
TS2000 Haptics TS2000 V 1.30
001-64564 Rev. *DTS2000 Haptics

Copyright © 2010-2012 Cypress Semiconductor Corporation. All Rights Reserved.

Note

1. Timer resource usage, for CY8C20xx6H devices only.
2. The presented API memory value is for worst case. Used flash depends on TS2000 configuration

selected and the type of compiler used.
3. Consumed RAM significantly depends on how many and what effects were enabled in the TS2000

parameters.

Features and Overview
Haptics effects based on industry proven Immersion TouchSense 2000 Haptics Effect Library
Selection of up to 14 different effects
Selection of two actuator models
Improved user accuracy of CapSense® buttons due to tactile feedback
Up to 3.3-V operation
Simple API to play haptic effects

The TS2000 User Module enables haptic feedback effects based on Immersion TouchSense 2000
technology when added to a project. Haptics is a tactile sensation effect that lets the equipment user know
that a touch event has been detected. Input accuracy and user satisfaction with the equipment is improved
with haptics.

Resources

PSoC® Blocks API Memory
Pins (per

External IO)Digital Analog CT Analog SC Flash RAM

CY8C20066A, CY8C20336H, CY8C20346H, CY8C20446H, CY8C22345H

CY8C22x45H 1 or 2 0 0 14652 38-1753 2

CY8C20xx6H 1 or 21 0 0 15922 43-1803 2
Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-64564 Rev. *D Revised September 25, 2012

TS2000 Haptics
Figure 1. TS2000 Haptics Block Diagram. One Digital Block Configuration, Interrupt and Polled Update Method

Figure 2. TS2000 Haptics Block Diagram: Two Digital Blocks Configuration, Interrupt and Polled Update Method

Figure 3. TS2000 Haptics Block Diagram. One Digital Block Configuration, Direct Update Method Option

Figure 4. TS2000 Haptics Block Diagram: CY8C20xx6H Configuration, Interrupt and Polled Update Method
Document Number: 001-64564 Rev. *D Page 2 of 22

TS2000 Haptics
Figure 5. TS2000 Haptics Block Diagram: CY8C20xx6H Configuration, Direct Update Method Option

Quick Start Guide
1. Select and place the user modules that require dedicated pins (for example, I2C, CSD2X, or CSD-

AUTO). Assign ports and pins as necessary.
2. Place the TS2000 User Module. If the CY8C22x45H device is used, select either the “1-Block” option

or the “2-Block” option. The “2-Block” option uses more chip resources, but minimizes the CPU loading
of the TS2000 User Module. The CY8C20xx6H device has only one configuration: “2-Timer”.

3. Select the actuator that will be used for haptic vibrations.
4. Enter the port number and pin number of the PWM output that will be connected to in the IN-signal of

the actuator drive circuit. If the CY8C22x45H device is used, route CompareOut line in the same way
PWM is routed. Select the required Row_N_Output_M, connect it to
GlobalOutOdd_x/GlobalOutEven_x, and connect the required pin.

Note that using P1[0] and P1[1] is not recommended, because they are used by I2C.

5. Enter the port number and pin number of the amplifier enable signal that will be connected to the
SHDN# signal of the actuator drive circuit.

6. Select the effects that are to be used in the project. Disable effects to reduce the flash usage of the
project. Disabled effects cannot be called in firmware.

7. Generate the application and switch to the Application Editor.
8. Adapt the sample code to call the required effects.
9. Program the PSoC device on the target board with the hex generated by PSoC Designer.

Functional Description
The basic operation of the TS2000 User Module is to give the actuator drive circuit a specific PWM signal
that is periodically updated. By giving different sequences of PWM values, the actuator produces different
effects.

The haptic system consists of physical, electrical, and firmware components:

Physical
An actuator or Eccentric Rotating Motor (ERM) gives the vibrations used for tactile feedback. The actuator
selection and placement depends on the weight and geometry of the device. Refer to the Immersion
website on physical guidelines for the haptics design:

http://www.immersion.com/products/touchsense-tactile-feedback/2000-series/index.html
Document Number: 001-64564 Rev. *D Page 3 of 22

http://www.immersion.com/products/touchsense-tactile-feedback/2000-series/index.html

TS2000 Haptics
Electrical
TS2000 haptics performance is heavily characterized with the circuit as given in the Features and
Overview section. Use the components shown for optimal performance.

Firmware
The firmware to produce the correct effects has been simplified with the TS2000 User Module. To produce
the required effects, call the TS2000_1_PlayEffect(BYTE *EffectData) API.

