Notice for TAIYO YUDEN products

Please read this notice before using the TAIYO YUDEN products.

REMINDERS

Product information in this catalog is as of October 2008. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or usage of the Products.

Please note that Taiyo Yuden Co., Ltd. shall not be responsible for any defects in products or equipment incorporating such products, which are caused under the conditions other than those specified in this catalog or individual specification.

- Please contact Taiyo Yuden Co., Ltd. for further details of product specifications as the individual specification is available.
- Please conduct validation and verification of products in actual condition of mounting and operating environment before commercial shipment of the equipment.
- All electronic components or functional modules listed in this catalog are developed, designed and intended for use in general electronics equipment.(for AV, office automation, household, office supply, information service, telecommunications, (such as mobile phone or PC) etc.). Before incorporating the components or devices into any equipment in the field such as transportation,(automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network (telephone exchange, base station) etc. which may have direct influence to harm or injure a human body, please contact Taiyo Yuden Co., Ltd. for more detail in advance.

Do not incorporate the products into any equipment in fields such as aerospace, aviation, nuclear control, submarine system, military, etc. where higher safety and reliability are especially required.

In addition, even electronic components or functional modules that are used for the general electronic equipment, if the equipment or the electric circuit require high safety or reliability function or performances, a sufficient reliability evaluation check for safety shall be performed before commercial shipment and moreover, due consideration to install a protective circuit is strongly recommended at customer's design stage.

The contents of this catalog are applicable to the products which are purchased from our sales offices or distributors (so called "TAIYO YUDEN' s official sales channel").

It is only applicable to the products purchased from any of TAIYO YUDEN's official sales channel.

Please note that Taiyo Yuden Co., Ltd. shall have no responsibility for any controversies or disputes that may occur in connection with a third party's intellectual property rights and other related rights arising from your usage of products in this catalog. Taiyo Yuden Co., Ltd. grants no license for such rights.

Caution for export

Certain items in this catalog may require specific procedures for export according to "Foreign Exchange and Foreign Trade Control Law" of Japan, "U.S. Export Administration Regulations," and other applicable regulations. Should you have any question or inquiry on this matter, please contact our sales staff.

Should you have any question or inquiry on this matter, please contact our sales staff.

大容量積層セラミックコンデンサ HIGH VALUE MULTILAYER CERAMIC **CAPACITORS**

	Code	Temp.characteristics	Operating temp. range
	ВJ	В	−25~+85°C
	БJ	X5R*	−55~+85°C
OPERATING TEMP.	B7	X7R	−55~+125°C
	F	F	−25~+85°C
	Г	Y5V	−30~+85°C

*個別仕様の取交しにより、X7R 仕様に対応している場合があります。 *We may provide X7R for some items according to the individual specification.

特長 FEATURES

- ・電極にNi金属を使用し、端子電極部にメッキをしてあることにより、 はんだ付け性および耐熱性にすぐれ、マイグレーションもほとんど発生 せず、高い信頼性を示します
- ・等価直列抵抗 (ESR) が小さく、ノイズ吸収性にすぐれています。 ・特にタンタルおよびアルミ電解コンデンサに比較した場合:
- 高い許容リップル電流値 高い定格電圧でありながら小型形状 絶縁抵抗、破壊電圧が高く信頼性にすぐれている 等の特徴があります

- . The use of Nickel(Ni) as material for both the internal and external electrodes improves the solderability and heat resistance characteristics. This almost completely eliminates migration and raises the level of reliability significantly.
- · Low equivalent series resistance(ESR) provides excellent noise absorption characteristics.
- Compared to tantalum or aluminum electrolytic capacitors these ceramic capacitors offer a number of excellent features, including:
 - Higher permissible ripple current values
 - Smaller case sizes relative to rated voltage Improved reliability due to higher insulation resistance and break-
 - down voltage.

