0A R/W 0x00

MSC_DAC1HYS DAC1 hysteresis configuration 0x0B R/W 0x00

MSC_DAC2HYS DAC2 hysteresis configuration 0x0C R/W 0x00

MSC_DAC2HYS DAC3 hysteresis configuration 0x0D R/W 0x00

MSC_CFGP30 P3-0 ctrl reg. input line (Cmp0) 0x0E R/W 0x00

MSC_CFGP31 P3-1 ctrl reg. input line (Cmp1) 0x0F R/W 0x00

MSC_CFGP32 P3-2 ctrl reg. input line (Cmp2) 0x10 R/W 0x00

MSC_CFGP33 P3-3 ctrl reg. input line (Cmp3) 0x11 R/W 0x00

MSC_STSP3 Port 3 status register (Cmp) 0x12 R/WC 0x00
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27 Analog-to-digital converter (ADC)

The 10-bit ADC is a successive approximation analog-to-digital converter unit. This 
peripheral has up to 8 multiplexed input channels; the analog input signal to be converted is 
amplified with a selectable gain value by 1 or 4. The analog-to-digital conversion can be 
done either in single or in continuous modes.

27.1 ADC main features

• 8 ADC input channel

• 10-bit resolution

• Single and continuous conversion mode:

– Single conversion cycle time 2.416 µs at 6 MHz

– Continuous conversion cycle time 3 µs at 6 MHz (for channel)

• FIFO auto-flush and auto-reload capability (please refer to product datasheet for 
availability)

• Hardware triggered start conversion from internal/external sources (please refer to 
product datasheet for availability)

• Independent conversion gain value x1 or x4

• ADC frequency conversion configurable up to 6 MHz

• Double alignment of conversion data

• Interrupt generations:

– EOC interrupt asserted on the end of the conversion cycle

– EOS interrupt asserted on the end of the conversion sequence

– SEQ_FULL_EN interrupt assert on the sequencer buffer full

• ADC input voltage range: VSSA ≤ VIN ≤ VDDA.

27.2 ADC unit block diagram

The ADC block is composed by two subblocks; a core analog macro responsible for analog-
to-digital data conversion and a digital unit that controls the configurability, the conversion 
sequence and the internal buffer management. The CPU interface controls the following 
internal buffer registers:

• A write command FIFO 8 x 4 bit data that store eight conversion command parameters; 
one bit selects the conversion gain configuration (ADC_SEQ.GAIN), three bits 
(ADC_SEQ.CH) selects the conversion channel number.

• A read buffer 8 x 16 bit that contains the data conversion results.
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Figure 76 shows an outline view of the ADC peripheral logic block diagram.

Figure 76. ADC block diagram overview

27.3 ADC analog unit

This block receives the signals from up to eight separate input channels; under the control 
of the conversion sequencer, the analog unit multiplexes and amplifies the input channel 
according to the respective content of the FIFO command buffer. The output of the 
operation amplifier is then sent to the analog-to-digital converter stage and finally the 
conversion result is written into the read data buffer.

The analog macro includes: 

• An analog multiplexer dynamically indexed by the channel values of the FIFO 
sequencer (up to eight conversions can be programmed on the sequencer and each 
conversion can be carried out on different or the same channel).

• A programmable operational amplifier to control the input signal amplification (the gain 
value of each conversion is also programmable by means of the FIFO sequencer).

The operational amplifier allows the 10-bit ADC converter to extend its dynamic range and 
resolution up to 12-bit equivalent through an amplification factor of x1 or x4.
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27.3.1 ADC analog main features

The typical features of the analog front-end block are listed below:

• Settling time for a full dynamic voltage input step: < 500 ns

• Gain bandwidth product of the OA stage: 10 MHz

• High input resistance: > 1 MΩ
• Input parasitic capacitance: 1 pF

The high impedance and the low capacitance offered by the input buffer gives a not 
negligible advantage when the ADC input signals are driven by a non-ideal source voltage, 
e.g.: resistor partitions or Zener diodes, since it may reduce the application cost by avoiding 
external buffers.

After being processed by the front-end stage, the signal is available to the ADC unit, as 
shown in Figure 76: ADC block diagram overview. The signal is then maintained for the 
conversion time by a RC based “Sample&Hold” mechanism (S&H closed for 3 ADC clock 
periods). Note that the S&H time can vary depending on the selected ADC clock frequency.

The ADC unit is based on a 10-bit ADC (SAR architecture); the two analog reference 
voltages VrefP and VrefN, are generated internally from the bandgap circuit. The ADC input 
voltage range varies depending on the programmed gain:

• With gain x1 the input voltage range is from 0 up to 1.25 V.

• With gain x4 the input voltage range is from 0 up to 312.5 mV.

When the ADC unit is powered-on by clearing the PD bit of the ADC_CFG register, the 
internal voltage reference logic that provides VrefP and VrefN requires some latency time 
before reaching the nominal value, thus the first conversion sequences cannot be started 
before 30 µs from the power-up command.

27.4 ADC digital unit

The ADC digital unit:

• Manages the signal handshaking and controls all the timings from/to the ADC analog 
macrocell.

• Includes the processor interface and the ADC programming registers.

• Stores the conversion data results into an internal buffer area readable from the CPU.

• Generates interrupts on EOC (“End Of single Conversion”), EOS (“End Of conversion 
Sequence”) and FIFO overflow events.