Recommended Reading
The typical use for a haptic design is to give feedback for nonmechanical CapSense sensors. The
following documents are recommended reading before implementing a CapSense design:

CY8C20x66 Series PSoC Mixed Signal Array Technical Reference Manual, sections:

– CapSense System

Charting Tool to Debug CapSense Applications – AN2397
Getting started with CapSense
CY8C20xx6A/A/H Design Guide

External Component Selection Guidelines
The two supported actuators are the Sanyo NRS-2574i and the Jinlong Z6DL2A017000B. For device
masses of 150g or less, use the NRS-2574i. Otherwise, use the Z6DL2A017000B actuator. The actuator
drive circuit (TPA6205A) must use a 3.3V supply voltage.

CPU Loading
For optimal CPU load and resource usage, five configurations of the TS2000 User Module are available.
Three of these configurations use standard PSoC digital blocks and are used for CY8C22x45H devices.
The other configurations use Timer resources, as presented for CY8C20xx6H.

The TS2000 User Module for CY8C22x45H devices has three options. Two-block configuration provides
fully-HW PWM generation and gives the 5 ms timer (for haptic-effects generation) only HW. This
configuration has the lowest CPU load.

One-block configuration also generates the PWM with a HW block, but the 5 ms timer is realized in FW. As
a result, the CPU load is a bit higher.

The third configuration does not provide automatic 5 mS timer. You must provide all timing checking and
call the TS2000_bUpdate every 5 mS.

The same functionality is for second option of selection wizard in CY8C20xx6H devices.

In CY8C20xx6H devices both the PWM and the 5-ms timer are generated in FW. The two 16-bit Timer
resources are used to generate these signals. Timer_PWM ISR gives the PWM signal generation with
resulting output frequency at about 23 kHz. The Timer_TMR ISR is used to generate 5-ms intervals for
haptic-effects generation.

The duration of the Timer_PWM ISR is approximately 90 clock cycles and is depicted in TS2000_1.inc as
“TS2000_1_ISR_DUR”. It is important to take into account the IMO clock speed and duration of the ISR
when designing other ISRs in the system. For example, to prevent another ISR from being missed, ensure
that the additional ISR is not triggered twice in the duration of the TS2000 ISR. It is strongly recommended
to use CPU clock equal to IMO (24 MHz).
Document Number: 001-64564 Rev. *D Page 4 of 22

http://www.cypress.com/?rID=2784
http://www.cypress.com/?rID=48787
http://www.cypress.com/?rID=48788

TS2000 Haptics
Note that when a haptic effect is being played, the CPU is not blocked. In other words, the project code
continues to execute while the effect is being played. Moreover, the periodic TS2000 ISR only occurs
during the duration of the haptic effect. When a haptic effect is not playing, there is no CPU loading caused
by the TS2000 User Module.

DC and AC Electrical Characteristics
Table 1. Power Supply Requirements

Note

1. According to the Immersion recommended operating range.

Placement
This user module can be placed in three configurations:

CY8C20xx6H devices have two configuration, which uses two PSoC resources: Timer0 and Timer2. One
of these resources generates the PWM signal, and the Haptics Update ISR is generated by the other. For
direct update method there is no 5-ms Timer presented.

CY8C22x45H devices have three configurations available: two with one-block and one with two-block.
The two-block configuration uses the second digital block to lower the load of the CPU, but consumes
extra digital blocks. The one-block configuration saves the digital block, but uses a software timer resulting
in a higher CPU load.

When placing TS2000 User Module, the wizard enables you to select one of the three or two possible
configurations.

Parameter Min Typical Max Unit Test Conditions and Comments

Actuator Circuit VDD
[1] - 3.30 3.47 V 3.3 V + 5%
Document Number: 001-64564 Rev. *D Page 5 of 22

TS2000 Haptics
To change the user module configuration, call the wizard again and select the necessary configuration. To
access the Selection Wizard, right-click on any digital block of the TS2000 User Module in the Workspace
Explorer, and select “Selection Options” as shown in Figure 6.
Figure 6. Accessing the Wizard

Figure 7. TS2000 User Module Configurations Selection, CY8C22x45H Devices
Document Number: 001-64564 Rev. *D Page 6 of 22

TS2000 Haptics
Figure 8. TS2000 User Module Configurations Selection, CY8C20xx6H Devices

Parameters and Resources
PWM InputClock

The parameter should be selected such that the PWM output frequency is higher than 22 kHz.

