ASNT7123A-KMA 16GS/s, 4-bit Flash Analog-to-Digital Converter with HS Outputs

- 20*GHz* analog input bandwidth
- Selectable clocking mode: external high-speed clock or internal PLL with external reference clock
- Broadband operation in external clocking mode: DC-16GS/s
- On-chip PLL with a central frequency of 10*GHz*
- Selectable on-chip 16Gbps PRBS 2¹⁵-1 generator for output data scrambling
- Differential CML input clock buffer and output data and clock buffers
- Differential linear data input buffer
- LVDS input reference clock buffer
- Selectable on-chip digital-to-analog converter for self-testing
- Single +3.5V power supply
- Power consumption: 4.62*W*
- Custom 100-pin metal-ceramic package

DESCRIPTION

Fig. 1. Functional Block Diagram

The ASNT7123A-KMA is a 4-bit flash analog to digital converter (ADC) featuring a high sampling rate, and wide analog front-end bandwidth. The ADC system shown in Fig. 1 includes a linear input buffer (LIB) with tree-type architecture, and a CML-type input interface with internal 50*Ohm* single-ended terminations to vcc. The buffer delivers 15 matching copies of the input analog data signal dp/dn to the 4-bit flash ADC. The ADC creates 15 samples of the input data in thermometer code, which are then converted by a thermometer-to-binary encoder (TTB Encoder) into 4-bit binary words with a data rate *f*. The ADC thresholds are controlled by signals vrefcrl and vlsbcrl.

The encoded data is processed by a scrambler (SCRx4) where it is mixed with a 2¹⁵-1 PRBS signal provided by an internal high-speed PRBS generator (PRBS). The scrambled data is delivered to a 4-bit differential CML output interface (OB CMLx4, pins q00p/q00n, q01p/q01n, q02p/q02n, q03p/q03n). The PRBS generator can be preset to a certain initial state by the differential external signal rstp/rstn, or completely disabled by control signal onprbs. When disabled, the generator allows data to pass unchanged through the scrambler. It is also possible to disable the data by using control signal ondata, and pass the PRBS signal to the outputs. An optional digital-to-analog converter (DAC) with an output signal odp/odn can be used to control the ADC's operation. It is enabled by control signal ondac.

All operations are synchronized by the internal clock multiplication unit (CMU) based on a PLL (phase-locked loop) with an integrated divider, and an external loop filter connected to pin ftr. The block can operate in two different modes, and is controlled by signal **ceoff**: they can either be clock multiplication (PLL is on, a reference clock is applied to pins **crp/crn**), or clock division (PLL is off, an external high-speed clock is applied to pins **cep/cen**). In both modes, the divider generates internal clock signals divided by 2, 4, 8, and 16. The generated divided clocks are sent to different internal blocks. A PLL lock control output lol is also provided.

The part operates from a single +3.5V power supply. All external control signals are compatible with the 2.5V CMOS interface.

Linear Input Buffer (LIB)

The system includes a linear input buffer (LIB) with a tree-type architecture that delivers 15 matching copies of the wide-band input differential analog data signal dp/dn to the 4-bit flash section. Symmetry is closely followed in both schematic, and layout to ensure minimal aperture jitter.

Clock Multiplication Unit (CMU) & Divider

The PLL-based CMU with its external loop filter connected to pin ftr as shown in Fig. 2 can operate in two different modes. In the first "clock multiplication" mode (ceoff="1", default), the CMU multiplies the external reference clock crp/crn with a speed of f/16 by means of a PLL with a central frequency of f and a wide tuning range of the internal VCO (voltage-controlled oscillator). The generated clock is processed by the divider in order to generate internal clock signals divided by 2, 4, 8, and 16.

To pin 20 (ftr)
$$4$$
 $100Ohm$ $1nF$
vee

Fig. 2. Recommended External Loop Filter Schematic

In the second "clock division" mode (ceoff="0"), the PLL is disabled and the internal clocks are generated from the external high-speed clock inputs cep/cen.