The ADC interface includes a conversion sequencer, capable of scheduling the selection of 
the input channels to be converted with the corresponding command FIFO which stores the 
conversion program parameters. This FIFO has a depth of eight data registers, so the user 
can program up to 8 conversions that will be executed when the ADC conversion process is 
started. Each FIFO register is 4-bit wide and stores the gain of the operational amplifier and 
the input channel number for the respective conversion. Note that the first programmed 
conversion is the first one carried out; the FIFO is programmable by writing the ADC_SEQ 
register.

The read buffer is based on eight 8-bit register pairs which store the ADC conversion results 
as soon as they are available. The logic copies the converted data into the read buffers after 
any conversion sequence, raising the EoC and the EoS flags when these events occurred; 
at this point the CPU may read the conversion data.
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27.4.1 ADC digital main features

The main features of the ADC digital unit are summarized below:

• Configuration array sequencer.

• Interrupt generation logic:

– EOC end of conversion cycle.

– EOS end of conversion sequence.

– Overflow event on FIFO writing.

• Data conversion buffer 8x2 bytes used to store the 10-bit conversion data 
(ADC_DATH<k> and ADC_DATL<k>).

• Channel conversion sequencer to program the sequence of the channels to be 
converted and the conversion gain. Sequences of up to 8 conversions can be 
programmed.

• Programmable circular buffer for continuous data conversion.

• Completely asynchronous interface between the ADC analog macrocell and digital 
microcontroller section.

• Configurable data out format: [high (9:2) and low (1:0)] or [high (9:8) and low (7:0)].

27.4.2 The ADC sequencer

The ADC_SEQ register allows configuring the ADC conversion sequence: each conversion 
can be programmed individually with any of the ADC channels and gain values. The 
ADC_SEQ register gives access to a FIFO structure of eight registers. The first 
programmed conversion is the first one executed. There's no restriction on the ADC 
conversion association in respect to the ADC input lines and gain. Any combination is 
allowed as follows:

ADC conversion <m> ←→ ADCIN<n>, <g>

Where:

m is the conversion index ranging from 0 to 7

g is the gain value (0 = x1 - 1 = x4)

n is the number of the ADC input line (ADCIN) varying from 0 to 7.

The same ADC input channel may be assigned to more ADC conversions, also with 
different gain where is applicable, increasing the conversion resolution on the lower scale 
and capturing the entire signal dynamics on the higher one.

The conversion command FIFO is loaded by writing the ADC_SEQ register; bit [3] 
(ADC_SEQ.GAIN) configures the conversion gain, while bits [2:0] (ADC_SEQ.CH) define 
the ADC channel number. The conversion data results are stored in the ADC read buffer 
registers ADC_DATL<k> and ADC_DATH<k>; where k ∈ {0, …, 7} is the same index 
associated with the position of the parameter register in the command FIFO.

27.4.3 ADC conversion modes

The ADC_SEQ is a write-only register (readback is not meaningful). Before starting 
a conversion, the FIFO has to be programmed by writing the parameters of each desired 
conversion in the ADC_SEQ register. The ADC conversion sequence is performed strictly 
respecting the order of the ADC_SEQ writing sequence. The FIFO is indexed by a write 
pointer, that controls user access, and a read pointer, which is used by the ADC sequencer.
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The ADC supports two different conversion modes single or continuous, programmable by 
configuring the CIRCULAR bit of the ADC_CFG register. In addition the user can select one 
of the following features, if available in the product (refer to product datasheet):

1. FIFO auto-flush at the end of the conversion sequence

2. FIFO auto-reload after every conversion sequence

Refer to the product datasheet to check the availability of these functionalities on the 
relevant product. If the product supports the FIFO auto-flush or auto-reload features, these 
are enabled trough the AReload and AFlush bits of theTM0CONF register placed in the 
MISC indirect address area (refer to the product datasheet for details). Table 59 
summarizes the possible bit configurations and the corresponding operative modes.

         

In order to help maintaining coherence between the FIFO programming and data buffer 
without the user's intervention, an implicit FIFO flush command may be executed by 
hardware during ADC mode switching. This feature is available only on STNRG devices 
product revisions (refer to the product datasheet for further details) and may be disabled for 
compatibility through the option byte. If the functionality is disabled or unavailable, the user 
has to execute a FIFO flush whenever the ADC operating mode is changed.

Single mode

Single mode: if the CIRCULAR bit is cleared, the ADC performs once the conversion 
sequence entered in the FIFO, and then it stops its operation.

In case of single mode conversion, the FIFO is considered empty at the end of the ADC 
conversion list (read and write pointer equals). The user has to write a new sequence (up to 
8 consecutive conversions are allowed) before starting the conversion process. If the FIFO 
auto-flush option is unavailable or disabled, the write and read pointers move circularly 
around the sequence buffer preserving their position after the conversion sequence has 
been completed (refer to Figure 77: Single mode buffer management (w/o FIFO flush or 
auto-flush)). The user has to implement an SW circular pointer buffer to index the ADC read 
buffer and get the correct conversion data; alternatively, before asserting a new conversion 
command, it's possible to flush the FIFO by setting the register bit ADC_CFG[2]. This 
command reset both r/w pointers and so that read data of the next conversion sequence are 
saved starting from the index 0 (sequence 2 - 3 of Figure 77). An automatic FIFO flush 
command is otherwise sent at the end of the conversion sequence if the FIFO auto-flush 
option is enabled (and supported by the device). 

