# **MLX90340**

### Datasheet



# **1. Features and Benefits**

- Triaxis<sup>®</sup> Hall Technology
- On Chip Signal Processing for Robust Absolute Position Sensing
- Programmable Measurement Range
- Programmable Linear Transfer Characteristic (Multi-points 4 or Piece-Wise-Linear 17)
- Selectable Analog (Ratiometric) or PWM Output
- 12 bit Resolution 10 bit Thermal Accuracy
- 48 bit ID Number option
- Single Die SOIC-8 Package RoHS Compliant
- Dual Die (Full Redundant) TSSOP-16 Package RoHS Compliant



# 2. Application Examples

- Absolute Rotary Position Sensor
- Absolute Linear Position Sensor
- Non-Contacting Potentiometer

### **3. Description**

The MLX90340 is a monolithic sensor IC sensitive to the flux density applied orthogonally and parallel to the IC surface.

The MLX90340 is sensitive to the three components of the flux density applied to the IC (i.e. Bx, By and Bz). This allows the MLX90340 with the correct magnetic circuit to decode the absolute position of any moving magnet (e.g. rotary position from 0 to 360 Degrees or linear displacement, stroke - Figure 2). It enables the design of novel generation of non-contacting

position sensors that are frequently required for both heavy-duty and industrial applications.

The MLX90340 reports a programmable ratiometric analog output signal compatible with a programmable linear Hall sensor. Through programming, the MLX90340 provides also a digital PWM (Pulse Width Modulation) output characteristic.





# Contents

| 1. Features and Benefits                           |    |
|----------------------------------------------------|----|
| 2. Application Examples                            |    |
| 3. Description                                     |    |
| 4. Ordering Information                            |    |
| 5. Functional Diagram                              | 5  |
| 6. Glossary of Terms                               | 6  |
| 7. Pin Definitions and Descriptions                | 7  |
| 7.1. Pin Definition for SOIC-8                     | 7  |
| 7.2. Pin Definition for TSSOP-16                   | 8  |
| 8. Absolute Maximum Ratings                        |    |
| 9. Detailed General Description                    |    |
| 10. General Electrical Specifications              |    |
| 11. Isolation Specification                        |    |
| 12. Timing Specification                           |    |
| 12.1. Latency time Definition                      |    |
| 12.2. Step Response Definition                     |    |
| 13. Accuracy                                       |    |
| 14. Magnetic Specification                         |    |
| 15. CPU & Memory Specification                     |    |
| 16. End-User Programmable Items                    |    |
| 17. Description of End-User Programmable Items     |    |
| 17.1. Output mode                                  |    |
| 17.1.1. Analog Output mode                         |    |
| 17.1.2. PWM Output mode                            |    |
| 17.2. Output Transfer Characteristic               |    |
| 17.2.1. Enable Scaling Parameter                   | 20 |
| 17.2.2. Clockwise parameter                        | 20 |
| 17.2.3. Discontinuity point (or Zero degree point) | 21 |
| 17.2.4. 4-Pts LNR Parameters                       | 21 |
| 17.2.5. 17-Pts LNR Parameters                      | 22 |
| 17.2.6. CLAMPING Parameters                        | 23 |



| 17.3. Identification                                                                        | 23 |
|---------------------------------------------------------------------------------------------|----|
| 17.4. Sensor Front-End                                                                      | 24 |
| 17.4.1. MAPXYZ                                                                              | 24 |
| 17.4.2. K parameter                                                                         | 24 |
| 17.4.3. GAINMIN and GAINMAX Parameters                                                      | 25 |
| 17.5. Filter                                                                                | 25 |
| 17.6. Programmable Diagnostic Settings                                                      | 26 |
| 17.6.1. Fixed-level diagnostic reporting                                                    | 26 |
| 17.6.2. HAMHOLE Parameter                                                                   | 27 |
| 17.7. Lock                                                                                  | 27 |
| 17.8. EEPROM endurance                                                                      |    |
| 18. Self Diagnostic                                                                         | 28 |
| 19. Recommended Application Diagrams                                                        | 31 |
| 19.1. MLX90340 in SOIC-8 Package                                                            |    |
| 19.2. MLX90340 in TSSOP-16 Package                                                          |    |
| 20. Standard information regarding manufacturability of Melexis products with different sol | -  |
| 21. ESD Precautions                                                                         |    |
| 22. Package Information                                                                     |    |
| 22.1. SOIC-8 - Package Dimensions                                                           |    |
| 22.2. SOIC-8 - Pinout and Marking                                                           |    |
| 22.3. SOIC-8 - Sensitive spot Positioning                                                   |    |
| 22.4. TSSOP16 - Package Dimensions                                                          |    |
| 22.5. TSSOP16 - Pinout and Marking                                                          |    |
| 22.6. TSSOP16 - Sensitive spot Positioning                                                  |    |
| 23. Disclaimer                                                                              |    |
| 24. Contacts                                                                                | 42 |



# 4. Ordering Information

| ion – Heavy-duty             |
|------------------------------|
| ion – Heavy-duty             |
| ion – Industrial             |
| ion - Industrial             |
| grammed analog - Industrial  |
| ogrammed analog - Industrial |
| ogrammed analog - Industrial |
| ogrammed analog - Industrial |
| ion - Consumer               |
| grammed analog - Consumer    |
| ogrammed analog - Consumer   |
| ogrammed analog - Consumer   |
| ogrammed analog - Consumer   |
|                              |

## Legend:

| Temperature<br>Code: | L: from -40°C to 150°C<br>E: from -40°C to 85°C<br>S: from -20°C to 85°C                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Package<br>Code:     | "DC" for SOIC-8 package<br>"GO" for TSSOP-16 package (dual die)                                                                                                                                                                                                                                                                                                                                                                                                           |
| Option<br>Code:      | AAA-xxx: die Version<br>xxx-123<br>1: Application<br>• 0: Standard version<br>• 1: Pre-programmed version in Analog output mode – Transfer function of 80%Vdd /90deg<br>• 2: Pre-programmed version in Analog output mode – Transfer function of 80%Vdd /360deg<br>• 3: Pre-programmed version in Analog output mode – Transfer function of 80%Vdd /180deg<br>• 4: Pre-programmed version in Analog output mode – Transfer function of 80%Vdd /270deg<br>2: N/A<br>3: N/A |
| Packing<br>Form:     | RE "for Reel", TU "for Tube",                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ordering<br>Example: | "MLX90340EDC-AAA-000-RE"<br>For a Standard version from -40 to 85degC in SOIC-8 package, delivered in Reel.                                                                                                                                                                                                                                                                                                                                                               |

Table 1: Ordering information Legend



# **5. Functional Diagram**



Figure 1: Block diagram

# Angle XY, Angle XZ, Angle YZ



Figure 2: Application examples



# 6. Glossary of Terms

| Gauss (G), Tesla (T) | Units for the magnetic flux density – 1 mT = 10 G                                    |
|----------------------|--------------------------------------------------------------------------------------|
| тс                   | Temperature Coefficient (in ppm/Deg.C.)                                              |
| NC                   | Not Connected                                                                        |
| PWM                  | Pulse Width Modulation                                                               |
| %DC                  | Duty Cycle of the output signal i.e. TON /(TON + TOFF)                               |
| ADC                  | Analog-to-Digital Converter                                                          |
| DAC                  | Digital-to-Analog Converter                                                          |
| LSB                  | Least Significant Bit                                                                |
| MSB                  | Most Significant Bit                                                                 |
| DNL                  | Differential Non-Linearity                                                           |
| INL                  | Integral Non-Linearity                                                               |
| RISC                 | Reduced Instruction Set Computer                                                     |
| ASP                  | Analog Signal Processing                                                             |
| DSP                  | Digital Signal Processing                                                            |
| CoRDiC               | Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform) |
| EMC                  | Electro-Magnetic Compatibility                                                       |
| DLS                  | Digital Low Speed                                                                    |
| DHS                  | Digital High Speed                                                                   |