The input frequency should be between 5.6 MHz and 13 MHz for proper TS2000 module operation.

To check if the selected FClock is in proper range, use the following equation:

FPWM_Output = FClock / 255

If FPWM_Output is higher then 22 kHz, then the parameter is selected properly.

EffectUpdateDivider
The parameter should be selected such that the Haptic timer is generating 5-ms intervals with 10%
error (that is, timer update rate of 200 Hz).

The EffectUpdateDivider is dependent on the FClock parameter. These two parameters must be
configured at the same time. The following equation shows the relationship between these two values:

EffectUpdateDIvider = (FClock/(200Hz * 255)) - 1

Taking to account the valid range of PWM InputClock parameter, the EffectUpdateDivider should
have a range of [109..255].
Document Number: 001-64564 Rev. *D Page 7 of 22

TS2000 Haptics
Example:

Clock selected as VC1 and VC1 = 4 and VC1 source is IMO 24 MHz.

As a result:

FClock = 6 MHz

Then:

EffectUpdateDivider = (6 MHz/(200 Hz*255)) - 1 = 117

EffectUpdateMethod
The effect update method specifies the way in which the Update function will appear. The API call
must be repeated with 5-ms period.

After you select “Interrupt”, disregard the 5-ms interrupt generation for haptic update event. The only
APIs you should use are TS2000_Start and TS2000_PlayEffect/TS2000_bPlayEffect.

When you select “Polled” then the user module will not call Update function for haptics with interrupt.
You have to call TS2000_bUpdate API from main (or other functions) with an interval no longer than
5 ms.

Example 3 in the Sample Code sections shows how the second option should be realized in code.

Actuator
Select one of the two possible actuators. For devices less than 150 g, use the Sanyo NRS-2574i. The
Jinlong Z6DL2A017000 is a stronger actuator and should be used for heavier devices.

For the schematic of electrical connections to PSoC, refer to the typical schematic in the actuator
datasheet.

Compare Out
This parameter is used to route the PWM signal through the internal PSoC interconnect to an output
pin, in a way similar to the simple PWM User Module.

PWM_Port, PWM_Pin
These parameters set the port and pin to connect to the “–IN” signal of the actuator drive circuit.
Choose the port first and then select from the available pins.

AmplifierEnable_Port, AmplifierEnable_Pin
These parameters set the port and pin to connect to the SHDN# signal of the actuator drive circuit.
Choose the port first and then select from the available pins.

Effects
Up to 14 different effects are available with the TS2000 User Module. The choices for each effect are
“enable” and “disable”. Enabling an effect allows it to be called from the TS2000_1_PlayEffect() API.
Disabling an effect reduces the flash usage of the project.

The 14 effects are:

Strong Click
Strong Click 60%
Strong Click 30%
Sharp Click
Sharp Click 60%
Document Number: 001-64564 Rev. *D Page 8 of 22

TS2000 Haptics
Sharp Click 30%
Soft Bump
Soft Bump 60%
Soft Bump 30%
Double Click
Double Click 60%
Triple Click
Soft Fuzz
Strong Buzz

The percentages associated with some effects indicate the intensity of that effect. For example, a
Sharp Click has a stronger intensity than a Sharp Click 60%, which has a stronger intensity than a
Sharp Click 30%.

Application Programming Interface
The Application Programming Interface (API) functions are given as part of the user module to allow you
to deal with the module at a higher level. This section specifies the interface to each function together with
related constants provided by the include files.

Each time a user module is placed, it is assigned an instance name. By default, PSoC Designer assigns
the TS2000_1 to the first instance of this user module in a given project. It can be changed to any unique
value that follows the syntactic rules for identifiers. The assigned instance name becomes the prefix of
every global function name, variable and constant symbol. In the following descriptions the instance name
has been shortened to TS2000 for simplicity.
Note

** In this, as in all user module APIs, the values of the A and X register may be altered by calling an API
function. It is the responsibility of the calling function to preserve the values of A and X before the call if
those values are required after the call. This "registers are volatile" policy was selected for efficiency
reasons and has been in force since version 1.0 of PSoC Designer. The C compiler automatically takes
care of this requirement. Assembly language programmers must also ensure their code observes this
policy. Though some user module API functions may leave A and X unchanged, there is no guarantee
they may do so in the future.

For Large Memory Model devices, it is also the caller's responsibility to preserve any value in the
CUR_PP, IDX_PP, MVR_PP, and MVW_PP registers. Even though some of these registers may not be
modified now, there is no guarantee that will remain the case in future releases.