用途 APPLICATIONS

- ・デジタル回路全般
- ・電源バイパスコンデンサ
- 液晶モジュール用
- 液晶駆動電圧ライン用 電源電圧の高いLSI、IC、OPアンプ用
- ・平滑コンデンサ
- DC-DCコンバータ(入力、出力側用)
- スイッチング電源(2次側用)

- General digital circuit
- · Power supply bypass capacitors
- Liquid crystal modules
- Liquid crystal drive voltage lines
- LS I, I C, converters(both for input and output)
- Smoothing capacitors
 - DC-DC converters (both for input and output)
- Switching power supplies (secondary side)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E格電圧 [VDC]	3 端子電極	5 温度特性	容量許容差	9 個別仕様
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			P		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				M ±20%	· · · · · · · · · · · · · · · · · · ·
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\frac{2}{3} + \frac{2}{3} + \frac{2}{3} + \frac{1}{3} + \frac{1}$		4		-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T 25	形状寸法[EIA]L×W(mm)		8	 2表 4179mm テービング
J 50 212 (0805) 2.0×1.25 6 x 0.45 316 (1206) 3.2×1.6 公称静電容量 (pF) K 0.45 小 325 (1210) 3.2×2.5 小 6 X 0.45 小 有層コンデンサ イ 0.45 A 0.85 小 有層コンデンサ 1.15 1.15 1.15 1.15 小 1.9 X 2.0max A 0.45 小 1.9 X 2.0max A 0.45 小 1.9 X 2.0max A A J M K A A A J M K A A A J M K A A A J M K A A A J M K A A A J M K A A B M 1.000,000 G A A A J A A B A A A J A A B A A B M A B A A <td>G 35</td> <td>107 (0603) 1.6×0.8</td> <td></td> <td></td> <td>T (4mmピッチ)</td>	G 35	107 (0603) 1.6×0.8			T (4mmピッチ)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	J 50	212 (0805) 2.0×1.25	6		全形状
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		325 (1210) 3.2×2.5			- 325形状 厚み:M
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					- 11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			105 1,000,000	L 1.6	当社管理記号
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M 積層コンデンサ	-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				M 2.5	△=スペース
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				M 2.5	$\triangle = \lambda^{n} - \lambda$
3 5 7 9 ted voltage (VDC) End termination Temperature characteristics code Capacitance tolerance Special code A 4 K Plated BJ K ±10% - Standard production 6.3 6.3 K ±20% M ±20% Special code -		216			
3 5 7 9 ted voltage (VDC) End termination Temperature characteristics code Capacitance tolerance Special code A 4 K Plated B K ±10% - Standard product 6.3 6.3 K ±20% M ±20% - Standard product	JMK	3 1 6	B_J_1_0	6 M L	
ted voltage(VDC) End termination Temperature characteristics code Capacitance tolerance Special code A 4 K Plated BJ B K ±10% - Standard production 6.3 6.3 K ±20% M ±20% - Standard production	JMK		B_J_1_0	6 M L	T
ted voltage(VDC) End termination Temperature characteristics code Capacitance tolerance Special code A 4 K Plated BJ B K ±10% - Standard production 6.3 6.3 K ±20% M ±20% - Standard production	J M K		B J 1 0	6 M L	T _ ∠
A 4 K Plated BJ B K ±10% - Standard production J 6.3 BJ X5R M ±20% - Standard production	J M K			6 M L	T
A 4 K Plated BJ B K ±10% – Standard production 0 6.3 BJ X5R M ±20% – Standard production	J M K	4		6 M L	
J 6.3 <u>X5R</u> M ±20%		3	5 Temperature characteristics code	6 M L 7	- T /
	ted voltage(VDC)	4 3 End termination	5 Temperature characteristics code	6 M L 7 8 Capacitance tolerance	- T /
	A 4 J 6.3 L 10	4 3 End termination	5 Temperature characteristics code	6 М L 7 8 Capacitance tolerance к ±10%	- T 9 10 1 9 Special code

А	4
J	6.3
L	10
Е	16
Т	25
G	35
U	50

4	
Dimensions (c	ase size] (mm)
107 (0603)	1.6×0.8
212 (0805)	2.0×1.25
316 (1206)	3.2×1.6
325 (1210)	3.2×2.5

6	
Nomin	al capacitance (pF)
example	
473	47,000
105	1.000.000

△=Blank space

Thickness(mm) K 0.45 A 0.8 D 0.85 1.15 F G 1.25 н 1.5 1.6

1.9 2.0max 2.5

Ν

Μ

Standard products

Series name Multilaver ceramic Μ capacitors

▲当社カタログをご使用の際には「当社製品に関するお断り」を必ずお読みください。

Please read the "Notice for TAIYO YUDEN products" before using this catalog.