Table 59. ADC operating mode

CIRCULAR AReload AFlush Mode

0 X 0 or N/A Single (pointer queue emptied; restarting from last position)

0 X 1 Single with auto-flush (pointer queue emptied; restarting from position 0)

1 0 or N/A X Continuous (pointer queue not emptied; restarting automatically from pos. 0)

1 1 X Auto-reload (pointer queue not emptied; restarting from position 0)
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Figure 77. Single mode buffer management (w/o FIFO flush or auto-flush)

Continuous mode

If the CIRCULAR bit is set and the auto-reload option is disabled or unavailable, the ADC 
repeats continuously the sequence entered in the FIFO, restarting from the first entered 
conversion every time the EoS event occurs.

In case of continuous mode conversion, after a conversion sequence has been completed, 
the read pointer restarts from the index 0 (ready to repeat the configured sequence), 
whatever the programmed conversion count is. The FIFO is never considered empty, except 
after a reset or a flush command. 

The ADC will stop the conversion phase only on the explicit abort request asserted by 
writing the STOP bit of the ADC_CFG register (for further descriptions about the abort 
procedure refer to Section 27.6.3: Abort sequence on page 324). To program a new 
conversion sequence in the continuous mode, after the abort sequence has been carried 
out, the user has to flush the entire sequence from the conversion buffer by writing '1' to the 
SEQ_DATA_FIFO_FLUSH bit of the ADC_CFG register (this step is product-dependent). 
The write and read pointers are both cleared by this procedure and the FIFO is flushed. 
Then a new conversion sequence may be programmed through the ADC_SEQ register.

Figure 78 shows the buffer management in the continuous mode.

Figure 78. Continuous mode buffer management
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Auto-reload

When the FIFO auto-reload mode is enabled by setting the CIRCULAR and the AReload bit 
(if the option available on the product), after the conversion sequence the ADC stops the 
conversion keeping the conversion command information within the FIFO. The ADC has to 
be explicitly restarted to repeat once more the conversion sequence, so that the operation 
can be considered single. The ADC keeps (or auto-reloads) the sequence initially entered in 
the FIFO, restarting from the conversion programmed in the first FIFO position when a new 
SoC is requested. 

Referring to Figure 77, the transition from the step 4) to step 5) [and back to the step 4)] 
needs in this case an explicit start of the conversion command (either by software or 
triggered by hardware where available).

27.4.4 Start the ADC conversion

The user may start the ADC conversion from SW through the start of the conversion 
command SoC. bit of the ADC_SOC register once the FIFO command has been 
programmed with at least one conversion. The ADC starts the conversion process in 
accordance with the programmed parameters and the conversion mode configuration (refer 
to Section 27.4.3: ADC conversion modes). Any further SoC command raised during the 
ADC conversion process is ignored.

Hardware trigger

STNRG devices have the capability to start the ADC conversion sequence from selected 
internal/external HW trigger sources. This feature is enabled by the ADC_HWtrg option bit 
of the AFR_IOMXP2 register programmed at '0'.

• The SMED HW trigger capability is enabled by the SMD_HWtrg option bit of the 
CLKCTL register set at '1'; the enabling feature requires that all SMEDs must be 
configured with fSMED ≥ fMASTER.

When this functionality is enabled, the SoC configured by SW and the HW trigger concur 
together to start the ADC conversion. This has to be considered when the HW trigger 
conversions are configured. Refer to the product datasheet for further details on the 
availability of this feature.

Trigger programming

The ADC hardware trigger has to be armed explicitly every time the user needs to start 
a conversion event. The trigger is armed by setting the ADCTRG_EN bit of the 
MSC_INPP2AUX1 register placed in the MISC indirect address area (refer to the product 
datasheet for details). When this bit is set, the ADC waits for the selected event (see 
Section 27.9.2: MSC_DALICKSEL (DALI filter clock selection) on page 331 for a description 
of the programmable trigger sources).

The user should set the ADCTRG_EN bit only when the ADC is stopped; once actives, the 
ADCTRG_EN bit may be cleared at any time, preventing the hardware triggering of the ADC 
until the bit is set again. The ADCTRG_EN bit is reset by hardware when a conversion 
process begins, either by HW or by SW, or if a stop command is issued.

The reiteration of the ADC conversion raised by the HW trigger requires the assertion of the 
ADCTRG_EN bit after the end of the current conversion sequence or following an abort 
sequence.
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Trigger sources

The HW trigger events are selected by the ADCTRG_SEL[3:0] field of the register 
MSC_DALICKSEL placed in the MISC indirect address area. The available trigger sources 
fall in the following categories: 

• DIGIN (only some pins)

• CMP (only some pins)

• Timers (please refer to product datasheet for auxiliary/basic timer availability)

• SMED transitions for S2 event (refer to Section 21: State machine, event driven 
(SMED) on page 165 for further details on SMED events).

The HW trigger sources list is detailed in the ADCTRG_SEL[3:0] register field description 
while refer to the product datasheet to know which are the sources relevant for the product 
device.

The ADC trigger source selection has to be configured before enabling the trigger logic. 

The interrupt request of the selected HW trigger source is always masked by HW (except for 
the timer units). 

