

Angle Micro SD Header connector

1. Scope :

1.1 Contents

This specification covers the requirements for product performance, test methods and quality assurance provisions of Micro SD Header Connector.

Applicable product description and part numbers are as shown in Appendix 1.

2. Applicable Documents:

The following documents form a part of this specification to the extent specified herein. In the event of conflict between the requirements of this specification and the product drawing, the product drawing shall take precedence. In the event of conflict between the requirements of this specification and the referenced documents, this specification shall take precedence.

2.1 TE AMP Specifications :

A. 109-5000 : Test Specification, General Requirements for Test Methods

B. 501-115022 : Test Report

2.2 Commercial Standards and Specifications

A. MIL-STD-202

B. Micro SD Memory card Application Notes

C. IEC 68-2

3. Requirements :

3.1 Design and Construction :

Product shall be of the design, construction and physical dimensions specified on the applicable product drawing.

3.2 Materials :

A. Contact

Copper Alloy. Au plate on contact area over Ni plate. And Au plate on solder tine over Ni plate.

B. Housing

Thermoplastic UL94V-0

C. Other

Shell: Copper Alloy. Sn separate plate over Ni plate.

- 3.3 Ratings :
- A. Voltage Rating : 30VAC
- B. Current Rating : 0.5A
- C. Temperature Rating :−25°C to +85°C
- 3.4 Performance Requirements and Test Descriptions :

The product shall be designed to meet the electrical, mechanical and environmental performance requirements specified in Fig. 1.

All tests shall be performed in the room temperature, unless otherwise specified.

Para.	Test Items	Requirements	Procedures						
3.5.1	Examination of Product	No physical damage	Visual inspection						
			No physical damage						
		Electrical Requirements							
3.5.2	Termination Resistance	Signal: $100 \text{m} \Omega \text{Max.}$ (Initial)	Subject mated contacts assembled in						
	(Low Level)	ΔR =40m ΩMax	housing to 20mV Max open circuit at						
		Switch : $300 \text{m} \Omega \text{Max}$	10mA. Refer to Fig.3.						
3.5.3	Dielectric withstanding	No creeping discharge or	0.5KVAC (Signal) for 1 minute.						
	Voltage	flashover shall occur.	Test between adjacent circuits.						
3.5.4	Insulation Resistance	Current leakage: 1mA Max. 1000MΩ Min. (Initial)	Impressed voltage 500VDC for 1						
0.011		$100M\Omega$ Min. (Final)	minute.						
			Test between adjacent circuits.						
			MIL-STD-202, Method 302, Condition						
			B						
3.5.5	Temperature Rising	30°C Max under loaded	Contacts series-,apply test current of						
		rating Current.	loaded rating current of the circuit, and						
			measure the temperature rising by						
			probing on soldered areas of contacts,						
			after the temperature becomes						
			stabilized Deduct ambient temperature						
		from the measured value.							
		Refer to Fig.5							
		Mechanical Requirements	3						
3.5.6	Connector Mating Force	35N (3.57kgf) Max. (Initial)	Operation Speed: 25 mm/min.						
			Measure the force required to mate						
			connectors.						
3.5.7	Durability	Signal : $\Delta R=40m \Omega Max$	Cycle Rate : 7~10 cycles / minute						
	(Office Environment)	Switch: $300 \text{m} \Omega \text{Max}$	No. of Cycles: 10000cycles.						
	(Repeated Mate /		After each 10cycles stop the insertion and rest the						
	Unmating)		connector for 5 to 10 minutes.						
			Air blow card for 3secs						
			at each 100cycle interval from start to 1000cycle.						
			at each 1000cycle interval from 1001 to						
			10000cycle.						

3.5 Test Requirements and Procedures Summary

Fig. 1 (CONT.)