Æ

Internal code

△=Blank space

外形寸法 EXTERNAL DIMENSIONS

T (514)		14/	т		
Type (EIA)	L	W			e
	*0 *4	*2 *4	0.45±0.05	к	0.05 1.0.05
MK107	1.6±0.10 ^{*3,*4}	0.8±0.10 ^{*3,*4}	(0.018±0.002)		0.35±0.25
(0603)	(0.063±0.004)	(0.031±0.004)	0.8±0.10 *3,*4 (0.031±0.004)	А	(0.014±0.010)
			0.45+0.05		
			(0.018±0.002)	K	
MK212	2.0±0.10 ^{*1,*3}	1.25±0.10 ^{*1,*3}	0.85±0.10		0.5±0.25
(0805)	(0.079 ± 0.004)	(0.049 ± 0.004)	(0.033±0.004)	D	(0.020±0.010)
(0805)	(0.079±0.004)	(0.049±0.004)	1.25±0.10 *1,*3		(0.020±0.010)
			(0.049±0.004)	G	
			0.85+0.10		
			(0.033±0.004)	D	
			1.15+0.10		
MK316	3.2±0.15 ^{*3}	$1.6\pm0.15^{*3}$	(0.045±0.004)	F	$0.5^{+0.35}_{-0.25}$
(1206)	(0.126±0.006)	(0.063±0.006)	1.25+0.10		(0.020 ^{+0.014})
(1200)	(0.120±0.000)	(0.003±0.000)	(0.049±0.004)	G	(0.020_0.010)
			1.6±0.20		
			(0.063 ± 0.008)	L	
			0.85+0.10		
			(0.033±0.004)	D	
			1.15±0.10	-	
			(0.045±0.004)	F	
			1.5±0.10		
MK325	3.2±0.30	2.5 ± 0.20^{2}	(0.059±0.004)	н	0.6±0.3
	(0.126±0.012)	(0.098±0.008)	1.9±0.20		(0.024 ± 0.012)
(1210)	(0.120±0.012)	(0.098±0.008)	(0.075±0.008)	N	(0.024_0.012)
			$1.9^{+0.1}_{-0.2}$		
			$(0.075^{+0.004}_{-0.008})$	Y	
			2.5±0.20 *2	м	
			(0.098±0.008)	171	

- 注: *1. ±0.15mm公差あり *2. ±0.3mm公差あり *3. ±0.2mm公差あり *4. +0.15/-0.1mm公差あり Note: *1. Including dimension tolerance±0.15mm (±0.006 inch).

Note: *2. Incluiding dimension tolerance \pm 0.3mm (\pm 0.012 inch). Note: *3. Incluiding dimension tolerance \pm 0.2mm (\pm 0.008 inch). Note: *4. Incluiding dimension tolerance+0.15/-0.1mm (\pm 0.006/-0.004 inch).

