

Vectron's VC-806 Crystal Oscillator is a quartz stabilized, differential output oscillator, operating off either a 2.5 or 3.3 volt supply in a hermetically sealed 5.0x3.2 mm ceramic package.

Features

- Ultra Low Jitter Performance
- Fundamental or 3rd OT Crystal Design
- Output Frequencies to 250.000MHz
- <0.7 ps RMS jitter, 12kHz-20MHz
- Differential Output
- Enable/Disable
- -10/70°C, -40/85°C and -40/105°C Operating Temperature Range
- Hermetically Sealed 5.0x3.2 mm Ceramic Package
- Product is compliant to RoHS directive and fully compatible with lead free assembly

Applications

- Storage Area Networking
- Telecom
- Ethernet, GE, SynchE
- Fiber Channel
- PON
- Driving A/D's, D/A's, FPGA's
- Test and Measurement
- Medical
- COTS

Block Diagram

Performance Specifications

Parameter	Symbol	Min	Тур	Max	Units
	Supp	bly			
Supply Voltage ¹ (Ordering Option)	$V_{_{DD}}$	3.135 2.375	3.3 2.5	3.465 2.625	V
Current (No Load)	I _{DD}			75	mA
	Frequ	iency			
Nominal Frequency ²	f _N	25		250	MHz
Stability ³ (Ordering Option)			±25, ±50, ±100)	ppm
	Outp	uts			
Output Logic Levels⁴, -10/70°C Output Logic High Output Logic Low	V _{oh} V _{ol}	V _{DD} -1.025 V _{DD} -1.810		V _{DD} -0.880 V _{DD} -1.620	V
Output Logic Levels ⁴ , -40/105°C Output Logic High Output Logic Low	V _{oh} V _{ol}	V _{DD} -1.085 V _{DD} -1.830		V _{DD} -0.880 V _{DD} -1.555	V
Output Rise and Fall Time ⁴	t _R / t _F			700	ps
Load		50	ohms into V _{DD} -1	.3V	
Duty Cycle⁵		45	50	55	%
Phase Jitter ⁶ , 156.25MHz 12kHz - 20MHz offset	φJ		0.3	0.7	ps
Period Jitter ⁷ RMS P/P Random Jitter Deterministic Jitter	φJ R _j D _j		2.6 23 2.6 <0.2		ps ps ps ps
	Enable/D	isable	^		
Output Enabled [®] Output Disabled	V _{IH} V _{IL}	0.7*V _{DD}		0.3*V _{DD}	V V
Enable/Disable Time	t _D			200	ns
Enable/Disable Leakage Current				±200	uA
Enable Pull-Up Resistor Output Enabled Output Disabled			33 1		KOhm MOhm
Start-Up Time	t _{su}			10	ms
Operating Temperature Range (Ordering Option) ⁹	T _{op}	-10/70	0 or -40/85 or -4	0/105	°C
Package Size			5.0 x 3.2 x 1.3		mm

1. The VC-806 power supply pin should be filtered, eg, a 0.1 and 0.01 uf capacitor.

2. See Standard Frequencies and Ordering Information for more information.

3. Includes calibration tolerance, operating temperature, supply voltage variations, aging and IR reflow.

4. Figure 1 shows the test circuit and Figure 2 defines these parameters.

5. Duty Cycle is defines as the On/Time Period.

6. Measured using an Agilent E5052 Signal Source Analyzer at 25 °C. Phase Jitter will be 1.0ps (max) for carrier frequencies between 25MHz and 100MHz. Above 100MHz carrier frequency, phase jitter will be 0.7ps (max).

7. Measured using a Wavecrest SIA3300C, 90K samples.

8. Outputs will be Enabled if Enable/Disable is left open.

9. Only ±50ppm and ±100ppm stability options are available for -40 °C to 105 °C operating temperature range.

Performance Specifications

Table 2. Electrical Performance, LVDS Option	า				
Parameter	Symbol	Min	Тур	Max	Units
	Supp	bly			
Supply Voltage ¹ (Ordering Option)	V _{DD}	3.135 2.375	3.3 2.5	3.465 2.625	V
Current (No Load)	I _{DD}			60	mA
	Frequ	lency			
Nominal Frequency ²	f _N	25		250	MHz
Stability ³ (Ordering Option)			±25, ±50, ±100)	ppm
	Outp	uts			
Output Logic Levels⁴ Output Logic High Output Logic Low	V _{oh} V _{ol}	0.9	1.43 1.10	1.6	V
Output Swing		247	330	454	mV
Differential Output Error				50	mV
Offset Voltage		1.125	1.25	1.375	V
Offset Voltage Error				50	mV
Output Leakage Current				10	uA
Output Rise and Fall Time ⁴	t _R /t _F			700	ps
Load		10	0 ohms differen	tial	
Duty Cycle⁵		45	50	55	%
Phase Jitter⁵, 156.25MHz 12kHz - 20MHz offset	φJ		0.35	0.8	ps
Period Jitter ⁷ RMS P/P Random Jitter Deterministic Jitter	φJ R _j Dj		2.9 25.1 2.9 <0.2		ps ps ps ps
	Enable/D	Disable			
Output Enabled [®] Output Disabled	V _{IH} V _{IL}	0.7*V _{DD}		0.3*V _{DD}	V V
Enable/Disable Time	t _D			200	ns
Enable/Disable Leakage Current				±200	uA
Enable Pull-Up Resistor Output Enabled Output Disabled			33 1		KOhm MOhm
Start-Up Time	t _{su}			10	ms
Operating Temperature Range (Ordering Option) ⁹	Τ _{ορ}	-10/7	0 or -40/85 or -4	0/105	°C
Package Size			5.0 x 3.2 x 1.3		mm