Entry Points are supplied to initialize the TS2000 User Module, start it and play the haptic effects. In all
cases the instance name of the module replaces the TS2000 prefix shown in the following entry points.
Failure to use the correct instance name is a common cause of syntax errors.
Document Number: 001-64564 Rev. *D Page 9 of 22

TS2000 Haptics
TS2000_Start

Description:
Initializes registers and enables the resources used by the TS2000 User Module. This function must
be called before calling TS2000_PlayEffect().

C Prototype:
void TS2000_Start(void)

Assembly:
lcall _TS2000_Start

Parameters:
None

Return Value:
None

Side Effects:
See Note ** at the beginning of the API section.

TS2000_PlayEffect

Description:
Plays one of the 14 haptic effects. The effect of interest must be enabled in the Chip View of PSoC
Designer. Pass the name of the effect to play the required effect. For example, to play the
StrongClick60 effect use TS2000_PlayEffect(TS2000_StrongClick60).

C Prototype:
void TS2000_PlayEffect(BYTE *EffectData)

Assembly:
mov A, > EffectData
push A
mov A, < EffectData
push A
lcall _TS2000_PlayEffect
add SP, -2

Parameters:
A => Effect Data

Return Value:
None

Side Effects:
See Note ** at the beginning of the API section.

TS2000_bPlayEffect

Description:
Plays one of the 14 haptic effects and returns the state of the user module. The effect of interest must
be enabled in the Chip View of PSoC Designer. Pass the name of the effect to play the required effect.
Document Number: 001-64564 Rev. *D Page 10 of 22

TS2000 Haptics
For example, to play the StrongClick60 effect use: bStatus =
TS2000_bPlayEffect(TS2000_StrongClick60)

C Prototype:
BYTE TS2000_bPlayEffect(BYTE *EffectData)

Assembly:
mov A, > EffectData
push A
mov A, < EffectData
push A
lcall _TS2000_bPlayEffect
add SP, -2

Parameters:
A => Effect Data

Return Value:
1 - Requested effect not played. Current effect playing.
0 - Success

Side Effects:
See Note ** at the beginning of the API section.

TS2000_bUpdate

Description:
Provides haptic Update event processing. This API has to be called from main() routine or from other
function with an interval not longer than 5 ms.
This call is required if the EffectUpdateMethod parameter is set to “Polled” or if direct update option
is selected in the selection wizard.

C Prototype:
BYTE TS2000_bUpdate(void)

Assembly:
lcall _TS2000_bUpdate

Parameters:
None

Return Value:
1 - Effect Playing
0 - Effect Stopped

Side Effects:
See Note ** at the beginning of the API section.
Document Number: 001-64564 Rev. *D Page 11 of 22

TS2000 Haptics
Sample Firmware Source Code

Example 1
This code starts the user modules and shows an example of how to add haptics to a CapSense design
based on CSD (CY8C20xx6H) for interrupt haptic update method.
Note The TS2000 User Module should be renamed from default TS2000_1 to TS2000; this also con-

cerns the other user modules used in this example. The CSD User Module has to provide four but-
tons, and the DoubleClick60, SharpClick, SoftFuzz, and TripleClick effects must be enabled in the
TS2000 User Module. Other settings may be left by default, except the settings corrected accord-
ing to the DRC or Wizard warnings.

//--
// C main line
//--
#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all user modules

void main(void)
{
 BYTE bPress;

 M8C_EnableGInt; // Enable global interrupts

 CSD_Start();
 CSD_InitializeBaselines(); // Scan all sensors first time, init baseline
 CSD_SetDefaultFingerThresholds();

 TS2000_Start();

 while (1) // Loop forever
 {
 CSD_ScanAllSensors();
 CSD_UpdateAllBaselines();

 if(CSD_bIsAnySensorActive()) // If sensor press detected
 {
 if(CSD_bIsSensorActive(0) & bPress) // if Row pressed
 {
 bPress = 0; // reset trigger

 if(CSD_bIsSensorActive(1)) // if button_1 of Row pressed
 {
 TS2000_PlayEffect(TS2000_DoubleClick60);
 }
 else if(CSD_bIsSensorActive(2)) // if button_2 of Row pressed
 {
 TS2000_PlayEffect(TS2000_SharpClick);
 }
 else if(CSD_bIsSensorActive(3)) // if button_3 of Row pressed
 {
 TS2000_PlayEffect(TS2000_SoftFuzz);
 }
 else if(CSD_bIsSensorActive(4)) // if button_4 of Row pressed
 {
Document Number: 001-64564 Rev. *D Page 12 of 22