The external input triggers sources (DIGIN and CMP) are controlled by the P1[4] port. The 
port has to be enabled and correctly configured as a synchronous edge/level through the 
MSC_CFGP14 register in order to be registered by the trigger logic.

The internal timers (system timer, auxiliary/basic timers) generate an update event 
according to its configuration independently by the interrupt generation which can be 
enabled by SW. 

Refer to the product datasheet for details about the availability of this feature.

27.4.5 Reading the conversion result

The ADC_DATL<k> and ADC_DATH<k> are the read buffer registers (where k is in the 
range 0 - 7), used to store the conversion data. When a single conversion data is ready and 
written to the corresponding buffer registers, the ADC raises the EOC flag; when all 
conversion data of the sequence are transferred to the buffer registers, the ADC raises also 
the EOS flag.

It's possible to store the ten bits DATA[9:0] of a single conversion in two distinct formats:

• Shift left data format: ADC_DATL<k>[7,6] contains DATA[1,0] and ADC_DATH<k>[7:0] 
contains DATA[9:2].

• Shift right data format: ADC_DATL<k>[7:0] contains DATA[7:0] and 
ADC_DATH<k>[1,0] contains DATA[9,8].

         

Note that the data alignment format is controlled by the ADC_CFG DATA_OUT_FORMAT 
bit of the register ADC_CFG.

Table 60. Conversion data alignment format

DATA ALIGNMENT ADC_DATH<k> ADC_DATL<k>

RIGHT ALIGNMENT DATA[9:8] DATA[7:0]

LEFT ALIGNMENT DATA[9:2] DATA[1:0]
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27.4.6 DELAY register

The value programmed in the ADC_DLYCNT register is used to insert a delay between the 
SoC command (either SW, or HW where available) and the effective start of the conversion. 
The delay affects only the first conversion cycle. If the user writes two or more data to the 
ADC_SEQ register, only the first conversion is delayed (refer to Figure 81). The register 
content represents the clock unit delay expressed in fMASTER clock.

27.4.7 ADC clock selection

The ADC clock is selected by the clock control unit. For further information refer to 
Section 12: Clock control unit (CKC) on page 71 description. The ADC conversion 
frequency can be configured up to 6 MHz.

27.4.8 ADC timing

From Figure 79 to Figure 81 show the ADC single conversion timing diagrams.

Figure 79. ADC single conversion cycle timing diagram
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Figure 80 shows the ADC continue conversion cycle timing diagram.

Figure 80. ADC continue conversion cycle timing diagram

Figure 81 shows the ADC delayed start of conversion timing diagram.

Figure 81. ADC delayed start of conversion timing diagram
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27.4.9 ADC HW trigger latency

The latency time between the HW trigger and ADC sample, and the hold (S&H) circuit is 
shown from the next two equations; for more conversion accuracy users has to consider the 
latency time trying to compensate this.

1. Internal source delay evaluation (TD):

Equation 28

TD = TsyCKM1 + TCKM + TDREG + TsyCKA + TCKADC

2. External source delay evaluation (TD):

Equation 29

TD = TsyCKM2 + 2TCKM + TDREG + TsyCKA + TCKADC

where:

TCKM = 1 / fMASTER

TCKADC = 1 / fADC

0 ≤ TsyCKM1 ≤ TCKM

TCKM ≤ TsyCKM2 ≤ 2TCKM

TDREG = SOC_DLY_CNT + 1 * TCKM

TCKADC ≤ TsyCKA ≤ 2TCKADC

27.5 Interrupts

The ADC conversion interrupts are associated to the end of the conversion (EOC bit on 
ADC_SR register) or to the end of the sequence (EOS bit on ADC_SR register).

There is an additional interrupt raised when users attempt to load an additional command by 
writing the ADC_SEQ register when the command FIFO is full.

The interrupt requests are enabled selectively by the corresponding bits of the ADC_IER 
register, while the interrupt reset event is done in the following way:

• The EOC and EOS events are reset by writing '1' to the corresponding flags of the 
ADC_SR register. Both interrupts are capable to wakeup the IC device from the WFI 
mode (wait for interrupt).

• The SEQ_FULL event is cleared when the FIFO full condition disappears. This 
happens in the single mode by executing the programmed conversion, so consuming 
the FIFO entry, or generally by writing '1' to the SEQ_DATA_FIFO_FLUSH bit of the 
ADC_CFG; this command clears also the entire FIFO contents.

27.6 ADC programming sequences

The following section describes the ADC programming sequence in the single and 
continuous conversion mode. The ADC conversion sequence can be stopped at any time by 
writing '1' to the STOP bit of the ADC_CFG register. It is recommended to follow the abort 
procedures described in Section 27.6.3: Abort sequence in case of the reprogramming or 
power-down sequence.
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The switch between different conversion modes has to be done when the ADC is stopped 
and this should be followed by an SW flush command if it's not performed by HW through 
the auto-flush feature.

27.6.1 Single mode programming sequence

This procedure has to be used when a single mode is used (single, single with auto-flush, 
auto-reload modes).

1. Clear the PD bit field of the ADC_CFG register if needed. This turns on the ADC 
(waiting for the voltage reference stabilization time of 30 μs).