Table 2: Glossary



# 7. Pin Definitions and Descriptions

# 7.1. Pin Definition for SOIC-8

| Pin # | Name       | Description        |
|-------|------------|--------------------|
| 1     | Vdd        | Supply             |
| 2     | Test Input | For test           |
| 3     | Test       | For test           |
| 4     | Not Used   |                    |
| 5     | OUT        | Output             |
| 6     | Test1      | Test pin           |
| 7     | VDIG       | 3.3V Regulator pin |
| 8     | Vss        | Ground pin         |

Table 3: SOIC-8 Pinout

For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the Ground



# 7.2. Pin Definition for TSSOP-16

| Pin # | Name      | Description        |
|-------|-----------|--------------------|
| 1     | VDIG1     | 3.3V Regulator pin |
| 2     | VSS_1     | Ground Die 1       |
| 3     | VDD_1     | Supply Die1        |
| 4     | Test0_1   | For test           |
| 5     | Test2_2   | For test           |
| 6     | Ουτ2      | Output Die 2       |
| 7     | Not Used2 |                    |
| 8     | Test1_2   | For test           |
| 9     | VDIG2     | 3.3V Regulator pin |
| 10    | Vss_2     | Ground Die 2       |
| 11    | VDD_2     | Supply Die 2       |
| 12    | Test0_2   | For test           |
| 13    | Test2_1   | For test           |
| 14    | Not Used1 |                    |
| 15    | OUT1      | Output             |
| 16    | Test1_1   | For test           |

Table 4: TSSOP-16 Pinout

For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the Ground



# 8. Absolute Maximum Ratings

| Parameter                  | Symbol  | Min. | Тур. | Max. | Unit | Condition                                 |
|----------------------------|---------|------|------|------|------|-------------------------------------------|
| Supply Voltage             | Vdd     |      |      | 24   | V    |                                           |
| Reverse Voltage Protection | Vdd-rev |      |      | -12  | V    | Independent of time, Breakdown<br>at -14V |
| Positive Output Voltage    | Vout    |      |      | 18   | V    | Independent of time, Breakdown<br>at 24V  |
| Reverse Output Voltage     |         |      |      | -0.3 | V    |                                           |
| Operating Temperature      | Тамв    | -40  |      | +150 | °C   |                                           |
| Junction Temperature       | Tjunc   |      |      | 160  | °C   |                                           |
| Storage Temperature        | Тѕт     | -40  |      | +150 | °C   |                                           |
| Magnetic Flux Density      |         | -1   |      | 1    | Т    |                                           |

Table 5 – Maximum ratings

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

# 9. Detailed General Description

As described on the block diagram the three vector components of the magnetic flux density (BX, BY and BZ) applied to the IC are sensed through the sensor front-end. The respective Hall signals (VX, VY and VZ) are generated at the Hall plates and amplified.

The analog signal processing is based on a fully differential analog chain featuring the classic offset cancellation technique (Hall plate 2-Phases spinning and chopper-stabilized amplifier).

The conditioned analog signals are converted through an ADC (15 bits) and provided to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose primary function is the extraction of the position from two (out of three) raw signals (after so-called front-end compensation steps) through the following function:

$$\alpha = \angle (V_1, k \times V_2)$$

#### Figure 3: Angular calculation formula

where alpha is the magnetic angle <(B1, B2), V1 = Vx or Vy or Vz , V2 = Vx or Vy or Vz

The DSP functionality is governed by the micro-code (firmware - F/W) of the micro-controller which is stored into the ROM (mask programmable). In addition to the magnetic angle extraction, the F/W controls



the whole analog chain, the output transfer characteristic, the output protocol, the programming/calibration and also the self-diagnostic modes.

The magnetic angular information is intrinsically self-compensated vs. flux density variations. This feature allows therefore an improved thermal accuracy vs position sensor based on conventional linear Hall sensors.

In addition to the improved thermal accuracy, the realized position sensor features excellent linearity performances taking into account typical manufacturing tolerances (e.g. relative placement between the Hall IC and the magnet).

Once the position (angular or linear stroke) information is computed, it is further conditioned (mapped) vs. the target transfer characteristic and it is provided at the output(s) as either a ratiometric analog output level through a 12 bit DAC followed by a buffer or a digital PWM output.

For instance, the analog output can be programmed for offset, gain and clamping to meet any rotary position sensor output transfer characteristic:

 $\begin{array}{l} {\sf Vout}(\alpha) = {\sf ClampLo} \mbox{ for } \alpha \leq \alpha {\sf min} \\ {\sf Vout}(\alpha) = {\sf Voffset} + {\sf Gain} \times \alpha \quad {\sf for } \alpha {\sf min} \leq \alpha \leq \alpha {\sf max} \\ {\sf Vout}(\alpha) = {\sf ClampHi} \mbox{ for } \alpha \geq \alpha {\sf max} \end{array}$ 

where Voffset, Gain, ClampLo and ClampHi are the main adjustable parameters for the end-user. The linear part of the transfer curve can be adjusted through a multi-point calibration: This back-end step consists into either up to 4 arbitrary points (5 segments + clamping levels) calibration or a Piece-Wise-Linear (PWL) output transfer characteristics - 17 equidistant points w/ programmable origin over 16 different angle ranges from 65 to 360 degrees.

The calibration parameters are stored in NVRAM featuring a Hamming Error Correction Coding (ECC).

The programming steps do not require any dedicated pins. The operation is done using the supply and output nodes of the IC. The programming of the ML90340 is handled at both engineering lab and production line levels by the Melexis Programming Unit PTC-04 with the dedicated DB90316 and software tools (DLL – User Interface).

# **10. General Electrical Specifications**

DC Operating Parameters at VDD = 5V (unless otherwise specified) and for  $T_A$  as specified by the Temperature suffix (S or E or L).

| Electrical Parameter | Symbol | Min. | Тур. | Max. | Unit | Condition                                                               |
|----------------------|--------|------|------|------|------|-------------------------------------------------------------------------|
| Supply Voltage       | Vdd    | 4.5  | 5    | 5.5  | V    |                                                                         |
| Supply Current       |        |      | 13.5 | 15   | mA   | no resistive load at OUT<br>PIN (OUT1 and OUT2 for<br>TSSOP-16 package) |