1. The VC-806 power supply pin should be filtered, eg, a 0.1 and 0.01 uf capacitor.

2. See Standard Frequencies and Ordering Information for more information.

3. Includes calibration tolerance, operating temperature, supply voltage variations, aging and IR reflow.

4. Figure 3 shows the test circuit and Figure 2 defines these parameters.

5. Duty Cycle is defines as the On/Time Period.

6. Measured using an Agilent E5052 Signal Source Analyzer at 25 °C. Phase Jitter will be 1.0ps (max) for carrier frequencies between 25MHz and 100MHz. Above 100MHz carrier frequency, phase jitter will be 0.8ps (max).

7. Measured using a Wavecrest SIA3300C, 90K samples.

8. Outputs will be Enabled if Enable/Disable is left open.

9. Only ±50ppm and ±100ppm stability options are available for -40 °C to 105 °C operating temperature range.

Test Diagrams

Figure 1 - LV-PECL test circuit

Figure 3 - LVDS test circuit

Package and Pinout											
	Table 3. Pinout										
	Pin #	Symbol	Function								
	1	E/D or NC	Enable Disable or No Connection								
	2	E/D or NC	Enable Disable or No Connection								
	3	GND	Electrical and Lid Ground								
12	4	f _o	Output Frequency								
1.3 max	5	Cf _o	Complementary Output Frequency								
· ·	б	V _{DD}	Supply Voltage								

The Enable/Disable function is set at the factory on either pin 1 or pin 2 and is an ordering option.

Table 4. Enable Disable Function							
E/D Pin	Output						
High	Clock Output						
Open Clock Output							
Low	High Impedance						

Figure 4 - Package (Dimensions in mm)

Marking Information:

V: Vectron

XXMXXX: Frequency in MHz (Example: 25M000 or 125M00) YYWW: Year and Week (1642: Year 2016 and Week 42) Z: Manufacturing Location

LVPECL Application Diagrams

Figure 6 - Standard PECL Output Configuration **Figure 7 - Single Resistor Termination Scheme** Resistor values are typically 140 ohms for 3.3V operation. Resistor values are typically 84 for 2.5V operation. **Figure 8 - Pull-Up Pull Down Termination** Resistor values are typically for 3.3V operation For 2.5V operation, the resistor to ground is 62 ohms and the resistor to supply is 240 ohms

130Ω

โตอก

The VC-806 incorporates a standard PECL output scheme, which are un-terminated emitters as shown in Figure 6. There are numerous application notes on terminating and interfacing PECL logic and the two most common methods are a single resistor to ground, Figure 7, and a pull-up/pull-down scheme as shown in Figure 8. An AC coupling capacitor is optional, depending on the application and the input logic requirements of the next stage.

LVDS Application Diagrams

Figure 9 - Standard LVDS

Output Configuration

Figure 10 - LVDS to LVDS Connection, Internal 100ohm Some LVDS structures have an internal 100 ohm resistor on the input and do not need additional components.

Figure 11 - LVDS to LVDS Connection External 100ohm and AC blocking caps

Some input structures may not have an internal 100 ohm resistor on the input and will need an external 100ohm resistor for impedance matching. Also, the input may have an internal DC bias which may not be compatible with LVDS levels, AC blocking capacitors can be used.

One of the most important considerations is terminating the Output and Complementary Outputs equally. An unused output should not be left un-terminated, and if it one of the two outputs is left open it will result in excessive jitter on both. PC board layout must take this and 50 ohm impedance matching into account. Load matching and power supply noise are the main contributors to jitter related problems.