HS External Clock Input Buffer

The high-speed external clock input buffer can accept high-speed clock signals at its differential CML input port **cep/cen**. It can also accept a single-ended signal with AC or DC termination. In case of AC termination, the unused pin should be also AC terminated with a 50*Ohm* load. In case of DC termination, a threshold voltage must be applied to the unused pin. Differential input signaling must be used for input clock frequencies above 14GHz. The buffer can handle a wide range of input signal amplitudes. The buffer utilizes on-chip single-ended termination of 50*Ohm* to **vcc** for each input line.

LS Reference Clock Input Buffer

The low-speed reference clock input buffer is a proprietary LVDS buffer with internal 100*Ohm* differential termination between its inputs crp/crn. The buffer exceeds the requirements of standards IEEE Std. 1596.3-1996 and ANSI/TIA/EIA-644-1995. It is designed to accept differential signals with amplitudes above 100mV peak-to-peak (p-p), a wide range of DC common mode voltages, and AC common mode noise with a frequency up to 5MHz and voltage levels ranging from 0 to 2.4V.

4-bit Flash Analog to Digital Converter (ADC) with Encoder

This block samples the incoming analog data with the clock signal provided by the CMU in order to generate a 4-bit output digital signal (Bit 0 - Bit 3) with MSB corresponding to Bit 3. The threshold voltages ($V_{th 1} - V_{th 15}$) of the ADC can be adjusted through analog signals vrefcrl and vlsbcrl as shown in Table 1. As can be seen, vrefcrl shifts the DC levels of all the threshold voltages simultaneously by the same amount in relation to vcc and vlsbcrl alters the voltage range of the least significant bit (LSB) while also shifting the DC levels.

vrefcrl. mV	vlsbcrl. mV	$V_{th 15}, mV$	$V_{th 8}, mV$	$V_{th 1}, mV$	$V_{th(X+1)} - V_{thX}, mV$
min (vcc – 960)	min (vcc – 700)	vcc -35	vcc -54	vcc -73	2.7
min (vcc – 960)	max (vcc – 260)	vcc-345	vcc-751	vcc-1157	58
max (VCC)	min (vcc – 700)	vcc-355	vcc-361	vcc -366	0.8

Table 1. Simulated ADC Threshold Control States

max (VCC)	max (vcc – 260)	VCC -665	vcc-1058	vcc-1450	56
-----------	-------------------------	-----------------	----------	----------	----

If no external voltages are applied to vrefcrl and vlsbcrl, it is recommended to have both pins ACterminated by 500hm resistors to vee through DC blocks! The corresponding default states are vrefcrl=vlsbcrl=vcc-0.48V.

HS PRBS Generator (PRBS)

The on-chip selectable high-speed generator provides a full 32-kbit long pseudo-random binary sequence (PRBS) signal according to the polynomial ($x^{15} + x^{14} + 1$), where x^{D} represents a delay of D clock cycles. This is implemented as a linear feedback shift register (LFSR) in which the outputs of the fifteenth and fourteenth flip-flops are combined together by an XOR function and provided as an input to the first flip-flop of the register. The block is activated by the external 2.5V CMOS signal onprbs (onprbs="0" – default state – PRBS generator off, onprbs="1" – PRBS generator on). The same signal sets the PRBS output to logic "0" state that is required for the transparency of the following scrambler block SCRx4.

The LSFR-based PRBS generator produces 32,767 binary states, excluding the "all zeros" state that is illegal for the XOR-based configuration. To eliminate this state that locks the LFSR and prevents PRBS generation, an asynchronous external CML reset signal (rstp/rstn) should be applied to the circuit. When the reset is asserted, LSFR is set to the all-"1" state that is enough for the activation of PRBS generation. When the preset is released, the block delivers four copies of the same signal to the scrambler.