TS2000 Haptics
 TS2000_PlayEffect(TS2000_TripleClick);
 }
 }
 }
 else
 {
 bPress = 1; // set trigger if buttons were released
 }
 }
}

The equivalent code written in Assembly is:
;---
; Assembly main line
;---
include "m8c.inc" ; part specific constants and macros
include "memory.inc" ; Constants & macros for SMM/LMM and Compiler
include "PSoCAPI.inc" ; PSoC API definitions for all user modules

export _main

AREA bss (RAM,REL)

bPress:: BLK 1 ;

AREA text(ROM,REL,CON)

_main:

 M8C_EnableGInt ; Enable Global Interrupts

; CSD UM initialization
 lcall CSD_Start ; Start CSD UM
 lcall CSD_InitializeBaselines ; Base line Initialization
 lcall CSD_SetDefaultFingerThresholds ;Set Finger Threshholds

 lcall _TS2000_Start ; Start Haptics UM

.main_loop:
 lcall CSD_ScanAllSensors ; Scan sensors
 lcall CSD_UpdateAllBaselines ; Update Base lines

 lcall CSD_bIsAnySensorActive ; Sensor press detection
 cmp A, 00h ; If Sensor press not detected
 jz .SetTrigger ; jump out

 mov A, 00h ; test if Row pressed
 lcall CSD_bIsSensorActive

 RAM_PROLOGUE RAM_USE_CLASS_4
 RAM_SETPAGE_CUR >bPress
 and A, [bPress] ; if Row pressed and trigger released
 RAM_EPILOGUE RAM_USE_CLASS_4

 jz .main_loop
Document Number: 001-64564 Rev. *D Page 13 of 22

TS2000 Haptics
 RAM_PROLOGUE RAM_USE_CLASS_4
 RAM_SETPAGE_CUR >bPress
 mov [bPress], 00h ; reset trigger
 RAM_EPILOGUE RAM_USE_CLASS_4

 mov A, 01h ; prepare to scan button_1 of Row
 lcall CSD_bIsSensorActive
 cmp A, 00h ; if button_1 of Row pressed
 jz .TryButton2
 mov A, > _TS2000_DoubleClick60 ; Get MSB part of TS2000_DoubleClick60 address
 push A
 mov A, < _TS2000_DoubleClick60 ; Get LSB part of TS2000_DoubleClick60 address
 push A
 lcall _TS2000_PlayEffect ; initiate effect playing
 add SP, -2
 jmp .main_loop

.TryButton2:
 mov A, 02h ; prepare to scan button_2 of Row
 lcall CSD_bIsSensorActive
 cmp A, 00h ; if button_2 of Row pressed
 jz .TryButton3
 mov A, > _TS2000_SharpClick ; Get MSB part of TS2000_SharpClick address
 push A
 mov A, < _TS2000_SharpClick ; Get LSB part of TS2000_SharpClick address
 push A
 lcall _TS2000_PlayEffect ; initiate effect playing
 add SP, -2
 jmp .main_loop

.TryButton3:
 mov A, 03h ; prepare to scan button_1 of Row
 lcall CSD_bIsSensorActive
 cmp A, 00h ; if button_3 of Row pressed
 jz .TryButton4
 mov A, > _TS2000_SoftFuzz ; Get MSB part of TS2000_SoftFuzz address
 push A
 mov A, < _TS2000_SoftFuzz ; Get LSB part of TS2000_SoftFuzz address
 push A
 lcall _TS2000_PlayEffect ; initiate effect playing
 add SP, -2
 jmp .main_loop

.TryButton4:
 mov A, 04h ; prepare to scan button_1 of Row
 lcall CSD_bIsSensorActive
 cmp A, 00h ; if button_4 of Row pressed
 jz .main_loop
 mov A, > _TS2000_TripleClick ; Get MSB part of TS2000_TripleClick address
 push A
 mov A, < _TS2000_TripleClick ; Get LSB part of TS2000_TripleClick address
 push A
 lcall _TS2000_PlayEffect ; initiate effect playing
 add SP, -2
Document Number: 001-64564 Rev. *D Page 14 of 22

TS2000 Haptics
 jmp .main_loop

.SetTrigger:
 RAM_PROLOGUE RAM_USE_CLASS_4
 RAM_SETPAGE_CUR >bPress
 mov [bPress], 01h ; set trigger if buttons were released
 RAM_EPILOGUE RAM_USE_CLASS_4

jmp .main_loop

.terminate:
jmp .terminate

Note This assembly code is compiler-dependent and may not build without errors on all C compilers.