#### MLX90340

Datasheet



| Electrical Parameter                                                  | Symbol                               | Min.               | Тур.             | Max.                       | Unit                                 | Condition                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------|--------------------------------------|--------------------|------------------|----------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power-On reset ( rising )                                             | POR LH                               | 2.4                | 2.7              | 3                          | V                                    | Refer to internal voltage<br>Vdig                                                                                                                                                                                                                                         |
| Power-On reset<br>Hysteresis                                          |                                      |                    | 400              |                            | mV                                   |                                                                                                                                                                                                                                                                           |
| ASP Start Rising Level                                                | LT4VLH                               | 3.5                |                  | 4.1                        | V                                    |                                                                                                                                                                                                                                                                           |
| ASP Start Hysteresis                                                  | LT4V Hyst                            | 0.1                |                  | 0.5                        | V                                    |                                                                                                                                                                                                                                                                           |
| PTC Entry Rising Level                                                | MT7V LH                              | 6.6                |                  | 7.2                        | V                                    |                                                                                                                                                                                                                                                                           |
| PTC Entry Hysteresis                                                  | MT7V Hyst                            | 0.1                |                  | 0.4                        | V                                    |                                                                                                                                                                                                                                                                           |
| Switch Off Rising Level                                               | LT11V LH                             | 8.6                |                  | 14                         | V                                    |                                                                                                                                                                                                                                                                           |
| Switch Off Hysteresis                                                 | LT11V Hyst                           | 0.1                |                  | 1                          | V                                    |                                                                                                                                                                                                                                                                           |
| Output Load                                                           | RL                                   | 1                  | 10               | $\infty$                   | kΩ                                   | See Analog saturation                                                                                                                                                                                                                                                     |
| Output short circuit current                                          | lshort                               |                    |                  | 15<br>15<br>18             | mA<br>mA<br>mA                       | Vout to GND<br>Vout to 5V<br>Vout to 14V (Ta=25degC)                                                                                                                                                                                                                      |
| Analog Saturation Output<br>level / Active Diagnostic<br>output level | Vsat_lo /<br>Diag_lo                 |                    | 0.5<br>2         | 2<br>3                     | %Vdd<br>%Vdd                         | PU load RL $\geq 10~k\Omega$ to 5 V PU load RL $\geq~1~k\Omega$ to 5V                                                                                                                                                                                                     |
|                                                                       | Vsat_hi /<br>Diag_hi                 | 94<br>96<br>97     | 96<br>98<br>97.5 |                            | %Vdd<br>%Vdd<br>%Vdd                 | PD load RL $\ge$ 5 k $\Omega$<br>PD load RL $\ge$ 10 k $\Omega$<br>PD load RL = 5 k $\Omega$                                                                                                                                                                              |
| Passive Diagnostic<br>Output Level (Broken Vss<br>/VDD)               | BVssPD<br>BVssPU<br>BVddPD<br>BVddPU | 0<br>0<br>99<br>96 | 0                | 4<br>10<br>100<br>1<br>100 | %Vdd<br>%Vdd<br>%Vdd<br>%Vdd<br>%Vdd | $\begin{array}{l} \mbox{Pull-down load } R_L \leq 10 \ k\Omega \\ \mbox{Pull-down load } R_L \leq 25 \ k\Omega \\ \mbox{Pull-up load } R_L \geq 1 \ k\Omega \\ \mbox{Pull-down load } R_L \geq 1 \ k\Omega \\ \mbox{Pull-down load } R_L \leq 10 \ \ k\Omega \end{array}$ |
| Rdson                                                                 | Rdson_lo<br>Rdson_hi                 | 15<br>120          |                  | 30<br>300                  |                                      | Rdson Low side<br>Rdson High side                                                                                                                                                                                                                                         |
| Clamping Output Level                                                 | Clamp_lo<br>Clamp_hi                 | 0<br>0             |                  | 100<br>100                 | %Vdd<br>%Vdd                         | to be higher than Vsat_lo<br>to be lower than Vsat_hi                                                                                                                                                                                                                     |

 Table 6: MLX90340 Electrical specifications

As an illustration of the previous table, the MLX90340 fits the typical classification of the output span described on Figure 4.



*Figure 4: Example of Output Span Classification for typical application.* 

# **11. Isolation Specification**

DC Operating Parameters at VDD = 5V (unless otherwise specified) and for  $T_A$  as specified by the Temperature suffix (S or E or L). Only valid for the package code GO, i.e. dual die version.

| Parameter            | Symbol | Min. | Тур. | Max. | Unit | Condition    |
|----------------------|--------|------|------|------|------|--------------|
| Isolation Resistance |        | 4    | -    | -    | MΩ   | Between dice |

Table 7: Isolation



# **12. Timing Specification**

DC Operating Parameters at VDD = 5V (unless otherwise specified) and for  $T_A$  as specified by the Temperature suffix (S or E or L).

| Parameter                             | Symbol | Min. | Тур. | Max. | Unit | Condition           |
|---------------------------------------|--------|------|------|------|------|---------------------|
| Main Clock Frequency                  | Ck     | 9.5  | 10   | 10.5 | MHz  |                     |
| Main Clock Frequency<br>Thermal Drift |        | -10  | -    | 10   | %Ck  | Lifetime included   |
| Refresh Rate                          |        |      | 400  | 440  | μs   |                     |
| Latency                               |        |      | 400  |      | μs   |                     |
| Step Response Time                    |        |      | 800  | 1320 | μs   | Filter=0 (FIR1)     |
|                                       |        |      | 1200 | 1760 | μs   | Filter=1 (FIR11)    |
|                                       |        |      | 1600 | 2200 | μs   | Filter=2 (FIR1111)  |
| Watchdog                              |        |      | 4.58 |      | ms   | See Section 18      |
| Start-up Time                         |        |      | 7.5  | 10   | ms   | excluding slew rate |
| Analog OUT Slew-rate                  |        |      | 37   |      | V/ms | Mode1               |
|                                       |        |      | 320  |      | V/ms | Mode2               |

Table 8: Timings specification

### 12.1. Latency time Definition

The latency time is a suitable metric for the "delay" of the sensor in case of a slow ramp of the magnetic change, for instance, when the magnet has an angular frequency of 10 radians per second, i.e., 360 Deg. rotation within 100ms. A graphic illustration can be seen in Figure 5.





Figure 5: Latency time defintion

## 12.2. Step Response Definition

The step response is a suitable metric for the "delay" of the sensor in case of an abrupt step in the magnetic change, considering 100% settling time without any DSP filter. Full settling is typically achieved in just two steps. The sensor is asynchronous with the magnetic step change: the 100% settling time will fall in a time window; worst case is given in Table 8.



Figure 6: Step Response time definition



# **13. Accuracy**

DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S or E or L).

| Parameter                                                                   | Symbol | Min.                                  | Тур.   | Max.                             | Unit                                 | Condition                                                                                                                         |
|-----------------------------------------------------------------------------|--------|---------------------------------------|--------|----------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| XY – Intrinsic Linearity Error <sup>(1)</sup>                               | Le     | -1                                    |        | 1                                | Deg.                                 | TA=25degC                                                                                                                         |
| XZ (YZ) - Intrinsic Lin. Error <sup>(1)</sup>                               | Le     | -20                                   | +/-2.5 | 20                               | Deg.                                 | TA=25degC                                                                                                                         |
| Analog Output Resolution                                                    | Rdac   | -4<br>0.05                            | 0.025  | 4<br>3                           | %Vdd/Lsb12<br>LSB12<br>LSB12         |                                                                                                                                   |
| Output stage Noise                                                          |        |                                       | 0.05   | 0.075                            | %Vdd                                 | Output in clamping                                                                                                                |
| ADC Resolution on the raw signals sine and cosine <sup>(2)</sup>            | Radc   |                                       | 15     |                                  | Bits                                 |                                                                                                                                   |
| Thermal Offset Drift #1 at<br>the DSP input (excl. DAC and<br>output stage) | Tofs1  | -0.35<br>-0.4<br>-0.55                | -      | 0.35<br>0.4<br>0.55              | Deg.<br>Deg.<br>Deg.                 | Temperature Suffix S<br>Temperature Suffix E<br>Temperature Suffix L                                                              |
| Thermal Offset Drift #2<br>( Output Stage Drift)                            | Tofs2  | -0.25                                 |        | 0.25                             | %Vdd                                 |                                                                                                                                   |
| Thermal Sensitivity<br>Mismatch Drift                                       | Tsmm   | -0.1<br>-0.15<br>-0.2<br>-0.3<br>-0.4 |        | 0.1<br>0.15<br>0.2<br>0.3<br>0.4 | Deg.<br>Deg.<br>Deg.<br>Deg.<br>Deg. | XY axis, Temp Suffix S<br>XY axis, Temp Suffix E<br>XY axis, Temp Suffix L<br>XZ axis, Temp Suffix S, E<br>XZ Axis, Temp Suffix L |
| Magnetic Angle phase error                                                  |        | -0.3<br>-10                           |        | 0.3<br>10                        | Deg.<br>Deg.                         | $T_A = 25^{\circ}C - XY \text{ axis}$<br>$T_A = 25^{\circ}C - XZ (YZ) \text{ axis}$                                               |

<sup>2</sup> 16 bits corresponds to 15 bits + sign. Internal computation is performed using 16 bits.