Scrambler (SCRx4)

The scrambler SCHx4 consists of four symmetrical XOR gates that mix four signals delivered by the encoder with the generated PRBS signal. To ensure reliable operation of the block, all signals are retimed by D-type flip-flops before and after the scrambling. The scrambler can be configured to pass either scrambled data (ondata="1", default), or PRBS signal only (ondata="0").

Digital to Analog Converter (DAC)

A DAC block is included to perform a quick test of the ADC's functionality. When activated by external control signal (ondac="1"), it converts the digital data into a step-wise copy of the input signal that is sent to the output odp/odn through a linear differential output buffer LOB. The circuit is not consuming any power when disabled (ondac="0", default).

CML Data Output Buffers (OB CMLx4)

The data output buffers (OB CMLx4) receive four high-speed data signals from the scrambler and convert them into differential CML output signals q00p/q00n, q01p/q01n, q02p/q02n, and q03p/q03n. Each buffer utilizes internal single-ended 50*Ohm* loads to vcc and requires single-ended 50*Ohm* external termination. The termination resistors can be connected from each output directly to vcc, or through DC blocks to vee. The output drivers of the buffers are slightly linearized to deliver optimal eye shape.

CML Clock Output Buffer (OB CML)

The high-speed clock output buffer (OB CML) is a replica of one data output buffer.

TERMINAL FUNCTIONS

Pin	Pin	Pin	Pin	Termination
#	name	type	function	or connection
1	vee	supply voltage	negative power supply	GND
2	vee	supply voltage	negative power supply	GND

3	n/c		not used	
4	n/c		not used	
5	vcc	supply voltage	positive power supply	
6	chop	CML output	HS output clock, direct	50 <i>Ohm</i> to vcc
7	chon	CML output	HS output clock, inverted	50 <i>Ohm</i> to vcc
8	vcc	supply voltage	positive power supply	
9	n/c		not used	
10	n/c		not used	
11	vcc	supply voltage	positive power supply	
12	n/c		not used	
13	n/c		not used	
14	vcc	supply voltage	positive power supply	
15	vee	supply voltage	negative power supply	GND
16	ondata	CMOS input	Data to output on/off	1 <i>MOhm</i> to 2.5 <i>V</i>
17	n/c		not used	
18	n/c		not used	
19	lol	CMOS output	PLL no-lock indicator	
20	ftr		External filter connection	
21	vee	supply voltage	negative power supply	GND
22	ceoff	CMOS input	Clock multiplication/division mode	1 <i>MOhm</i> to 2.5 <i>V</i>
23	n/c		not used	
24	n/c		not used	
25	vcc	supply voltage	positive power supply	
26	vcc	supply voltage	positive power supply	
27	crn	LVDS	LS reference input clock, direct	100 <i>0hm</i>
28	crp	input	LS reference input clock, inverted	between pins
29	vcc	supply voltage	positive power supply	
30	vee	supply voltage	negative power supply	GND
31	vee	supply voltage	negative power supply	GND
32	vcc	supply voltage	positive power supply	
33	cen	CML input	HS input clock, direct	50 <i>Ohm</i> to vcc
34	cep	CML input	HS input clock, inverted	50 <i>Ohm</i> to vcc
35	vcc	supply voltage	positive power supply	
36	vee	supply voltage	negative power supply	GND
37	vee	supply voltage	negative power supply	GND
38	vcc	supply voltage	positive power supply	

Pin	Pin	Pin	Pin	Termination
#	name	type	function	or connection
39	dn	Analog input	HS input data, direct	50 <i>Ohm</i> to vcc
40	dp	Analog input	HS input data, inverted	50 <i>Ohm</i> to vcc
41	vcc	supply voltage	positive power supply	
42	vee	supply voltage	negative power supply	GND
43	vee	supply voltage	negative power supply	GND
44	vcc	supply voltage	positive power supply	
45	onprbs	CMOS input	PRBS enable/disable	1 <i>MOhm</i> to vee
46	n/c		not used	
47	ondac	CMOS input	DAC enable/disable	1 <i>MOhm</i> to vee