2. Flush the data and sequencer buffers by writing '1' to the SEQ_DATA_FIFO_FLUSH bit 
of the ADC_CFG register.

3. Reset the CIRCULAR bit and program the OUTPUT_DATA_FORMAT bit of the 
ADC_CFG register as desired.

4. Enable the conversion interrupt (if used) by setting the EOC_EN or EOS_EN bits.

5. Write optionally the ADC_DLYCNT delay counter register.

6. Write the sequence of n conversion into the 4-bit ADC_SEQ register (n ranging 
from 1 to 8).

7. Set the SOC bit of the ADC_SOC register (start of conversion) or select a HW trigger 
source through the ADCTRG_SEL bit field and enable the trigger functionality by 
setting the ADCTRG_EN bit (if the HW trigger is available on the device).

8. Waiting for the end of the conversion event by reading in the polling mode the ADC_SR 
(status) register to check the EOC or EOS flags or waiting for the corresponding 
interrupt event if enabled by the ADC_IER register.

9. Load the data conversion results by reading the ADC_DATL<k> and ADC_DATH<k> 
registers.

a) Single mode (ADC_AFlush = '0' and ADC_AReload = '0' or both N/A): the read 
pointer buffer has to be tracked by SW, in order to determine where the n 
conversions have been stored. The first value of k index is the next (wrapped 
around the range [0, n-1]) of the last storing index value in the preceding 
conversion sequence (refer to Single mode in Section 27.4.3: ADC conversion 
modes on page 315).

b) ADC_AFlush = '1' or ADC_AReload = '1': the buffer index k ranges from 0 to n-1, 
where n is the number of programmed conversions.

10. If a new conversion is needed:

a) ADC_AReload = '1': the user has to proceed again from the step 6.

b) ADC_AReload = '0' or N/A: the user can proceed from the step 7.

Alternatively, the SW can assert the flush command by writing '1' to the 
SEQ_DATA_FIFO_FLUSH field of the ADC_CFG register to clear the read and write 
pointers before restarting the programming sequences from the step 6 (for further 
details refer to Section 27.4.3: ADC conversion modes on page 315).
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27.6.2 Continuous (circular buffer) programming sequence

This procedure has to be used when a continuous conversion mode is programmed into the 
ADC_SEQ register.

1. Clear the PD bit field of the ADC_CFG register if needed. This turns on the ADC 
(waiting for the voltage reference stabilization time 30 μs).

2. Flush the data and sequencer buffers by writing '1' to the SEQ_DATA_FIFO_FLUSH bit 
of the ADC_CFG register.

3. Set the CIRCULAR bit and program the OUTPUT_DATA_FORMAT bit of the 
ADC_CFG register as desired.

4. Enable the conversion interrupt (if used) by setting the EOS_EN bit.

5. Write optionally the ADC_DLYCNT delay counter register.

6. Write the sequence of n conversion into the 4-bit ADC_SEQ register (n ranging 
from 1 to 8).

7. Set the SOC bit of the ADC_SOC register (start of conversion) or select a HW trigger 
source through the ADCTRG_SEL bit field and enable the trigger functionality by 
setting the ADCTRG_EN bit (if the HW trigger is available on the device).

8. Check the ADC_SR (status) register for the EOS or, if the interrupt is enabled, wait for 
the interrupt exception event.

9. Load the data conversion by reading the ADC_DATL<k> and ADC_DATH<k> registers 
with k ranging from 0 to n-1, n is the count of programmed conversions.

10. Prepare to manage next conversion data. The ADC isn't stopped after it has carried up 
the preceding conversion sequence.

11. If a new conversion sequence with new parameters is needed, follow the abort 
sequence explained in Section 27.6.3: Abort sequence and execute a flush of the FIFO 
sequencer by setting the ADC_CFG SEQ_DATA_FIFO_FLUSH bit of the ADC_CFG 
register. Then restart the programming sequence from the step 6.

27.6.3 Abort sequence

The ADC may be forced from SW to abort and stop the current conversion cycles before 
a new reconfiguration or to enter in the power-down state by following the next procedures.

1. Clear the ADCTRG_EN bit if the HW trigger functionality is available and enabled.

2. Send a stop command to the ADC by writing '1' in the STOP bit of the ADC_CFG 
register. If the enhanced abort is available and enabled, the stop command also issues 
automatically a FIFO flush.

3. 

a) If the enhanced abort functionality is unavailable or disabled by the option byte, 
wait at least a time equivalent to 20 fADC clock cycles. 

b) If the new abort features is enable read the STOP bit waiting until it's clear, this 
ensures that the ADC conversion it's been halted. 

4. Clear EOC/EOS flags.

5. Set the SEQ_DATA_FIFO_FLUSH bit to flush the FIFO (not needed with enhanced 
abort functionality).
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27.6.4 ADC power-down sequence

Particular caution must be taken when the ADC peripherals are forced in the low power 
consumption mode. The CPU can invoke the power-down sequence by executing 
periodically the HALT instruction. The ADC is then forced in the low power mode 
irrespectively of the value of the PD bit of the ADC_CFG register. The SW program must 
assure that the ADC is correctly stopped before forcing the system in the Halt mode. After 
awaking from the HALT, clear the PD bit and waiting for 30 μs before starting the ADC 
conversion.

In the single conversion mode (single, single with auto-flush, auto-reload modes) follow the 
next program sequence:

1. Clear the ADCTRG_EN bit if the HW trigger functionality is available and enabled.

2. If the ADC isn't already stopped, wait for the last programmed conversion interrupt 
(EOS or also EOC in case of single conversion).