Example 2
This code starts the user modules and shows an example of how to add haptics to a CapSense design
based on CSD2X (CY8C22x45H) for polled haptic update method.
Note The TS2000 User Module should be renamed from default TS2000_1 to TS2000; this also con-

cerns the other user modules used in this example. The CSD2X User Module has to provide four
buttons, and the DoubleClick60, SharpClick, SoftFuzz, and TripleClick effects must be enabled in
the TS2000 User Module. Other settings may be left by default, except the settings corrected
according to the DRC or Wizard warnings.

//--
// C main line
//--
#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all user modules

void main(void)
{
 BYTE bPress;

 M8C_EnableGInt; // Enable global interrupts

 CSD2X_Start();
 CSD2X_InitializeBaselines(); // Scan all sensors first time, init baseline
 CSD2X_SetDefaultFingerThresholds();

 TS2000_Start();

 while (1) // Loop forever
 {
 CSD2X_ScanAllSensors();
 CSD2X_UpdateAllBaselines();

 if(CSD2X_bIsAnySensorActive()) // If sensor press detected
 {
 if(CSD2X_bIsSensorActive(0) & bPress) // if Row pressed
 {
 bPress = 0; // reset trigger
Document Number: 001-64564 Rev. *D Page 15 of 22

TS2000 Haptics
 if(CSD2X_bIsSensorActive(1)) // if button_1 of Row pressed
 {
 TS2000_PlayEffect(TS2000_DoubleClick60);
 }
 else if(CSD2X_bIsSensorActive(2)) // if button_2 of Row pressed
 {
 TS2000_PlayEffect(TS2000_SharpClick);
 }
 else if(CSD2X_bIsSensorActive(3)) // if button_3 of Row pressed
 {
 TS2000_PlayEffect(TS2000_SoftFuzz);
 }
 else if(CSD2X_bIsSensorActive(4)) // if button_4 of Row pressed
 {
 TS2000_PlayEffect(TS2000_TripleClick);
 }
 }
 }
 else
 {
 bPress = 1; // set trigger if buttons were released
 }
 TS2000_bUpdate();
 }
}

Example 3
This code starts the user modules and shows an example of how to add haptics to a CapSense design
based on CSD2X (CY8C22x45H) for direct haptic update method.
Note The TS2000 User Module should be renamed from default TS2000_1 to TS2000; this also con-

cerns the other user modules used in this example. The CSD2X User Module has to provide four
buttons, and the DoubleClick60, SharpClick, SoftFuzz, and TripleClick effects have to be enabled
in the TS2000 User Module, other settings may be left by default, except the settings corrected
according to the DRC or Wizard warnings.

Custom settings of the Counter8 User Module parameters:

Counter8_Clock = VC3

Custom settings of Global Resources used by Counter8 User Module:

VC1 = 4
VC3 = 150
VC3 Source = VC1

//--
// C main line
//--
#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all user modules

void main(void)
{
 BYTE bPress;
Document Number: 001-64564 Rev. *D Page 16 of 22

TS2000 Haptics
 BYTE bEffectState;
 BYTE bTime;

 M8C_EnableGInt; // Enable global interrupts

 CSD2X_Start();
 CSD2X_InitializeBaselines(); // Scan all sensors first time, init baseline
 CSD2X_SetDefaultFingerThresholds();

 TS2000_Start();
 // VC1 = 4
 // VC3 = 150 (VC3 Source = VC1)
 // Counter8_Clock = VC3
 Counter8_Start();
 Counter8_WritePeriod(255);

 bTime = Counter8_bReadCounter();
 bEffectState = 0; // reset at start because no effect requested

 while (1) // Loop forever
 {
 if(bEffectState)
 { // adjust the timeout value for proper effect playing
 if ((BYTE)(bTime - Counter8_bReadCounter()) >= 99)
 {
 bEffectState = TS2000_bUpdate();
 bTime = Counter8_bReadCounter();
 }
 }
 else
 {
 CSD2X_ScanAllSensors();
 CSD2X_UpdateAllBaselines();