概略バリエーション AVAILABLE CAPACITANCE RANGE

																																																																			_
	Ty							10)7															2	12																	3	16																3	325							
	T	C I	B/X	7R		B/	X5	R		X5	R		F/۱	Y5\	/		В	/X7	'R			В	/X5	R)	<5F	3		E	/Y5	V		В	/X1	7R			B/	X51	R			X5	5R			F/	Y5۱	V	B	/X1	7R		E	3/X	5R		T		X5I	R		F/	Y5	V
Cap	VD)C 1	6 10	D 6.3	35	25	16	10 6	.3 10	0 6.	3 4	50	25	16	10	50	35	25	16	10	50	35 2	51	6 10	0 6.3	50	25	16	10	6.3	50 1	61	0 6.3	3 50	25	16	6 10	6.3	50	25	16 1	106	.3 5	02	5 1	0 6	.3 4	1 3	5 25	5 16	6 10	25	16	10	35	5 28	5 16	6 10	0 6.3	3 51	0 35	5 16	10	6.3	16	10	ô.3
Cap [μF]	3[dig	gits]							Т																																		Т					Т												Т							
0.1	10								Т			A				G					G				Т	Г								Т			Γ						Т					Т			Τ	Г		Γ	Г	Γ	Т	Т		Т							
0.15	15	i4										Γ													Γ	Γ								Γ									Т					Т			Τ	Γ		Γ	Г	Τ	Т	Т		Т		Γ					
0.22	22	24 /	A A	A		A	A	A				Γ		A		G					G				Γ	Γ								L					L									Т			Γ	Γ		Γ	Г	Т	Т	Т		Т		Γ					
0.33	33	34		Τ						Τ		Г					Γ							Т	Г	Γ																		Т				Т	Τ		Γ	Г	Γ	Γ	Г	Т	Т	Т		Т	Τ	Г					
0.47	47	74	A	A		A	A	A	Т	Τ	Τ	Г	A	A		G	Γ				G	G	Т	Т	Т	Г				Т	G	Т		L			Г		L				Т	Т	Т			Т	Т		Т	Г	Γ	Γ	Г	Т	Т	Т		Т	Т	Г					Г
0.68	68	34																								Γ																						Т							Γ	Τ	Τ	Τ									
1	10	15	A A	A	A	А	A	A					A	Α			G	G	G	G		G	G (à G	i	G					G			L	L				L																Γ	Τ	Τ			Τ							
2.2	22	25					A	AA	1			1	A	А					G	G		(G (a G	i	Γ					(G		Τ	L	L	L			L	L											1			N	I		Τ		Т							
3.3	33	35										1														Γ								Τ														Т				N			Γ	N		Τ		Т							
4.7	47	'5							A	AA		1		1						G			0	a G	G		G					0	à	1			L			L	L		L	L				Т		1		N	N		Γ	N		1	1	N	1 N						
6.8	68	35							Τ			Γ		1												Γ								Τ									Т					Т		1		Γ			Г	Τ	Τ	Τ	1	Т							
10	10	6							Τ	A	A														Τ	Γ		G	G	G		0	à G	1	L	L	L	L			L	LI		L				L	. L	. L		N		N	N	I M.I	NN	IN		N	1						
22	22	26									A														T	Γ			G	G											L	LI									L				Γ	T	N	1 M.	ſΥ	ſ					Ν	N	
47	47	'6																							Τ					G															l	_ L	L								Γ	Τ	T	Τ				M	М	M.N			Ν
100	10)7																																Τ												L	LL	-			T				Γ	T	T	Τ	1				М	M.Y			

注: グラフの記号は製品の厚み記号です。 Note : Letters in the table indicate thickness.

	Туре				107	7							2	212	2											31	16										;	325	5			
	TC	B/>	(5R)	K51	7		B/X	(7R	B/	/X5	īR		(5F	3	F/	Y5	iν	B/>	(7R	E	3/>	(5F	{		X5	ōR			F/Υ	′5V	/	B/)	(7R		B/)	(5F	3	F.	/Y5	۶V
			6.3	25	16	10	6.3	4	16	10	25	16	10	10	6.3	4	50	10	6.3	25	16	25	16	10	6.3	25	16	10	6.3	50	35	10	6.3	50	25	50	25	16	10	50	35	10
[μF]	3[digits]																																									\square
0.1	104																																									
0.22	224																D			F																						
0.33	334																																									
0.47	474		Κ						D		D																															
0.68	684																																									
1	105	К	Κ	Κ	K				D	D	D	D	D								F	D	F											н		Н						
2.2	225				Γ	K	Κ	К				D	D					D				D	D							G					н		н		Γ			
3.3	335			Γ	Γ	Γ																												Γ		Γ			D	Γ		
4.7	475						Κ	К				D	D	К	D∙K				D					D		D	D				G	D							D	Н		\square
6.8	685																																									\square
10	106													D	D∙K									D	D		D∙F					F	D				D	D	D		Н	F
22	226														D	D												D	D									D				
47	476																												D													

注: グラフの記号は製品の厚み記号です。 Note : Letters in the table indicate thickness.

温度特性コード		Tem	温度特性 perature characteri	stics		静電容量許容差〔%〕	tanδ(%)
Temp.char.Code	- 100	規格 e standard	温度範囲〔℃〕 Temperature range	基準温度〔℃〕 Ref. Temp.	静電容量変化率〔%〕 Capacitance change	Capacitance tolerance	Dissipation factor
	JIS	В	-25~+85	20	±10		
BJ	EIA	X5R	-55~+85	25	±15	±10(K) ±20(M)	2.5 max.*
B7	EIA	X7R	-55~+125	25	±15	<u> </u>	
E	JIS	F	-25~+85	20	+30/-80	+80 -20 ^(Z)	70 max *
г	EIA	Y5V	$-30 \sim +85$	25	+22/-82	-20 ^(Z)	7.0 max.*

:代表的な値を記載しています。詳細はアイテム一覧表を参照ください。:The figure indicates typical value. Please refer to PART NUMBERS table.