3. Read buffer registers if needed and send the FLUSH command if auto-flush isn't 
enabled.

4. Set the PD bit of the ADC_CFG register and then execute the HALT instruction.

Alternatively, in either in single or continuous conversion modes, the user can adopt the 
following procedure:

1. Reset the ADCTRG_EN bit if the HW trigger functionality is available and enabled.

2. Follow the abort procedure as described in Section 27.6.3: Abort sequence. 

3. Read buffer registers if needed.

4. Set the PD bit of the ADC_CFG register and then execute the HALT instruction.

27.7 ADC low power modes
         

The ADC does not have the capability to wake up the device from the Active-halt or Halt 
mode.

Table 61. ADC low power mode

Modes Description

Wait No effect on ADC.

Halt or

Active-halt

Before entering in the Halt/Active-halt mode, the ADC macro must be configured in 
power-down by SW, following the “ADC power-down sequence described in 
Section 27.6.4.

After waking up from Halt/Active-halt, the PD bit must be cleared by software to power-
on the ADC, and a delay of 30 μs is needed before starting a new conversion.
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27.8 ADC register description

Where <n> is the ADC_DATL/H register address numbers (0 to 7).

27.8.1 ADC_CFG (configuration register)

Offset: 0x00

Default value: 0x01

         

Bit 0: PD: power-down

0: the ADC analog macro is enabled. After clearing this bit wait for the voltage 
reference stabilization time of 30 μs before starting the first conversion sequence.

1: the ADC analog macro is disabled in power-down.

Bit 1: STOP: stop the sequencer of ADC

0: write has no effect.

1: the ADC sequencer is reset and return to the idle state. If the enhanced abort 
functionality is enabled, the request is deferred while a conversion is in progress.

Note: 1. This bit is always read as 0, if the enhanced abort functionality disabled or not available. 
Otherwise reading '1' means that the stop request is pending; when '0' the ADC is halted.

2. The ADC stop activity in the two clock domains requires 20 fADC clock cycles.

Bit 2: SEQ_DATA_FIFO_FLUSH: DATA buffer flushing; write only register, when read, 
returns 0.

0: write has no effect.

1: the FIFO collecting the conversion sequence and the data buffer pointers are 
flushed.

Note: This command requires at least one fMASTER clock of recovery time (insert NOP instruction) 
before a new conversion sequence.

Bit 3: CIRCULAR: circular mode.

0: the ADC executes one time the programmed conversion sequence (single mode), 
stopping the activity at the end of sequence without resetting the buffer index pointer 
values; if the auto-flush feature is enabled, the buffer index pointer values is cleared 
after the conversion; for further details refer to Single mode in Section 27.4.3: ADC 
conversion modes on page 315.

1: the ADC is configured in the continuous conversion mode (the FIFO entries are read 
circularly). 

If the auto-reload functionality is disabled, the sequencer converts continuously the 
programmed conversion restarting automatically from the first one. 

If the auto-reload functionality is enabled, the ADC stops the activity at the end of the 
conversion sequence, reload the current conversion parameters clearing the buffer 
index pointer; for details refer to Continuous mode inSection 27.4.3: ADC conversion 
modes on page 315.

7 6 5 4 3 2 1 0

RFU RFU RFU DATA_OUT_FORMAT CIRCULAR SEQ_DATA_FIFO_FLUSH STOP PD

r r r r/w r/w w w/r(1) r/w
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Bit 4: DATA_OUT_FORMAT: data output format.

0: the format of the data out register is configured as left alignment [9:2] and [1,0]. This 
means that the ADC_DATH contains the high part of 10 bits ADC conversion [9:2], 
while the ADC_DATL contains the least two bits [1:0] in the high part of the bus 
(the bit 7 and the bit 6 of the ADC_DATL register).

1: the format of data out register is configured as right alignment [9,8] and [7:0]. This 
means that the ADC_DATH contains the two MSB of 10 bits ADC conversion [9,8] in 
the lower part of the bus (the bit 1 and the bit 0 of the ADC_DATH register), while the 
ADC_DATL contains the seven LSB of ADC conversion [7:0].

Bit 7-5: RFU reserved; must be kept 0 during register writing for future compatibility.

27.8.2 ADC_SOC (start of conversion)

Offset: 0x01

Default value: 0x00

         

Bit 0: SOC start of conversion sequence

0: write has no effect.

1: the ADC will start the conversion phase according to the sequence of channels 
programmed into the SEQ buffer.

Before starting, the ADC checks always if the PD bit of the ADC_CFG register is zero 
and if the SEQ buffer is not empty. If these two conditions are not met, the SOC 
command does not take effect.

Bit 7-1: RFU reserved; must be kept 0 during register writing for future compatibility.

27.8.3 ADC_IER (interrupt enable register)

Offset: 0x02

Default value: 0x00

         

Bit 0: EOC_EN end of conversion mode interrupt enable

0: the interrupt is disabled.

1: the interrupt is generated at every end of the conversion cycle (EoC).

Note: The end of the conversion interrupt has to be used in case of a single conversion sequence.

Bit 1: EOS_EN end of sequence mode interrupt enable

0: the interrupt is disabled.

1: the interrupt is generated at the end of the conversion sequence, when all the 
programmed channels have been converted.