48	vlsbcrl	Analog voltage	ADC threshold	12KOhm to vcc
			voltages controls	
49	vrefcrl	Analog voltage		12KOhm to VCC
50	vee	supply voltage	negative power supply	GND
51	vee	supply voltage	negative power supply	GND
52	vcc	supply voltage	positive power supply	
53	n/c		not used	
54	n/c		not used	
55	vcc	supply voltage	positive power supply	
56	odp	Analog output	DAC output signal, direct	50 <i>Ohm</i> to vcc
57	odn	Analog output	DAC output signal, inverted	50 <i>Ohm</i> to vcc
58	vee	supply voltage	negative power supply	GND
59	vcc	supply voltage	positive power supply	
60	rstp	CML input	HS PRBS reset signal, direct	50 <i>Ohm</i> to vcc
61	rstn	CML input	HS PRBS reset signal, inverted	50 <i>Ohm</i> to VCC
62	vcc	supply voltage	positive power supply	
63	n/c		not used	
64	n/c		not used	
65	vcc	supply voltage	positive power supply	
66	n/c		not used	
67	n/c		not used	
68	vcc	supply voltage	positive power supply	
69	n/c		not used	
70	n/c		not used	
71	vcc	supply voltage	positive power supply	
72	n/c		not used	
73	n/c		not used	
74	vee	supply voltage	negative power supply	GND
75	vee	supply voltage	negative power supply	GND
76	vcc	supply voltage	positive power supply	
77	n/c		not used	
78	n/c		not used	
79	vcc	supply voltage	positive power supply	

Pin	Pin	Pin	Pin	Termination
#	name	type	function	or connection
80	q03p	CML output	Output data Bit 3, direct	50 <i>Ohm</i> to VCC
81	q03n	CML output	Output data Bit 3, inverted	50 <i>Ohm</i> to VCC
82	vcc	supply voltage	positive power supply	
83	n/c		not used	
84	n/c		not used	
85	vcc	supply voltage	positive power supply	
86	q02p	CML output	Output data Bit 2, direct	50 <i>Ohm</i> to VCC
87	q02n	CML output	Output data Bit 2, inverted	50 <i>Ohm</i> to VCC
88	vcc	supply voltage	positive power supply	
89	q01p	CML output	Output data Bit 1, direct	50 <i>Ohm</i> to VCC
90	q01n	CML output	Output data Bit 1, inverted	50 <i>Ohm</i> to VCC
91	vcc	supply voltage	positive power supply	

92	n/c		not used	
93	n/c		not used	
94	vcc	supply voltage	positive power supply	
95	q00p	CML output	Output data Bit 0, direct	50 <i>Ohm</i> to vcc
96	q00n	CML output	Output data Bit 0, inverted	50 <i>Ohm</i> to vcc
97	vcc	supply voltage	positive power supply	
98	n/c		not used	
99	n/c		not used	
100	vcc	supply voltage	positive power supply	

ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings presented in Table 2 may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed or implied. All min and max voltage limits are referenced to ground (vee).

Parameter	Min	Max	Units
Supply Voltage (VCC)		4.0	V
Power Consumption		5.5	W
RF Input Voltage Swing (SE)		1.4	V
Case Temperature		+100	°С
Storage Temperature	-40	+100	°С
Operational Humidity	10	98	%
Storage Humidity	10	98	%

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS		
General Parameters							
VCC	3.4	3.5	3.6	V	±3%		
vee		0.0		V	External ground		
Ivec		1320		mA	With PRBS and DAC enabled		
Power consumption		4.62		W	With PRBS enabled		
Junction temperature	-25	50	125	°C			
	1	Analog	Input Dat	a (dp/dn)			
Bandwidth	0.0		20	GHz			
CM Level	vcc-0.8	3	VCC	V	Must match for both inputs		
Linearity range		± 110		mV	Differential or SE, p-p		
	HS Input Clock (cep/cen)						
Frequency	DC		16	GHz			
Swing	0.2		1.0	V	Differential or SE, p-p		
CM Voltage Level	vcc-0.8		VCC	V	Must match for both inputs		