 if(CSD2X_bIsAnySensorActive()) // If sensor press detected
 {
 if(CSD2X_bIsSensorActive(0) & bPress) // if Row pressed
 {
 bEffectState = 1;
 bPress = 0; // reset trigger
 if(CSD2X_bIsSensorActive(1)) // if button_1 of Row pressed
 {
 TS2000_PlayEffect(TS2000_DoubleClick60);
 }
 else if(CSD2X_bIsSensorActive(2)) // if button_2 of Row pressed
 {
 TS2000_PlayEffect(TS2000_SharpClick);
 }
 else if(CSD2X_bIsSensorActive(3)) // if button_3 of Row pressed
 {
 TS2000_PlayEffect(TS2000_SoftFuzz);
 }
 else if(CSD2X_bIsSensorActive(4)) // if button_4 of Row pressed
 {
 TS2000_PlayEffect(TS2000_TripleClick);
Document Number: 001-64564 Rev. *D Page 17 of 22

TS2000 Haptics
 }
 else
 {
 bEffectState = 0;
 }
 }
 }
 else
 {
 bPress = 1; // set trigger if buttons were released
 }
 }
 }
}

Configuration Registers
The TS2000 User Module uses one or two digital PSoC blocks. Each block is personalized and
parameterized through a set of registers. The set of registers used by the user module with brief
descriptions are given in this section. Symbolic names for these registers are defined in the user module
instance’s C and assembly language interface files (the “.h” and “.inc” files).

CY8C22x45H Registers

PWM8

– Function Register, Bank 1: DxCxxFN

This register defines the settings of the Digital Basic/Communications Type ‘B’ Block to be the
PWM8 digital block of the TS2000 User Module.

– Output Register, Bank 1: DxCxxOU

This register is used to control the connection of the PWM8 digital block outputs to the available
row interconnect.

– Control0 Register, Bank 0: DxCxxCR0

This register defines the settings of the Digital Basic/Communications Type ‘B’ Block to be the
PWM8 digital block of the TS2000 User Module.

– Period Register, Bank 0: DxCxxDR1

This register defines the period of PWM-signal of the PWM8 digital block of the TS2000 User
Module.

– Compare Register, Bank 0: DxCxxDR2

This register defines the pulse width of PWM-signal of the PWM8 digital block of the TS2000
User Module.
Document Number: 001-64564 Rev. *D Page 18 of 22

TS2000 Haptics
– Input Register, Bank 0: DxCxxIN

This register is used to select the data and clock inputs for the PWM8 digital block of the TS2000
User Module.

Timer8

– Function Register, Bank 1: DxCxxFN

This register defines the settings of the Digital Basic/Communications Type ‘B’ Block to be the
Timer8 digital block of the TS2000 User Module.

– Output Register, Bank 1: DxCxxOU

This register defines the settings of the Digital Basic/Communications Type ‘B’ Block to be the
Timer8 digital block of the TS2000 User Module.

– Control0 Register, Bank 0: DxCxxCR0

This register defines the settings of the Digital Basic/Communications Type ‘B’ Block to be the
Timer8 digital block of the TS2000 User Module.

– Period Register, Bank 0: DxCxxDR1

This register defines the period of the Timer8 digital block of TS2000 User Module.

– Compare Register, Bank 0: DxCxxDR2

This register defines the settings of the Digital Basic/Communications Type ‘B’ Block to be the
Timer8 digital block of the TS2000 User Module.

– Input Register, Bank 0: DxCxxIN

This register is used to select the data and clock inputs for the Timer8 digital block of the TS2000
User Module.

CY8C20xx6 Registers
This block can operate in Timer and TX mode. For more details refer to the Block Resources datasheet
section.

Timer_TMR

– Configuration Register, Bank 0: PTx_CFG

This register defines the settings of the Timer0/Timer2 resource to be the 16-bit Timer of the
TS2000 user module.

– Data Register 0, Bank 0: PTx_DATA0

This register defines the LSB of period of the Timer_TMR resource of the TS2000 User Module.

– Data Register 1: PTx_DATA1

This register defines the MSB of period of the Timer_TMR resource of the TS2000 User Module.
Document Number: 001-64564 Rev. *D Page 19 of 22

TS2000 Haptics
TIMER_PWM

– Configuration Register, Bank 0: PTx_CFG

This register defines the settings of the Timer0/Timer2 resource to be the 16-bit Timer of the
TS2000 User Module and to generate PWM signal in firmware.

– Data Register 0, Bank 0: PTx_DATA0

This register defines the LSB of period of the Timer_PWM resource of the TS2000 User Module.