セレクションガイド Selection Guide

P.12

Unit:mm(inch)

etc

▲当社カタログをご使用の際には「当社製品に関するお断り」を必ずお読みください。

■汎用・低背積層セラミックコンデンサ General・Low profile Multilayer Ceramic Capacitors.

アイテム一覧 PART NUMBERS

107TYPE								
温度特性 T	emp.char. BJ:B/X5R]							
定格電圧 Rated Voltage	形 名 Ordering code	EHS nvironmental Hazardous Substances)	公称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tanδ Dissipation factor [%]Max.	実装条件 Soldering method R:リフロ- Reflow soldering W: フロ- Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚 み Thickness 〔mm〕
35V	GMK107 BJ105 A*1	RoHS	1	B/X5R	5	_		0.8±0.1
	TMK107 BJ105 K*1	RoHS	1	X5R	10	R		0.45±0.0
051/	TMK107 BJ224 A	RoHS	0.22	B/X5R	3.5	R/W		0.8±0.1
25V	TMK107 BJ474 A*1	RoHS	0.47	B/X5R	3.5	5		0.8±0.1
	TMK107 BJ105 A*1	RoHS	1	B/X5R	5	R		0.8±0.1
	EMK107 BJ105 K*1	RoHS	1	X5R	10	R		0.45±0.0
	EMK107 BJ224 A	RoHS	0.22	B/X5R*2	3.5	R/W		0.8±0.1
16V	EMK107 BJ474 A	RoHS	0.47	B/X5R	3.5			0.8±0.1
	EMK107 BJ105 A*1	RoHS	1	B/X5R	5			0.8±0.1
	EMK107 BJ225 A*1	RoHS	2.2	B/X5R	10	R	±10%	0.8±0.1
	LMK107 BJ105 K*1	RoHS	1	B/X5R	10		±20%	0.45±0.0
	LMK107 BJ225 K*1	RoHS	2.2	X5R	10			0.45±0.0
	LMK107 BJ224 A	RoHS	0.22	B/X5R*2	3.5	R/W		0.8±0.1
10V	LMK107 BJ474 A	RoHS	0.47	B/X5R*2	3.5			0.8±0.1
	LMK107 BJ105 A*1	RoHS	1	B/X5R*2	5			0.8±0.1
	LMK107 BJ225 A*1	RoHS	2.2	B/X5R	10			0.8±0.1
	LMK107 BJ475 A*1	RoHS	4.7	X5R	10			0.8±0.1
	JMK107 BJ474 K	RoHS	0.47	B/X5R	5			0.45±0.0
	JMK107 BJ105 K*1	RoHS	1	B/X5R	10			0.45±0.0
	JMK107 BJ225 K*1	RoHS	2.2	X5R	10			0.45±0.0
6.3V	JMK107 BJ475MK* ^{1,*3}	RoHS	4.7	X5R	10	R	±20%	0.45±0.0
	JMK107 BJ225 A*1	RoHS	2.2	B/X5R	10		±10%	0.8±0.1
	JMK107 BJ475 A*1	RoHS	4.7	X5R	10		±20%	0.8±0.1
	JMK107 BJ106MA* ^{1,*3}	RoHS	10	X5R	10		±20%	0.8+0.15/-0
	AMK107 BJ225□K* ¹	RoHS	2.2	X5R	10		±10% ±20%	0.45±0.0
4V	AMK107 BJ475MK*1	RoHS	4.7	X5R	10			0.45±0.0
	AMK107 BJ106MA*1	RoHS	10	X5R	10		±20%	0.8±0.1
	AMK107 BJ226MA*1,*3	RoHS	22	X5R	10			0.8±0.2

形名の□には静電容量許容差記号が入ります。

*1 高温負荷試験の試験電圧は定格電圧の 1.5 倍

*2 個別仕様の取交しにより、X7R仕様に対応している場合があります。

*3 ご使用の回路や機器により、個別仕様の取り交わしが必要になります。

必ず正規販売チャンネルにお問い合わせください。

 \Box Please specify the capacitance tolerance code.