<sup>&</sup>lt;sup>1</sup> The Intrinsic Linearity Error refers to the IC itself (offset, sensitivity mismatch, orthogonality) taking into account an ideal rotating field for Bx and By. Once associated to a practical magnetic construction and the associated mechanical and magnetic tolerances, the output linearity error increases. However, it can be improved with the multi-point end-user calibration. The intrinsic Linearity Error for Magnetic angle XZ and YZ can be reduced through the programming of the k factor.

MLX90340

Datasheet



| Parameter                               | Symbol Min.  | Тур.         | Max.     | Unit         | Condition                                                                                                |
|-----------------------------------------|--------------|--------------|----------|--------------|----------------------------------------------------------------------------------------------------------|
| Ratiometry Error (Analo<br>output only) | g -0.1<br>-1 |              | 0.1<br>1 | %Vdd<br>%Vdd | $\begin{array}{l} 4.5V \leq V \text{dd} \leq 5.5V \\ \text{LT4V} \leq V \text{dd} \leq MT7V \end{array}$ |
| Noise                                   | -0.125       | +/-<br>0.075 | 0.125    | Deg.         | +/-3σ, No Filtering                                                                                      |

Table 9: Accuracy specifications

# **14. Magnetic Specification**

| Parameter                                       | Symbol    | Min.              | Тур. | Max.              | Unit | Condition                       |
|-------------------------------------------------|-----------|-------------------|------|-------------------|------|---------------------------------|
| Magnetic Flux Density                           | Bx, By    |                   |      | 70 <sup>(3)</sup> | mT   | $V[B_{X}^{2}+B_{Y}^{2}]$        |
|                                                 | Bz        |                   |      | 130               | mT   |                                 |
| Magnetic Field Norm                             | Norm      | 20 <sup>(4)</sup> | 40   |                   | mT   | $V[B_X^2 + B_Y^2 + (Bz/1.2)^2]$ |
| IMC Gain in X and $Y^{\scriptscriptstyle{(5)}}$ | GainIMCxy | 1.2               | 1.4  | 1.8               | mT   |                                 |
| IMC Gain in Z                                   | GainIMCz  | 1.1               |      | 1.3               | mT   |                                 |
| K factor                                        | k         | 1                 | 1.2  | 1.5               |      | GainIMCxy / GainIMCz            |

Table 10: Magnetic specifications

<sup>&</sup>lt;sup>3</sup> Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error.

<sup>&</sup>lt;sup>4</sup> Below 20 mT, the performances slightly degrade due to a reduction of the signal-to-noise ratio, signal-to-offset ratio...

<sup>&</sup>lt;sup>5</sup> This is the magnetic gain linked to the Integrated Magneto Concentrator structure. It applies to Bx and By and not to z. This is the overall variation. Within one lot, the part to part variation is typically  $\pm$  10% versus the average value of the IMC gain of that lot.



# **15. CPU & Memory Specification**

The DSP is based on a 16 bit RISC µController. This CPU provides 2.5 Mips while running at 10 MHz.

| Parameter | Symbol | Min. | Тур. | Max. | Unit | Condition |
|-----------|--------|------|------|------|------|-----------|
| ROM       |        |      | 7    |      | kB   |           |
| RAM       |        |      | 256  |      | В    |           |
| EEPROM    |        |      | 128  |      | В    |           |

Table 11: Memory specifications

# **16. End-User Programmable Items**

| Parameter   | 000       | 200          | 100         | 300          | 400          | coding | Unit | Description                                           |
|-------------|-----------|--------------|-------------|--------------|--------------|--------|------|-------------------------------------------------------|
| Output mode | 1         | 1            | 1           | 1            | 1            | 3      | bits | Define the output stage mode                          |
| DIAG        | 0         | 0            | 0           | 0            | 0            | 1      | bits | Diagnostic mode (Low/Hi)                              |
| ADIAG       | 0         | 0            | 0           | 0            | 0            | 1      | bits | Analog diagnostic option<br>(Low/Hiz or HiZ/Hi)       |
| MAPXYZ      | MLX       | MLX          | MLX         | MLX          | MLX          | 3      | bits | Mapping fields for output angle                       |
| CLAMP_HIGH  | 50%       | 10%          | 10%         | 10%          | 10%          | 16     | bits | Clamping High (50%)                                   |
| CLAMP_LOW   | 50%       | 90%          | 90%         | 90%          | 90%          | 16     | bits | Clamping Low (50%)                                    |
| FILTER      | 0h        | 1h           | 1h          | 1h           | 1h           | 2      | bits | Filter mode selection                                 |
| k (SMISM)   | MLX       | MLX          | MLX         | MLX          | MLX          | 16     | bits | Sensitivity mismatch factor                           |
| GAINMIN     | 00h       | 00h          | 00h         | 00h          | 00h          | 8      | bits | Low threshold for virtual gain                        |
| GAINMAX     | 29h       | 29h          | 29h         | 29h          | 29h          | 8      | bits | High threshold for virtual gain                       |
| PWMPOL      | 0         | N/A          | N/A         | N/A          | N/A          | 1      | bits | PWM polarity                                          |
| PWMT        | 1B58<br>h | N/A          | N/A         | N/A          | N/A          | 16     | bits | PWM Frequency                                         |
| DP          | 0000<br>h | 0000<br>h    | 0000<br>h   | 0000<br>h    | 0000<br>h    | 15     | bits | Discontinuity point                                   |
| CW          | 0h        | 0h           | 0h          | 0h           | 0h           | 1      | bits | Enable Clock Wise direction                           |
| CUSTOMERID4 | 4         | 5            | 6           | 7            | 8            | 16     | bits | Customer identification reference                     |
| 4POINTS     | 1h        | 1h           | 1h          | 1h           | 1h           | 1      | bits | Selection of correction method<br>4pts or 16 segments |
| LNR_SO      | 0h        | 0h           | 0h          | 0h           | 0h           | 16     | bits | 4pts – Initial Slope                                  |
| LNR_A_X     | 7FFF<br>h | 0            | 0           | 0            | 0            | 16     | bits | 4pts – AX Coordinate                                  |
| LNR_A_Y     | 0         | 10%          | 10%         | 10%          | 10%          | 16     | bits | 4pts – AY Coordinate                                  |
| LNR_A_S     | 0         | 80%/<br>360d | 80%/<br>90d | 80%/<br>180d | 80%/<br>270d | 16     | bits | 4pts – AS Coordinate                                  |
| LNR_B_X     | FFFF<br>h | FFFF<br>h    | FFFF<br>h   | FFFF<br>h    | FFFF<br>h    | 16     | bits | 4pts – BX Coordinate                                  |
| LNR_B_Y     | 0         | 0            | 0           | 0            | 0            | 16     | bits | 4pts – BY Coordinate                                  |
| LNR_B_S     | 0         | 0            | 0           | 0            | 0            | 16     | bits | 4pts – BS Coordinate                                  |