– Data Register 1, Bank 0: PTx_DATA1

This register defines the MSB of period of the Timer_PWM resource of the TS2000 User Module.

Version History

Note PSoC Designer 5.1 introduces a Version History in all user module datasheets. This section docu-
ments high level descriptions of the differences between the current and previous user module ver-
sions.

Version Originator Description

1.0 DHA Initial version.

1.1 DHA Added DRC for the following parameters:
1. Clock
2. CompareOut
3. Actuator

Improved Double Click effect.

1.20 DHA 1. Implemented new API TS2000_bPlayEffect(), and added API function definition.

2. Changed _TS2000_PWM_ISR handler to correctly process PWM Output state.

3. Improved _TS2000_PWMWrite function.

4. Updated TS2000_ISR_DUR constant according to new ISR (TS2000KINT.asm).

5. Updated resource meter.

6. Corrected incorrect parameter name ("I2C_Port" is changed to "AmplifierEnable_Port").

7. Updated user module to optimize memory usage and execution speed.

1.30 DHA 1. Added wizard help button and file.

2. Updated TS2000_bUpdated API.

3. Updated sample code in the user module datasheet.
Document Number: 001-64564 Rev. *D Page 20 of 22

TS2000 Haptics
Credits

TouchSense® Technology Licensed from immersion Corporation. Protected by one or more of the
following patents:

U.S. Patents: 4823634, 4896554, 5184319, 5185561, 5220260, 5235868. 5389865. 5414337, 5459382,
B1 5459382, 5482056,5513100,5559412,5576727, 5589854, 5592401, 5623582, 5629594, 5631881,
5676157, 5891898,5701140, 5721566, 5724264, 5731804, 5734373,5739811, 5767639,5769640,
5790108, 5805140, 5821920,5825308,5828197, 5831408, 5844392, 5872438, 5880714, 5889670,
5889672, 5907487, 5929607, 5930741, 5929846, 5956484, 5959613,5999168,6015473,6020875,
6020876, 6020967, 6024576,6028593,6037927, 6042555, 6046727,6050718. 6050962, 6057828,
6059506, 6061004, 6067077, 6078308,6078676, D427635, 6088017, 6088019, 6100874, 6101530,
6104158, 6104379, 6104382, 6106301, 6110130, 6125337, 6125385, 6128006, 6131097, 6134506,
6147674, 6148280, 6154198, 6154201,6161126, 6162190, 6166723,6169540, 6184868, 6191774.
6195592, 6201533, 6211861, 6215470, 8219032, 6219033, 6232891, 6243078, 6246390, 6252579,
6252583. 6256011, 6259382, 6271828, 6271833, 6275213 B1. 6278439, 6281651, 6285351, 6288705,
6292170, 5754023, "RE37374, 6292174, 6300936, 6300937, 6300938, 6304091, 6310605, 6317116,
6323837, 6342880. 6343349, 6348911, 6353850, 6353427, 6366272, 6366273, 6374255, 6380925,
6396232, 6400352, 6411276, 6413229, 6424333, 6424356, 6429846, 6428490.6433771, 6437771,
6448977. 6469692, 6470302, 6486872. 6497672, 6563487. 6564168, 6580417, 6636161, 6636197,
6639581, 6654000, 6661403, 6680729, 6683437, 8686901. 6686911, 6693622, 6693626, 6697043,
6697044, 6697048, 6697748, 6697086, 8703550, 6704001, 6704002, 6704683. 6705871, 6707443,
6715045, 6750877, 6762745. 6781569.
Document Number: 001-64564 Rev. *D Page 21 of 22

TS2000 Haptics
Document Number: 001-64564 Rev. *D Revised September 25, 2012 Page 22 of 22
Copyright © 2010-2012 Cypress Semiconductor Corporation. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility
for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products
in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works
of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with
a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is
prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems
where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

	Features and Overview
	Quick Start Guide
	Functional Description
	Physical
	Electrical
	Firmware
	Recommended Reading
	External Component Selection Guidelines
	CPU Loading

	DC and AC Electrical Characteristics
	Placement
	Parameters and Resources
	Application Programming Interface
	TS2000_Start
	TS2000_PlayEffect
	TS2000_bPlayEffect
	TS2000_bUpdate

	Sample Firmware Source Code
	Example 1
	Example 2
	Example 3

	Configuration Registers
	CY8C22x45H Registers
	CY8C20xx6 Registers

	Version History
	Credits