7 6 5 4 3 2 1 0

RFU SOC

r w

7 6 5 4 3 2 1 0

RFU SEQ_FULL_EN EOS_EN EOC_EN

r r/w r/w r/w
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Note: The interrupt end of the sequence has to be used in case of multiple conversion sequences, 
this limits the interrupt events at once in order to avoid increasing the CPU workload due to 
multiple interrupt exceptions.

Bit 2: SEQ_FULL_EN sequencer buffer full interrupt enable

0: the interrupt is disabled.

1: the interrupt is generated if the sequencer buffer is full. Any other writes attempt to 
the ADC_SEQ register is ignored.

Bit 7-3: RFU reserved; must be kept 0 during register writing for future compatibility.

27.8.4 ADC_SEQ (sequencer register)

Offset: 0x03

Default value: 0x00

         

Bit 2-0: CH[2:0] channel selection (write only register field); when read it returns “000”.

Analog channel conversion value, in a range from 000b to 111b.

Bit 3: GAIN it defines the gain to be applied at the relevant channel CH; write only register 
field, when read, it returns '0'.

0: the gain operation value is x1.

1: the gain operation value is x4.(aq)

Bit 7-4: RFU reserved; must be kept 0 during register writing for future compatibility.

27.8.5 ADC_DATL_<n> (data low register right alignment)

Offset: 0x04 + 2*<n>

Default value: 0x00

         

Bit 7-0: DATA_LOW[7:0] lower data

Low part of data converted, corresponding to the ADC DATA[7:0](1).

7 6 5 4 3 2 1 0

RFU RFU RFU RFU GAIN CH [2:0]

r r r r w w

aq. Please refer to product datasheet for availability of this option.

7 6 5 4 3 2 1 0

DATA_LOW [7:0]

r
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27.8.6 ADC_DATH_<n> (data high register right alignment)

Offset: 0x05 + 2*<n>

Default value: 0x00

         

Bit 1-0: DATA_HIGH[1:0] upper data

A high part of data converted, corresponding to the ADC DATA[9:8](1).

Bit 7-2: RFU reserved for future use.

Note: A register layout format when DATA_OUT_FORMAT = '1'.

27.8.7 ADC_DATL_<n> (data low register left alignment)

Offset: 0x04 + 2*<n>

Default value: 0x00

         

Bit 1-0: DATA_LOW[7:6] data low

A low part of data converted, corresponding to the ADC DATA[1:0](1).

Bit 7-2: RFU reserved for future use.

27.8.8 ADC_DATH_<n> (data high register left alignment)

Offset: 0x05 + 2*<n>

Default value: 0x00

         

Bit 7-0: DATA_HIGH[7:0] data high 

A high part of data converted, corresponding to the ADC DATA[9:2](1).

Note: A register layout format when DATA_OUT_FORMAT = '0'.

7 6 5 4 3 2 1 0

RFU DATA_HIGH [1:0]

r r

7 6 5 4 3 2 1 0

DATA_LOW [1:0] RFU

r r

7 6 5 4 3 2 1 0

DATA_HIGH [7:0]

r
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27.8.9 ADC_SR (status register)

Offset: 0x14

Default value: 0x00

         

Bit 0: EOC end of conversion mode.

This bit is set by HW at the end of the conversion cycle and cleared by SW.

0: the EoC is not set(ar).

1: the EoC has been set. This bit is write clear. The SW application must write 1 to clear 
this bit. If the EOC_EN bit is set, the EoC interrupt is raised.

Bit 1: EOS end of sequence mode.

This bit is set by HW at the end of the conversion sequence and cleared by SW.

0: the sequencer has not finished the conversion sequence(ar).

1: the sequencer has finished the programmed conversion sequence. This bit is write 
clear. The SW application must write 1 to clear this bit. If the EOS_EN bit is set, the 
EoS interrupt is raised.

Bit 2: SEQ_FULL sequencer buffer full

This bit is set and cleared by HW.

0: the sequencer buffer is not full.

1: the sequencer buffer is full. This bit is read only. It is cleared when the condition 
disappears. If the SEQ_FULL_EN bit is set, the SEQ_FULL interrupt is raised.

Bit 7-3: RFU reserved; must be kept 0 during register writing for future compatibility.

27.8.10 ADC_DLYCNT (SOC delay counter register)

Offset: 0x15

Default value: 0x00

         

Bit 7-0: SOC_DLY_CNT[7:0] SOC delay counter

This register permits to delay the start phase of the SOC command adding a setup time 
between the channel/gain value and the SOC of ADC.

This delay is expressed in number of fMASTER clock cycles.

Note: This delay is applied only at the first conversion cycle and follows the SOC command; the 
next conversions of the same sequence are never delayed.

7 6 5 4 3 2 1 0

RFU SEQ_FULL EOS EOC

r r r/w1 r/w1

ar. Writing 0 has no effect.

7 6 5 4 3 2 1 0

SOC_DLY_CNT [7:0]

r/w
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27.9 ADC HW trigger configuration registers description

These following registers control the HW trigger functionality which is implemented in recent 
device versions (refer to product datasheet for further details on availability of the feature). 

27.9.1 MSC_FTM0CONF (AddTimer0 mode configuration)

Offset: 0x02 (MSC INDIRECT AREA)

Default value: 0x00

         

Bit 5-0: COUNT[5:0] AddTimer0 counter timer value:

See Section 20: Basic timer on page 160 for further explanations.

Bit 6: ADC_AFlush FIFO auto-flush for single conversion mode:

0: disable auto-flush.