| LNR_C_X                | FFFF<br>h | FFFF<br>h | FFFF<br>h | FFFF<br>h | FFFF<br>h | 16 | bits | 4pts – CX Coordinate                                 |
|------------------------|-----------|-----------|-----------|-----------|-----------|----|------|------------------------------------------------------|
| LNR_C_Y                | FFFF<br>h | FFFF<br>h | FFFF<br>h | FFFF<br>h | FFFF<br>h | 16 | bits | 4pts – CY Coordinate                                 |
| LNR_C_S                | 0         | 0         | 0         | 0         | 0         | 16 | bits | 4pts – CS Coordinate                                 |
| LNR_D_X                | FFFF<br>h | FFFF<br>h | FFFF<br>h | FFFF<br>h | FFFF<br>h | 16 | bits | 4pts – DX Coordinate                                 |
| LNR_D_Y                | FFFF<br>h | FFFF<br>h | FFFF<br>h | FFFF<br>h | FFFF<br>h | 16 | bits | 4pts – DY Coordinate                                 |
| LNR_D_S                | 0         | 0         | 0         | 0         | 0         | 16 | bits | 4pts – DS Coordinate                                 |
| WorkingRange           | 0h        | 0h        | 0h        | 0h        | 0h        | 4  | bits | 16pts – Output angle range                           |
| LNR_Y0/<br>CUSTOMERID1 | N/A       | N/A       | N/A       | N/A       | N/A       | 16 | bits | 16pts – Y-coordinate point 0 /<br>Cust. id reference |
| LNR_Y1/<br>CUSTOMERID2 | N/A       | N/A       | N/A       | N/A       | N/A       | 16 | bits | 16pts – Y-coordinate point 1 /<br>Cust. id reference |
| LNR_Y2/<br>CUSTOMERID3 | N/A       | N/A       | N/A       | N/A       | N/A       | 16 | bits | 16pts – Y-coordinate point 2/<br>Cust. id reference  |
| LNR_Yn                 | N/A       | N/A       | N/A       | N/A       | N/A       | 16 | bits | 16pts – Y-coordinate point n                         |
| LNR_Y16                | N/A       | N/A       | N/A       | N/A       | N/A       | 16 | bits | 16pts – Y-coordinate point 16                        |
| HAMHOLE                | 3131<br>h | 0         | 0         | 0         | 0         | 16 | bits | Hamming code recovery                                |
| LOCK                   | 00h       | 4Ch       | 4Ch       | 4Ch       | 4Ch       | 8  | bits | Lock byte                                            |

Table 12: End user NVRAM Parameters

The values given in table 12 are the default EEPROM content for each of the MLX90340 versions.



# **17. Description of End-User Programmable Items**

### 17.1. Output mode

| Parameter          | Value | Description                         |
|--------------------|-------|-------------------------------------|
| Analog Output Mode | 1     | Analog Rail to Rail – Coutmin= 47nF |
|                    | 2     | Analog Rail to Rail – Coutmin= 10nF |
| DWM Output Mada    | 5     | Low Side (Open Drain NMOS)          |
| PWM Output Mode    | 7     | Push-Pull                           |

Table 13: Output mode parameters

## 17.1.1. Analog Output mode

The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration allows the use of a pull-up or pull-down resistor.

With respect to the application diagram described in section 19.1, Melexis recommendation is Analog Output Mode 1.

### 17.1.2. PWM Output mode

If PWM output mode is selected, the output signal is a digital signal with Pulse Width Modulation (PWM).

The PWM polarity is selected by the PWMPOL1 parameter:

- PWMPOL = 0 for a low level at 100%
- PWMPOL = 1 for a high level at 100%

The PWM frequency is selected by the PWMT parameter. The following table provides typical code for different target PWM frequency and for both low and high speed modes.

| PWM Frequency (Hz)        | 100   | 200   | 500   | 1000 |
|---------------------------|-------|-------|-------|------|
| PWM Frequency code (PWMT) | 50000 | 25000 | 10000 | 5000 |

 Table 14: PWMT to PWM Frequency Correspondance

Notes:

A more accurate trimming can be performed to take into account initial tolerance of the main clock.

The PWM frequency is subjected to the same tolerances as the main clock (see  $\Delta^{T}$ Ck).

### 17.2. Output Transfer Characteristic

There are 2 different possibilities to define the transfer function (LNR):

- With 4 arbitrary points (defined on X and Y coordinates) and 5 slopes
- With 17 equidistant points for which only the Y coordinates are defined.



| Parameter                                | LNR type    | Value                            | Unit  |
|------------------------------------------|-------------|----------------------------------|-------|
| CLOCKWISE                                | Both        | $0 \rightarrow CounterClockWise$ | LSB   |
|                                          |             | $1 \rightarrow ClockWise$        |       |
| DP                                       | Both        | 0 359.9999                       | deg   |
| LNR_A_X<br>LNR_B_X<br>LNR_C_X<br>LNR_D_X | Only 4 pts  | 0 359.9999                       | deg   |
| LNR_A_Y<br>LNR_B_Y<br>LNR_C_Y<br>LNR_D_Y | Only 4 pts  | 0 100                            | %     |
| LNR_SO<br>LNR_A_S<br>LNR_B_S             | Only 4 pts  | 0 17                             | %/deg |
| LNR_C_S<br>LNR_D_S                       | Only 4 pts  | -17 0 17                         | %/deg |
| LNR_YO<br>LNR_Y1<br><br>LNR_Y16          | Only 17 pts | -50 + 150                        | %     |
| WorkingRange                             | Only 17 pts | 65.5 360                         | Deg   |
| CLAMP_LOW                                | Both        | 0 100                            | %     |
| CLAMP_HIGH                               | Both        | 0 100                            | %     |

Table 15: Output transfer methods

# 17.2.1. Enable Scaling Parameter

This parameter enables to scale LNR\_x\_Y from -50% - 150% according to the following formula

(Scaled Out)% $V_{DD}$  = 2 x Out% $V_{DD}$  – 50%

### 17.2.2. Clockwise parameter

The CLOCKWISE parameter defines the magnet rotation direction.



- CCW is the defined by the 1-4-5-8 pin order direction for the SOIC-8 package and 1-8-9-16 pin order direction for the TSSOP-16 package.
- CW is defined by the reverse direction: 8-5-4-1 pin order direction for the SOIC-8 and 16-9-8-1 pin order direction for the TSSOP-16 package.

#### Refer to the drawing in the sensitive spot positioning sections (Section 22.3)

### 17.2.3. Discontinuity point (or Zero degree point)

The Discontinuity Point defines the 0° point on the circle. The discontinuity point places the origin at any location of the trigonometric circle. The DP is used as reference for all the angular measurements.



Figure 7: Discontinuity Point Positioning

#### 17.2.4. 4-Pts LNR Parameters

The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angle and the output signal.

The shape of the MLX90340 transfer function from the digital angle value to the output voltage is described by the drawing below. Six segments can be programmed but the clamping levels are necessarily flat.

Two, three, or even six calibration points are then available, reducing the overall non-linearity of the IC by almost an order of magnitude each time. Three or six calibration point will be preferred by customers looking for excellent non-linearity figures. Two-point calibrations will be preferred by customers looking for a cheaper calibration set-up and shorter calibration time.





Figure 8: 4 arbitratry points calibration method

## 17.2.5. 17-Pts LNR Parameters

The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angle and the output signal.

The shape of the MLX90340 transfer function from the digital angle value to the output voltage is described by the drawing below. In the 16-segments mode (or 17 pts), the output transfer characteristic is Piece-Wise-Linear (PWL).



Figure 9 – 16 segments calibration method

All the Y-coordinates can be programmed from -50% up to +150% to allow clamping in the middle of one segment (like on the figure), but the output value is limited to CLAMPLOW and CLAMPHIGH values.

Between two consecutive points, the output characteristic is interpolated.



| W | Range    | Δx      | W  | Range    | Δx      |
|---|----------|---------|----|----------|---------|
| 0 | 360.0deg | 22.5deg | 8  | 180.0deg | 11.3deg |
| 1 | 320.0deg | 20.0deg | 9  | 144.0deg | 9.0deg  |
| 2 | 288.0deg | 18.0deg | 10 | 120.0deg | 7.5deg  |
| 3 | 261.8deg | 16.4deg | 11 | 102.9deg | 6.4deg  |
| 4 | 240.0deg | 15.0deg | 12 | 90.0deg  | 5.6deg  |
| 5 | 221.5deg | 13.8deg | 13 | 80.0deg  | 5.0deg  |
| 6 | 205.7deg | 12.9deg | 14 | 72.0deg  | 4.5deg  |
| 7 | 192.0deg | 12.0deg | 15 | 65.5deg  | 4.1deg  |

The parameter W determines the input range on which the 17 points (16 segments) are uniformly spread:

Table 16: Working range

Outside of the selected range, the output will remain in clamping levels.