*1 Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage.

*2 We may provide X7R for some items according to the individual specification.

*3 The exchange of individual specification is necessary depending on the application and circuit condition. Please contact Taiyo Yuden sales channel.

【温度特性 Temp.char. B7:X7R】

定格電圧 Rated Voltage	形 名 Ordering code	EHS (Environmental Hazardous Substances)	公称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tanδ Dissipation factor [%]Max.	実装条件 Soldering method R:リフロー Reflow soldering W: フロー Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚 み Thickness 〔mm〕
16V	EMK107 B7 224 A*1	RoHS	0.22	X7R	3.5	R/W		0.8±0.1
100	EMK107 B7 105 A*1	RoHS	1	X7R	5	R		0.8±0.1
	LMK107 B7224 A	RoHS	0.22	X7R	3.5	R/W		0.8±0.1
10V	LMK107 B7 474 A	RoHS	0.47	X7R	3.5		±10%	0.8±0.1
	LMK107 B7 105 A*1	RoHS	1	X7R	5	R	±20%	0.8±0.1
	JMK107 B7224 A	RoHS	0.22	X7R	3.5	R/W		0.8±0.1
6.3V	JMK107 B7 474 A	RoHS	0.47	X7R	3.5	P		0.8±0.1
	JMK107 B7 105 A*1	RoHS	1	X7R	5	R		0.8±0.1

形名の□には静電容量許容差記号が入ります。

*1 高温負荷試験の試験電圧は定格電圧の 1.5 倍

 $\hfill\square$ Please specify the capacitance tolerance code.

*1 Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage.

【温度特性 Temp.char. F:F/Y5V】

定格電圧 Rated Voltage	形 名 Ordering code	EHS (Environmental Hazardous Substances)	公称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tanδ Dissipation factor [%]Max.	実装条件 Soldering method R:リフロ- Reflow soldering W: フロ- Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚 み Thickness 〔mm〕
50V	UMK107 F104ZA	RoHS	0.1	F/Y5V	7			0.8±0.1
25V	TMK107 F474ZA	RoHS	0.47	F/Y5V	7	R/W		0.8±0.1
	EMK107 F224ZA	RoHS	0.22	F/Y5V	7	R/ W		0.8±0.1
16V	EMK107 F474ZA	RoHS	0.47	F/Y5V	7		+80%	0.8±0.1
100	EMK107 F105ZA	RoHS	1	F/Y5V	16		-20%	0.8±0.1
	EMK107 F225ZA	RoHS	2.2	F/Y5V	16	P		0.8±0.1
10V	LMK107 F105ZA	RoHS	1	F/Y5V	16	R		0.8±0.1
100	LMK107 F225ZA	RoHS	2.2	F/Y5V	16			0.8±0.1