Environmental and IR Compliance

Table 5. Environmental Compliance					
Parameter	Condition				
Mechanical Shock	MIL-STD-883 Method 2002				
Mechanical Vibration	MIL-STD-883 Method 2007				
Temperature Cycle	MIL-STD-883 Method 1010				
Solderability	MIL-STD-883 Method 2003				
Fine and Gross Leak	MIL-STD-883 Method 1014				
Resistance to Solvents	MIL-STD-883 Method 2015				
Moisture Sensitivity Level	MSL1				
Contact Pads	Gold over Nickel Thickness of Gold: ~0.3um to 1.0um Thickness of Nickel: ~1.27um to 8.89um				
Weight	57 mg				

Page5

IR Compliance

Suggested IR Profile

Devices are built using lead free epoxy and can be subjected to standard lead free IR reflow conditions shown in Table 6. Contact pads are gold over nickel and lower maximum temperatures can also be used, such as 220C.

Table 6. Reflow Profile		
Parameter	Symbol	Value
PreHeat Time	t	200 sec Max
Ramp Up	R _{up}	3°C/sec Max
Time above 217°C	tL	150 sec Max
Time to Peak Temperature	t _{AMB-P}	480 sec Max
Time at 260°C	t _p	30 sec Max
Time at 240°C	t _{P2}	60 sec Max
Ramp down	R _{DN}	6°C/sec Max

Solderprofile:

Maximum Ratings, Tape & Reel

Absolute Maximum Ratings and Handling Precautions

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied or any other excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

Although ESD protection circuitry has been designed into the VC-806, proper precautions should be taken when handling and mounting, Vectron employs a Human Body Model and Charged Device Model for ESD susceptibility testing and design evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry standard has been adopted for the CDM a standard resistance of 1.5kOhms and capacitance of 100pF is widely used and therefor can be used for comparison purposes.

Table 7 Maximum Ratings			
Parameter	Symbol	Rating	Unit
Storage Temperature	T _{STORE}	-55/125	°C
Supply Voltage	V _{DD}	-0.5 to 5.0	V
Enable Disable Voltage	E/D	-0.5 to V _{DD} +0.5	V
ESD, Human Body Model	НВМ	1500	V
ESD, Charged Device Model	CDM	1000	V

Table 8. Tape and Reel Information												
Tape Dimensions (mm)					Reel Dimensions (mm)							
W	F	Do	Ро	P1	А	В	С	D	Ν	W1	W2	#/Reel
12	5.5	1.5	4	8	180	2	13	21	60	13	15.4	250

Table 9. S	Table 9. Standard Frequencies (MHz)										
25.000	25.00125	27.000	32.000	33.000	38.880	40.000	50.000	53.125	56.000	56.250	60.000
61.440	62.500	66.000	66.667	67.500	75.000	77.760	80.000	83.333	98.304	100.000	103.000
106.250	108.000	114.285	122.280	124.512	125.000	133.000	143.000	148.351	148.500	150.000	153.600
155.520	156.250	156.253906	160.000	161.130	164.355	166.6286	166.6667	167.000	167.330	168.750	173.3707
180.000	186.667	187.500	190.000	200.000	212.500	218.750	250.000				

Ordering Information

Notes:

- a) Only \pm 50ppm and \pm 100ppm stability options are available over -40/105°C operating temperature range.
- b) Stability option of ±20ppm is available. But it does not include aging and reflow.
- c) Not all combinations of ordering options are available. Other specifications may be available upon request. Please consult with Vectron Applications Team.
- d) Ordering information for frequency is xxxMxxxxxx or xxMxxxxxx depending on the oscillator frequency

Example: VC-806-EDE-KAAN-125M000000TR Tape and Reel VC-806-EDE-KAAN-125M000000 Cut Tape VC-806-EDE-KAAN-125M000000_SNPB Tin lead solder dipped

Revision History

Revision Date	Approved	Description
2009 - 2011	FB, TG	Initial Datasheet, Minor modifications
Oct 21, 2013	TG	Updated Vectron Asia contact information
Feb 07, 2014	TG	Vectron Knowles Logo
May 13, 2015	VN	Modified Marking Information in Package Drawing
Mar 18, 2016	VN	Updated Standard Frequencies Table (Table 8) - Added 3 new frequencies
Aug 24, 2016	VN	Changed Maximum Frequency to 250MHz. Removed 312.5MHz from Frequency Table 8.
Jan 17, 2017	RC	Changed reflow profile to indicate 30s (max.) for time at 260 °C. However, Incorrect version of VC-806 design file used to create datasheet which was loaded in website.
Sep 22, 2017	VN	Added extended temperature option, termination finish information, added notes for phase jitter and stability, added notes under ordering options, updated T&R dimensions.
May 10, 2019	FB	Update logo and contact information, add _SNPB ordering details
April 30, 2020	FB	Add tape and reel ordering option

Contact Information

Europe:

USA: 100 Watts Street Mt Holly Springs, PA 17065 Tel: 1.717.486.3411 Fax: 1.717.486.5920

Landstrasse 74924 Neckarbischofsheim Germany Tel: +49 (0) 7268.801.0 Fax: +49 (0) 7268.801.281

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your reasonability to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATION OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATU-TORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING, BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFOR-MANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly, or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip and Vectron names and logos are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.