### 17.2.6. CLAMPING Parameters

The clamping levels are two independent values to limit the output voltage range. The CLAMPLOW parameter adjusts the minimum output voltage level. The CLAMPHIGH parameter sets the maximum output voltage level. Both parameters have 16 bits of adjustment and are available for both LNR modes. In analog mode, the resolution will be limited by the D/A converter (12 bits) to 0.024%VDD. In PWM mode, the resolution will be 0.024%DC.

### 17.3. Identification

| Parameter   | Value   |
|-------------|---------|
| MELEXISID1  | 0 65535 |
| MELEXISID2  | 0 65535 |
| MELEXISID3  | 0 65535 |
| CUSTOMERID1 | 0 65535 |
| CUSTOMERID2 | 0 65535 |
| CUSTOMERID3 | 0 65535 |
| CUSTOMERID4 | 0 65535 |

Table 17: Identifications Parameters

Identification number: 64 bits (4 words) freely useable by Customer for traceability purpose.



Those 64 bits are only available if the 4pts-LNR. For the 17-Pts LNR, the corresponding EEPROM area of CUSTOMERID1,2,3 are used by the LNR function.

### 17.4. Sensor Front-End

| Parameter          | Value                       |
|--------------------|-----------------------------|
| ΜΑΡΧΥΖ             | 05                          |
| k (or SMISM)       | 0 65535                     |
| GAINMIN<br>GAINMAX | 0 41                        |
|                    | Table 18: Front-end paramet |

17.4.1. MAPXYZ

The MAPXYZ parameter defines which fields are used to calculate the angle. The different possibilities are described in the tables below.

| ΜΑΡΧΥΖ | Angle Definition                        |
|--------|-----------------------------------------|
| 0      | $\angle XY = \angle (k \cdot B_X, B_Y)$ |
| 1      | $\angle YX = \angle (B_X, k \cdot B_Y)$ |
| 2      | $\angle XZ = \angle (k \cdot B_X, B_Z)$ |
| 3      | $\angle ZX = \angle (B_X, k \cdot B_Z)$ |
| 4      | $\angle YZ = \angle (k \cdot B_Y, B_Z)$ |
| 5      | $\angle ZY = \angle (B_Y, k \cdot B_Z)$ |

Table 19: Magnetic Mapping Parameters

### 17.4.2. K parameter

The k parameter defines the sensitivity mismatch between the 2 selected axis used for the angular calculation. Its value is defined through an unsigned 16 bits value from 0.0 to 1.0. Typical values are between 0.5 and 1.

The MAPXYZ is defined in factory to be 0 or 1. For an end-user XY-application, don't overwrite this parameter.



# 17.4.3. GAINMIN and GAINMAX Parameters

GAINMIN and GAINMAX define the boundaries within the virtual gain setting is allowed to vary. Outside this range, the output is set in diagnostic mode.

### 17.5. Filter

| Parameter | Value |
|-----------|-------|
| Filter    | 0 2   |

Table 20: Filtering value

The MLX90340 includes the possibility to filter the angular value:

Low Pass FIR Filters controlled with the FILTER parameter

The MLX90340 features 2 FIR filter modes controlled with Filter = 1...2. Filter = 0 corresponds to no filtering. The transfer function is described below:



The filters characteristics are given in the following table:

| Filter No                   | 0         | 1                          | 2     |
|-----------------------------|-----------|----------------------------|-------|
| j                           | 0         | 1                          | 3     |
| Туре                        | Disable   | Finite Impulse<br>Response |       |
| Coefficients a <sub>i</sub> | 1         | 11                         | 1111  |
| Title                       | No filter | ExtraLight                 | Light |
| 99% Response Time           | 1         | 2                          | 4     |
| Efficiency RMS (dB)         | 0         | 3.0                        | 6.0   |

Table 21: Filtering characteristic



# 17.6. Programmable Diagnostic Settings

| Parameter | Value      |
|-----------|------------|
| DIAG      | 0 or 1     |
| ADIAG     | 0 or 1     |
| HAMHOLE   | 0 or 3131h |

Table 22: Diagnostics control parameters

# 17.6.1. Fixed-level diagnostic reporting

#### In analog output mode

DIAG and ADIAG parameters allow selecting all diagnostic modes:

| Mode           | Туре     | Description                      |
|----------------|----------|----------------------------------|
| With pull-up   | DIAG = 0 | Diagnostic Low                   |
| ADIAG = 0      | DIAG = 1 | Diagnostic Hi (HiZ + pull-up)    |
| With pull-down | DIAG = 0 | Diagnostic Low (HiZ + pull-down) |
| ADIAG = 1      | DIAG = 1 | Diagnostic Hi                    |

Table 23: Diagnostics control details in Analog modes

| Mode             | Туре                 | Description                                     |
|------------------|----------------------|-------------------------------------------------|
| Open drain NMOS  | DIAG = 0<br>DIAG = 1 | Diagnostic Low<br>Diagnostic Hi (HiZ + pull-up) |
| Push-pull output | DIAG = 0<br>DIAG = 1 | Diagnostic Low<br>Diagnostic Hi                 |

Table 24: Diagnostics control details in PWM modes





*Figure 10 - Output voltage in diagnostic modes over supply voltage* 

### 17.6.2. HAMHOLE Parameter

The HAMHOLE parameter enables or disables the memory recovery based on Hamming codes in case of EEPROM CRC error. By default, the memory recovery and EEPROM CRC check are disabled (Hamhole=3131h). These two features are enabled automatically when locking the part (see paragraph 17.7).

### 17.7. Lock

The LOCK parameter locks all the parameters set by the user. Once the lock is enabled, it is not possible to change the EEPROM values anymore as PTC communication in writing mode is not available anymore.

Note that the lock bit should be set by the solver function "MemLock".



# 17.8. EEPROM endurance

Although the EEPROM is used for Calibration Data Storage (similarly to an OTPROM), the MLX90340 embedded EEPROM is qualified to guarantee an endurance of minimum 1000 write cycles at 125°C for (engineering/calibration purpose).

# **18. Self Diagnostic**

The MLX90340 provides numerous self-diagnostic features. Those features increase the robustness of the IC functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure modes ("fail-safe").

|                                                                                        | Action                                                                                                          | Effects on OUT                                 | Comments                                                           |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------|
| ROM CRC Error at<br>start up<br>(64 words including<br>Intelligent Watch<br>Dog - IWD) | CPU Reset <sup>(6)</sup>                                                                                        | Diagnostic low/high <sup>(19)</sup>            | All the outputs are already in<br>Diagnostic low/high - (start-up) |
| ROM CRC Error<br>(Operation -<br>Background task)                                      | Enter Endless<br>Loop:<br>- Progress<br>(watchdog<br>Acknowledge)<br>- Set Outputs in<br>Diagnostic<br>Iow/high | Immediate Diagnostic low//high <sup>(19)</sup> |                                                                    |
| RAM Test Fail (Start<br>up)                                                            | CPU Reset                                                                                                       | Diagnostic low/ high <sup>(19)</sup>           | All the outputs are already in<br>Diagnostic low/high (start-up)   |
| Calibration Data<br>CRC Error<br>(Start-Up)                                            | Hamming Code<br>Recovery                                                                                        |                                                | Start-Up Time is increased by 3 ms if successful recovery          |
| Hamming Code<br>Recovery Error<br>(Start-Up)                                           | CPU Reset                                                                                                       | Diagnostic low/high <sup>(19)</sup>            | See section HAMHOLE                                                |

#### <sup>6</sup> CPU reset means

- <sup>1.</sup> Core Reset (same as Power-On-Reset). It induces a typical start up time.
- <sup>2.</sup> Periphery Reset (same as Power-On-Reset)
- <sup>3.</sup> Fault Flag/Status Lost