Para.	Test Items	Requirements	Procedures						
3.5.8	Durability	Signal : $\Delta R=40m\Omega Max$	Cycle Rate : 7~10cycles / minute						
	(Harsh Environment)	Switch : $300 \text{m} \Omega \text{Max}$	No. of Cycles: 3000cycles.						
	(Repeated Mate /		After each 10cycles stop the insertion and rest the						
	Unmating)		connector for 5 to 10 minutes.						
			Air blow card for 3secs						
			at each 100cycle interval from start to 1000cycle.						
			at each 1000cycle interval from 1001 to 3000cycle.						
			1. Mate/Unmating: 500cycles.						
			2. Dump Heat 1cycle						
			3. Mate/Unmating: 500cycles						
			4. Dump Heat 1cycles						
			5. Mate/Unmating : 2000cycles						
			6. Dump Heat 1cycles						
			7. H ₂ S 96Hours						
3.5.9	Random Vibration	No electrical discontinuity	5Hz to 500Hz, 0.01g ² /HZ						
		greater than 100nsec. Shall	100minutes at each axis, total						
		300minnutes for 3 axis (IEC 68-2-64)							
3.5.10	Sine Vibration	No electrical discontinuity	50m/s ² (5.1G) Peak amplitude						
		greater than 100nsec. Shall	10Hz to 150Hz,						
		Sweep rate at 1 octave/minute							
			90 min. on each plane, total 270min.						
3.5.11	Physical Shock	No electrical discontinuity	Accelerated Velocity $: 490 \text{ m/s}^2 (50 \text{ G})$						
		greater than 100nsec.	Waveform : Semi-Sine						
		Shall occur.	Duration : 11 m sec.						
			Number of Drops : 3 drops each to						
			normal and reversed directions of X, Y						
		and Z axes, totally 18 drops.							
		MIL-STD-202 Method 213 Condition A							
3.5.12	Solder ability	Wet Solder Coverage :	Solder Temperature $: 245 \pm 3 \ ^{\circ}\mathrm{C}$						
		95% Min.	Immersion Duration : 3 ± 0.5 seconds						
		Environmental Requireme	nts						
3.5.13	Thermal Shock	Signal : $\Delta R=40m\Omega Max$	Mated, -40° C to 85°C,						
		Switch : $300 \text{m} \Omega \text{Max}$	transition time $0\sim5$ minutes						
			10 minutes at each extreme temp.						
			640 cycles (IEC 68-2-14)						
3.5.14	Thermal Cycling	Signal : $\Delta R=40m\Omega Max$	Mated, -40°C to 85°C, 300 cycles						
		Switch $: 300 \text{m} \Omega \text{Max}$	Temp. ramp 15°C/min, 15 minutes dwell						
			time at each extreme temp.						
3.5.15	Low temp. lifetest	Signal: $\Delta R=40m\Omega Max$	Mated, -40°C, <50% R.H						
		Switch : $300 \text{m} \Omega \text{Max}$	500 Hours (IEC 60068-2-1)						
3.5.16	Humidity Stress Test	Signal: $\Delta R=40m\Omega Max$	Mated, 85°C, 85% R.H						
	-	Switch : $300 \text{m} \Omega \text{Max}$	1000 Hours (IEC 60068-2-78)						
		Fig. 1 (CONT.)							

Para.	Test Items	Requirements	Procedures
3.5.17	Salt Mist	Signal : $\Delta R=40m \Omega Max$ Switch : $300m \Omega Max$	Mated connectors with 5 %, 35° C concentration for 72 hours.
			IEC 68-2-52 Condition B
3.5.18	Ammonia gas	Signal : $\Delta R=40m\Omega Max$	Mated, 25°C, 24 Hours according to
		Switch : $300 \text{m} \Omega \text{Max}$	ASTM B858 or ISO 6957
3.5.19	Industrial Gas (H ₂ S)	Signal: $\Delta R=40 m \Omega Max$	Mated Dummy card (PCB).
		Switch : $300 \text{m} \Omega \text{Max}$	H ₂ S Gas: 3ppm, 90~95% R.H.
			40°C, 96hours
3.5.20	Resistance to Reflow	Tested housing shall show no	Test connector on PCB.
	Soldering Heat	evidence of deformation or	Pre-Heat $150 \sim 180^{\circ}$ C : 90 ± 30 sec.
		fusion of housing and no	Heat 230° C $: 30 \pm 10$ sec.
		physical damage.	Heat Peak $255^\circ\!\mathrm{C}$
			3 times
			Refer to Fig 4
			JEDEC Std J-STD-020C

Fig. 1 (End)

4. Product Qualification Test Sequence

	Test Group													
Test Examination	1	2	3	4	5	6	7	8	9	10	11	12	13	14
		Test Sequence (a)												
Examination of Product	1,3	1,7	1,5	1,5	1,6	1,3	1,5	1,5	1,5	1,9	1,5	1,5	1,5	1,3
Termination Resistance (Low Level)		2,5	2,4	2,4	2,5		2,4	2,4	2,4	2,6	2,4	2,4	2,4	
Dielectric withstanding Voltage										3,7				
Insulation Resistance										4,8				
Temperature Rising	2													
Connector Mating Force		3,6												
Durability (Office Environment)		4												
Durability (Harsh Environment)			3											
Random Vibration				3										
Sine Vibration					3									
Physical Shock					4									
Solder ability						2								
Thermal Shock							3							
Thermal Cycling								3						
Low temp. lifetest									3					
Humidity Stress Test										5				
Salt Mist											3			
Ammonia gas												3		
Industrial H ₂ S Gas													3	
Resistance to Reflow Soldering Heat														2

(a) Numbers indicate sequence in which the tests are performed.

Fig. 2

Fig.3 Termination Resistance measuring points

Fig.4 Reflow temperature profile

Fig.5 Temperature Resistance Measurement

The applicable product descriptions and part numbers are as shown in Appendix. 1.

Product Part No.	Description
1932770-1	Angle Micro SD Header Connector

Appendix 1