Duty Cycle	40	50 60	%						
	LS Ref	erence Input Cl	ock (crp/	crn)					
Frequency	560 688 MHz 1/16 of VCO frequencies		1/16 of VCO frequency						
CM Level	0.2	VCC	V						
Voltage Swing	100	800	mV	Differential					
Duty Cycle	40	50 60	%						
HS Outpu	HS Output Clock and Data (chop/chon, q00p/q00n to q03p/q03n)								
Data Rate	DC	16	Gbps	For data signals					
Frequency	DC	16	GHz	For clock signals					
Logic "1" level	VCC		V						
Logic "0" level	vcc-0.6		V						
Rise/Fall Times	TBD		ps	20%-80%					
DAC Output (odp/odn)									
Voltage Swing	250 350 mV Single-ended. p-p		Single-ended. p-p						
CM Level	vcc-(voltage swing)/2		V						
	Analog C	ontrol Signals (vrefcrl, vl	(sbcrl)					
Voltage range			V	see Table 1					
	CML	Control Signals	s (rstp/rst	n)					
Pulse width	83		ps	1 period of HS clock					
Swing	0.2	0.8	V	Differential or SE, p-p					
CM Voltage Level	vcc-0.8	VCC	V	Must match for both inputs					
CMOS Control Signals (ceoff, ondac, onprbs, ondata)									
Logic "1" level	vee +2.3	vee+2.5	V						
Logic "0" level		vee +0.2	V						
Frequency		3.5	GHz						

ELECTRICAL SPECIFICATIONS

Parameter	Conditions	Min	Typical	Max	Units
ENOB (5GS/s)	fin = 3.9GHz		3.39		bits
ENOB (8GS/s)	fin = 8.0GHz		3.35		bits
ENOB (10GS/s)	fin = 10.0GHz		3.30		bits
ENOB (12GS/s)	fin = 12.0GHz		3.26		bits
SFDR (5GS/s)	fin = 3.9GHz		30.13		dBFS
SFDR (10GS/s)	fin = 7.8GHz		28.78		dBFS
SINAD (5GS/s)	fin = 3.9GHz		-22.15		dB
SINAD (10GS/s)	fin = 7.8GHz		-21.19		dB
DNL		-0.2		0.2	lsbs
INL		-0.2		0.2	lsbs

Fig. 3 presents ENOB measured at the sampling rates of 9*GSps* and 14*GSps*. The differential input signal is applied through a coupler or from the outputs of the ADSANTEC's analog signal splitter ASNT6114.

Fig. 3. ENOB at 9GSps and 14GSps

PACKAGE INFORMATION

The chip die is housed in a custom 100-pin CQFP package shown in Fig. 4.

Fig. 4. CQFP 100-Pin Package Drawing (All Dimensions in mm)

The package provides a center heat slug located on its back side to be used for heat dissipation. ADSANTEC recommends for this section to be soldered to the vcc plain, which is power for a positive supply.

The part's identification label is ASNT7123A-KMA. The first 8 characters of the name before the dash identify the bare die including general circuit family, fabrication technology, specific circuit type, and part

Rev. 1.0.2

version while the 3 characters after the dash represent the package's manufacturer, type, and pin out count.

This device complies with Commission Delegated Directive (EU) 2015/863 of 4 June 2015 amending Annex II to Directive 2011/65/EU of the European Parliament and of the Council as regards the list of restricted substances (Text with EEA relevance) on the restriction of the use of certain hazardous substances in electrical and electronics equipment (RoHS Directive) in accordance with the definitions set forth in the directives for all ten substances.

REVISION HISTORY

Revision	Date	Changes
1.0.1	03-2020	Initial release