#### MLX90340

Datasheet



|                                                              | Action                                                                                                         | Effects on OUT                                | Comments                                                                                     |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------|
| Calibration Data<br>CRC Error<br>(Operation -<br>Background) | CPU Reset                                                                                                      | Diagnostic low/high <sup>(19)</sup>           |                                                                                              |
| ADC Clipping<br>(ADC Output is<br>0000h or 7FFFh)            | Set Outputs in<br>Diagnostic<br>Iow/high<br>Normal mode<br>and CPU Reset<br>If recovery                        | Immediate Diagnostic low/high <sup>(19)</sup> |                                                                                              |
| Norm Too Low<br>( < 25 % )                                   | Set Outputs in<br>Diagnostic<br>Iow/high<br>Normal mode<br>and CPU Reset<br>If recovery                        | Immediate Diagnostic low/high <sup>(19)</sup> | If no magnet IC in Diag. mode.                                                               |
| Rough Offset<br>Clipping<br>(RO is = 0d or =<br>127d)        | Set Outputs in<br>Diagnostic<br>Iow/high<br>Normal mode,<br>with immediate<br>recovery<br>without CPU<br>reset | Immediate Diagnostic low/high <sup>(19)</sup> |                                                                                              |
| Gain Clipping<br>(Gain < GAINMIN or<br>Gain > GAINMAX)       | Set Outputs in<br>Diagnostic<br>Iow/high<br>Normal mode,<br>and CPU Reset<br>If recovery                       | Immediate Diagnostic low/high <sup>(19)</sup> | See also Section GAINMIN and GAINMAX.                                                        |
| ADC Monitor<br>(Analog to Digital<br>Converter)              | Set Outputs in<br>Diagnostic<br>Iow/high.<br>Normal Mode<br>with immediate<br>recovery<br>without CPU<br>Reset | Immediate Diagnostic low/high <sup>(19)</sup> | ADC Inputs are Shorted and<br>connected to Vref. ADC output is<br>compared to a fixed value. |

Datasheet



|                                                         | Action                                                                                                   | Effects on OUT                                                                                                                                                                     | Comments                        |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Undervoltage Mode                                       | At Start-Up,<br>wait Until VDD ><br>LT4V.<br>During<br>operation, CPU<br>Reset after 3 ms<br>debouncing. | <ul> <li>- VDD &lt; POR level</li> <li>=&gt; Output high impedance</li> <li>- POR level &lt; VDD &lt; ~LT4V</li> <li>=&gt; Output in Diagnostic low/high<sup>(7)</sup>.</li> </ul> |                                 |
| Firmware Flow Error                                     | CPU Reset                                                                                                | Immediate Diagnostic low/high <sup>(19)</sup>                                                                                                                                      | Intelligent Watchdog (Observer) |
| Read/Write Access<br>out of physical<br>memory          | CPU Reset                                                                                                | Immediate Diagnostic low/high <sup>(19)</sup>                                                                                                                                      | 100% Hardware detection         |
| Write Access to<br>protected area (IO<br>and RAM Words) | CPU Reset                                                                                                | Immediate Diagnostic low/high <sup>(19)</sup>                                                                                                                                      | 100% Hardware detection         |
| Unauthorized entry<br>in "SYSTEM" Mode                  | CPU Reset                                                                                                | Immediate Diagnostic low/high <sup>(19)</sup>                                                                                                                                      | 100% Hardware detection         |
| VDD > MT7V                                              | Set Output High<br>Impedance<br>(Analog)                                                                 | Pull down resistive load => Diag.<br>Low<br>Pull up resistive load => Diag. High                                                                                                   | 100% Hardware detection         |
| VDD > LT11V                                             | IC is switched<br>off (internal<br>supply)<br>CPU Reset on<br>recovery                                   | Pull down resistive load => Diag.<br>Low<br>Pull up resistive load => Diag. High                                                                                                   | 100% Hardware detection         |
| Broken Vss                                              | CPU Reset on recovery                                                                                    | Pull down resistive load < 10kΩ =><br>Diag. Low<br>Pull up resistive load (any value) =><br>Diag. High                                                                             | 100% Hardware detection         |
| Broken Vod                                              | CPU Reset on<br>recovery                                                                                 | Pull down resistive load (any value) =><br>Diag. Low<br>Pull up resistive load < $10k\Omega$ => Diag.<br>High                                                                      | 100% Hardware detection         |

<sup>&</sup>lt;sup>7</sup> The diagnostics can be selectable between Diagnostic Low/Diagnostic High by setting the bits EE\_DIAG and EE\_ADIAG (for analog modes only). See section Programmable Diagnostic Settings for the Diagnostic Output Level specifications.



|                        | Action                                                            | Effects on OUT                                | Comments                                                 |
|------------------------|-------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|
| Temperature<br>Monitor | Set Outputs in<br>Diagnostic<br>Iow/high.                         | Immediate Diagnostic low/high <sup>(19)</sup> | Temperature Sensor 1 is compared to temperature sensor 2 |
|                        | Normal Mode<br>with immediate<br>recovery<br>without CPU<br>Reset |                                               |                                                          |

Table 25: Diagnostics details

# **19. Recommended Application Diagrams**

# 19.1. MLX90340 in SOIC-8 Package



*Figure 11 – Recommended wiring for the MLX90340 in SOIC-8 package* 

| Output           | Compact PCB routing |        |        | EMC robust PCB routing |        | routing |                            |
|------------------|---------------------|--------|--------|------------------------|--------|---------|----------------------------|
| Analog<br>Output | Min                 | Тур.   | Max    | Min                    | Тур.   | Max     | Remarks                    |
| C1               | 100 nF              | 100 nF | 1 uF   | 47 nF                  | 100 nF | 1 uF    | Close to the pin           |
| C2 (20)          | 47 nF               | 100 nF | 330 nF | 47 nF                  | 100 nF | 330 nF  | Close to the pin           |
| C3               | 47 nF               | 100 nF | 220 nF | 47 nF                  | 100 nF | 220 nF  | Close to the pin           |
| C4               | -                   | -      | -      | 500 pF                 | 1 nF   | 10 nF   | Connector Side             |
| C5               | -                   | -      | -      | 500 pF                 | 1 nF   | 10 nF   | Connector Side             |
| R1               | -                   | -      | -      | 0 Ω                    | 10 Ω   | 33 Ω    | Increased ratiometry error |
| R2               | -                   | -      | -      | 10 Ω                   | 50 Ω   | 100 Ω   |                            |

Figure 12 – Analog Ouptut mode - Recommended capacitor/resistor values for the MLX90340 in SOIC-8 package



| Output        | Compact PCB routing |        |        | EMC robust PCB routing |        | routing |                                |
|---------------|---------------------|--------|--------|------------------------|--------|---------|--------------------------------|
| PWM<br>Output | Min                 | Тур.   | Max    | Min                    | Тур.   | Max     | Remarks                        |
| C1            | 100 nF              | 100 nF | 1 uF   | 47 nF                  | 100 nF | 1 uF    | Close to the pin               |
| C2            | 2.2 nF              | 4.7 nF | 22 nF  | 2.2 nF                 | 4.7 nF | 22 nF   | Close to the pin               |
| C3            | 47 nF               | 100 nF | 220 nF | 47 nF                  | 100 nF | 220 nF  | Close to the pin               |
| C4            | -                   | -      | -      | 500 pF                 | 1 nF   | 10 nF   | Connector Side                 |
| C5            | -                   | -      | -      | 500 pF                 | 1 nF   | 2.2 nF  | Connector Side                 |
| R1            | -                   | -      | -      | 0 Ω                    | 10 Ω   | 33 Ω    | Impacts the Voltage on VDD pin |
| R2            | -                   | -      | -      | 10 Ω                   | 50 Ω   | 100 Ω   |                                |