1: enable auto-flush (if available, it works when the CIRCULAR bit of the ADC_CFG 
register is '0').

Bit 7: ADC_AReload FIFO auto-reload mode:

0: disable auto-reload.

1: enable auto-reload (if available, it works when the CIRCULAR bit of the ADC_CFG 
register is '1').

27.9.2 MSC_DALICKSEL (DALI filter clock selection)

Offset: 0x05 (MSC INDIRECT AREA)

Default value: 0x00

         

Bit 2-0: CLK_SEL[2:0] DALI filter clock source configuration:

See Section 25: Digital addressable lighting interface (DALI) on page 282 for further 
explanations.

Bit 3: EN DALI filter logic enable:

See Section 25: Digital addressable lighting interface (DALI) for further explanations.

7 6 5 4 3 2 1 0

ADC_AReload(1)

1. This bit is available only on STNRG products.

ADC_AFlush(1) COUNT[5:0]

r/w r/w r/w

7 6 5 4 3 2 1 0

ADC_TRGSEL[3:0](1)

1. This bit is available only on STNRG products.

EN CLK_SEL [2:0]

r r/w r/w
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Bit 7-4: ADCTRG_SEL[3:0] configures the HW ADC trigger sources(as), if available:

0000: none.

0001: reserved.

0010: DIGIN[0] source signal(at)

0011: comparator[0] source signal(at)

0100: DIGIN[3] source signal(at)

0101: comparator[3] source signal(at)

0110: system timer source signal

0111: auxiliary timer source signal(au)

1000: SMED0(av), (aw)

1001: SMED1(av), (aw)

1010: SMED2(av), (aw)

1011: SMED3(av), (aw)

1100: SMED4(av), (aw)

1101: SMED5(av), (aw)

1110: AddTim0 source signal(at)

1111: AddTim1 source signal(at)

27.9.3 MSC_INPP2AUX1 (INPP2 aux register 1)

Offset: 0x08 (MSC INDIRECT AREA)

Default value: 0x00

         

Bit 5-0: INPP2_PULCTR[5:0]: P2 (DIGIN) pull-up control

See the product datasheet for the availability of this field and for further explanations.

Bit 6: RFU reserved for future use

Bit 7: ADCTRG_EN controls the ADC HW triggered conversion request:

0: disable the ADC HW triggered conversion request

1: enable the ADC HW triggered conversion request. Set/cleared by SW. Cleared by 
HW when SW/HW conversion starts or when the stop command is issued.

as. The ADC trigger source selection has to be configured before enabling the selected trigger.

at. The INNP1[x] related interrupt channel masked if the AddTim<x> is selected.

au. The main interrupt channel masked.

av. An auto-clear request.

aw. The SMED irq low freq. feature has to be disabled when an SMED is configured as the ADC trigger source.

7 6 5 4 3 2 1 0

ADCTRG_EN(1)

1. This bit is available only on STNRG products.

RFU INPP2_PULCTR [5:0]

r/w r r/w
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27.10 ADC registers overview

Table 62 summarizes the ADC internal register starting from the base address reported in 
the datasheet; for detailed register description refer to Section 27.8: ADC register 
description on page 326.

Table 62. ADC digital interface internal registers overview

Name Description Offset Type Reset value

ADC_CFG Configuration register 0x00 R_W 0x01

ADC_SOC Start of conversion register 0x01 W 0x00

ADC_IER Interrupt enable register 0x02 R/W 0x00

ADC_SEQ Sequencer register 0x03 W 0x00

ADC_DATL_0 Low part of data 0 converted 0x04 R 0x00

ADC_DATH_0 High part of data 0 converted 0x05 R 0x00

ADC_DATL_1 Low part of data 1 converted 0x06 R 0x00

ADC_DATH_1 High part of data 1 converted 0x07 R 0x00

ADC_DATL_2 Low part of data 2 converted 0x08 R 0x00

ADC_DATH_2 High part of data 2 converted 0x09 R 0x00

ADC_DATL_3 Low part of data 3 converted 0x0A R 0x00

ADC_DATH_3 High part of data 3 converted 0x0B R 0x00

ADC_DATL_4 Low part of data 4 converted 0x0C R 0x00

ADC_DATH_4 High part of data 4 converted 0x0D R 0x00

ADC_DATL_5 Low part of data 5 converted 0x0E R 0x00

ADC_DATH_5 High part of data 5 converted 0x0F R 0x00

ADC_DATL_6 Low part of data 6 converted 0x10 R 0x00

ADC_DATH_6 High part of data 6 converted 0x11 R 0x00

ADC_DATL_7 Low part of data 7 converted 0x12 R 0x00

ADC_DATH_7 High part of data 7 converted 0x13 R 0x00

ADC_SR Status register 0x14 R/WC 0x10

ADC_DLYCNT SOC delay counter register 0x15 R/W 0x00
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Table 63 lists the MISC indirect address registers related to the ADC peripheral.

         

28 Revision history

         

Table 63. ADC MISC register overview

Name Description Indirect ADD Type Reset value

MSC_FT2CKSEL DALI filter clock selection 0x02 R/W 0x00

MSC_DALICKDIV DALI filter clock division factor 0x05 R/W 0x00

MSC_INPP2AUX1 INPP2 aux. register 1 0x08 R/W 0x00

Table 64. Document revision history

Date Revision Changes

24-Jul-2015 1 Initial release.
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