Figure 13 – Analog Ouptut mode - Recommended capacitor/resistor values for the MLX90340 in SOIC-8 package

# 19.2. MLX90340 in TSSOP-16 Package



Figure 14 – Recommended wiring for the MLX90340 in TSSOP16 package (dual die)



| Output           | Compact PCB routing |        |        | EMC robust PCB routing |        |        |                            |
|------------------|---------------------|--------|--------|------------------------|--------|--------|----------------------------|
| Analog<br>Output | Min                 | Тур.   | Max    | Min                    | Тур.   | Max    | Remarks                    |
| C11, C21         | 100 nF              | 100 nF | 1 uF   | 47 nF                  | 100 nF | 1 uF   | Close to the pin           |
| C12, C22         | 47 nF               | 100 nF | 330 nF | 47 nF                  | 100 nF | 330 nF | Close to the pin           |
| C13, C23         | 47 nF               | 100 nF | 220 nF | 47 nF                  | 100 nF | 220 nF | Close to the pin           |
| C14, C24         | -                   | -      | -      | 500 pF                 | 1 nF   | 10 nF  | Connector Side             |
| C15, C25         | -                   | -      | -      | 500 pF                 | 1 nF   | 10 nF  | Connector Side             |
| R11, R21         | -                   | -      | -      | 0 Ω                    | 10 Ω   | 33 Ω   | Increased ratiometry error |
| R12, R22         | -                   | -      | -      | 10 Ω                   | 50 Ω   | 100 Ω  |                            |

| Output        | Compact PCB routing |        |        | EMC robust PCB routing |        |        |                                |
|---------------|---------------------|--------|--------|------------------------|--------|--------|--------------------------------|
| PWM<br>Output | Min                 | Тур.   | Max    | Min                    | Тур.   | Max    | Remarks                        |
| C11, C21      | 100 nF              | 100 nF | 1 uF   | 47 nF                  | 100 nF | 1 uF   | Close to the pin               |
| C12, C22      | 22 nF               | 4.7 nF | 22 nF  | 2.2 nF                 | 4.7 nF | 22 nF  | Close to the pin               |
| C13, C23      | 47 nF               | 100 nF | 220 nF | 47 nF                  | 100 nF | 220 nF | Close to the pin               |
| C14, C24      | -                   | -      | -      | 500 pF                 | 1 nF   | 10 nF  | Connector Side                 |
| C15, C25      | -                   | -      | -      | 500 pF                 | 1 nF   | 2.2 nF | Connector Side                 |
| R11, R21      | -                   | -      | -      | 0 Ω                    | 10 Ω   | 33 Ω   | Impacts the Voltage on VDD pin |
| R12, R22      | -                   | -      | -      | 10 Ω                   | 50 Ω   | 100 Ω  |                                |

# 20. Standard information regarding manufacturability of Melexis products with different soldering processes

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to standards in place in Semiconductor industry.

For further details about test method references and for compliance verification of selected soldering method for product integration, Melexis recommends reviewing on our web site the General Guidelines soldering recommendation (<u>http://www.melexis.com/en/quality-environment/soldering</u>).

For all soldering technologies deviating from the one mentioned in above document (regarding peak temperature, temperature gradient, temperature profile etc), additional classification and qualification tests have to be agreed upon with Melexis.



For package technology embedding trim and form post-delivery capability, Melexis recommends consulting the dedicated trim&forming recommendation application note: lead trimming and forming recommendations (<u>http://www.melexis.com/en/documents/documentation/application-notes/lead-trimming-and-forming-recommendations</u>).

Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: <a href="http://www.melexis.com/en/quality-environment">http://www.melexis.com/en/quality-environment</a>

# **21. ESD Precautions**

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).

Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

# 22. Package Information

### 22.1. SOIC-8 - Package Dimensions



Figure 15



# 22.2. SOIC-8 - Pinout and Marking









Figure 17





Figure 18

The MLX90340 is an absolute angular position sensor but the linearity error (See section 13) does not include the error linked to the absolute reference 0 Deg (which can be fixed in the application through the discontinuity point).



### 22.4. TSSOP16 - Package Dimensions



Figure 19



# 22.5. TSSOP16 - Pinout and Marking



Figure 20

# 22.6. TSSOP16 - Sensitive spot Positioning









#### Figure 22

The MLX90340 is an absolute angular position sensor but the linearity error (See section 13) does not include the error linked to the absolute reference ODeg (which can be fixed in the application through the discontinuity point).



# 23. Disclaimer

The content of this document is believed to be correct and accurate. However, the content of this document is furnished "as is" for informational use only and no representation, nor warranty is provided by Melexis about its accuracy, nor about the results of its implementation. Melexis assumes no responsibility or liability for any errors or inaccuracies that may appear in this document. Customer will follow the practices contained in this document under its sole responsibility. This documentation is in fact provided without warranty, term, or condition of any kind, either implied or expressed, including but not limited to warranties of merchantability, satisfactory quality, non-infringement, and fitness for purpose. Melexis, its employees and agents and its affiliates' and their employees and agents will not be responsible for any loss, however arising, from the use of, or reliance on this document. Notwithstanding the foregoing, contractual obligations expressly undertaken in writing by Melexis prevail over this disclaimer.

This document is subject to change without notice, and should not be construed as a commitment by Melexis. Therefore, before placing orders or prior to designing the product into a system, users or any third party should obtain the latest version of the relevant information.

Users or any third party must determine the suitability of the product described in this document for its application, including the level of reliability required and determine whether it is fit for a particular purpose.

This document as well as the product here described may be subject to export control regulations. Be aware that export might require a prior authorization from competent authorities. The product is not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or life-sustaining equipment or avionics application are specifically excluded by Melexis. The product may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of:

1. chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons;

2. civil firearms, including spare parts or ammunition for such arms;

3. defense related products, or other material for military use or for law enforcement;

4. any applications that, alone or in combination with other goods, substances or organisms could cause serious harm

to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation.

No license nor any other right or interest is granted to any of Melexis' or third party's intellectual property rights.

If this document is marked "restricted" or with similar words, or if in any case the content of this document is to be reasonably understood as being confidential, the recipient of this document shall not communicate, nor disclose to any third party, any part of the document without Melexis' express written consent. The recipient shall take all necessary measures to apply and preserve the confidential character of the document. In particular, the recipient shall (i) hold document in confidence with at least the same degree of care by which it maintains the confidentiality of its own proprietary and confidential information, but no less than reasonable care; (ii) restrict the disclosure of the document solely to its employees for the purpose for which this document was received, on a strictly need to know basis and providing that such persons to whom the document is disclosed are bound by confidentiality terms substantially similar to those in this disclaimer; (iii) use the document only in connection with the purpose for which this document for commercial purposes or to the detriment of Melexis or its customers. The confidentiality obligations set forth in this disclaimer will have indefinite duration and in any case they will be effective for no less than 10 years from the receipt of this document.

This disclaimer will be governed by and construed in accordance with Belgian law and any disputes relating to this disclaimer will be subject to the exclusive jurisdiction of the courts of Brussels, Belgium.



The invalidity or ineffectiveness of any of the provisions of this disclaimer does not affect the validity or effectiveness of the other provisions. The previous versions of this document are repealed.

*Melexis* © - *No part of this document may be reproduced without the prior written consent of Melexis. (2020)* 

IATF 16949 and ISO 14001 Certified



# 24. Contacts

For the latest version of this document, go to our website at <u>www.melexis.com</u>. For additional information, please contact our direct sales team and get help for your specific needs:

| Europe, Africa | Telephone:+32 13 67 04 95<br>Email: sales_europe@melexis.com |
|----------------|--------------------------------------------------------------|
| Americas       | Telephone:+ 1 603 223 2362<br>Email: sales_usa@melexis.com   |
| Asia           | Email: sales_asia@melexis.com                                |