アイテム一覧 PART NUMBERS

	emp.char. BJ:B/X5R】							
定格電圧 Rated Voltage	形 名 Ordering code	EHS (Environmental Hazardous Substances)	公称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tanδ Dissipation factor [%]Max.	実装条件 Soldering method R:リフロ- Reflow soldering W: フロ- Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚 み Thicknes 〔mm〕
	UMK212 BJ104 G	RoHS	0.1	B/X5R* ²	3.5			1.25±0.
501/	UMK212 BJ224 G*1	RoHS	0.22	B/X5R*2	3.5			1.25±0.
50V	UMK212 BJ474 G*1	RoHS	0.47	B/X5R	3.5	R/W	許容差 Capacitance	1.25±0.
	UMK212 BJ105 G*1	RoHS	1	X5R	5	H/VV		1.25±0
0.51/	GMK212 BJ474 G	RoHS	0.47	B/X5R	3.5			1.25±0
35V	GMK212 BJ105 G*1	RoHS	1	B/X5R*2	3.5			1.25±0
	TMK212 BJ474 D	RoHS	0.47	B/X5R	3.5			0.85±0
	TMK212 BJ105 D	RoHS	1	B/X5R	5			0.85±0
25V	TMK212 BJ105 G	RoHS	1	B/X5R	5	R		1.25±0
	TMK212 BJ225 G*1	RoHS	2.2	B/X5R	5			1.25±0
	TMK212 BJ475 G*1	RoHS	4.7	X5R	10			1.25±0.
	EMK212 BJ105 D	RoHS	1	B/X5R	5			0.85±0
	EMK212 BJ225 D	RoHS	2.2	B/X5R	5	R		0.85±0
	EMK212 BJ475 D* ^{1,*3}	RoHS	4.7	B/X5R	10		±20% ±20% ±10% ±20% ±10% ±20%	0.85±0
16V	EMK212 BJ105 G	RoHS	1	B/X5R*2	3.5	R/W		1.25±0
	EMK212 BJ225 G	RoHS	2.2	B/X5R*2	5			1.25±0
	EMK212 BJ475 G*1	RoHS	4.7	B/X5R	5			1.25±0
	EMK212 BJ106 G* ^{1,*3}	RoHS	10	X5R	10			1.25±0
	LMK212 BJ475 K*1	RoHS	4.7	X5R	10			0.45±0
	LMK212 BJ105 D	RoHS	1	B/X5R* ²	3.5	R		0.85±0
	LMK212 BJ225 D	RoHS	2.2	B/X5R	5			0.85±0
	LMK212 BJ475 D	RoHS	4.7	B/X5R	10			0.85±0
	LMK212 BJ106 D*1	RoHS	10	X5R	10			0.85±0
10V	LMK212 BJ105 G	RoHS	1	B/X5R*2	3.5	R/W	- ±20%	1.25±0
	LMK212 BJ225 G	RoHS	2.2	B/X5R* ²	5			1.25±0
	LMK212 BJ475 G	RoHS	4.7	B/X5R	5			1.25±0
	LMK212 BJ106 G	RoHS	10	X5R	10			1.25±0
	LMK212 BJ226MG* ^{1,*3}	RoHS	22	X5R	10		±20%	1.25±0
	JMK212 BJ475 K*1	RoHS	4.7	X5R	10			0.45±0
	JMK212 BJ106MK* ^{1,*3}	RoHS	10	X5R	10			0.45±0
	JMK212 BJ475 D	BoHS 4.7 Y5B 10 D ±10%		0.85±0				
6.3V	JMK212 BJ106 D	RoHS	10	X5R	10			0.85±0
0.01	JMK212 BJ226MD* ^{1,*3}	RoHS	22	X5R	10		±20%	0.85±0
	JMK212 BJ475 G	RoHS	4.7	B/X5R	5		±10%	1.25±0
	JMK212 BJ106 G	RoHS	10	X5R	10			1.25±0
	JMK212 BJ226MG* ^{1,*3}	RoHS	22	X5R	10			1.25±0
	JMK212 BJ476MG* ^{1,*3}	RoHS	47	X5R	10		±20%	1.25±0
4V	AMK212 BJ226MD*1	RoHS	22	X5R	10			0.85±0

形名の□には静電容量許容差記号が入ります。

*1 高温負荷試験の試験電圧は定格電圧の 1.5 倍

*2 個別仕様の取交しにより、X7R仕様に対応している場合があります。

*3 ご使用の回路や機器により、個別仕様の取り交わしが必要になります。

必ず正規販売チャンネルにお問い合わせください。

 $\hfill\square$ Please specify the capacitance tolerance code.

*1 Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage.

*2 We may provide X7R for some items according to the individual specification.

*3 The exchange of individual specification is necessary depending on the application and circuit condition. Please contact Taiyo Yuden sales channel.

アイテム一覧 PART NUMBERS

【温度特性 Temp.char. B7:X7R】

定格電圧 Rated Voltage	形 名 Ordering code	EHS (Environmental Hazardous Substances)	公称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tanδ Dissipation factor (%)Max.	実装条件 Soldering method R:リフロ- Reflow soldering W: フロ- Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚 み Thickness 〔mm〕
	UMK212 B7 104 G	RoHS	0.1	X7R	3.5			1.25±0.1
50V	UMK212 B7 224 G*1	RoHS	0.22	X7R	3.5	5.444		1.25±0.1
	UMK212 B7 474 G*1	RoHS	0.47	X7R	3.5	R/W		1.25±0.1
35V	GMK212 B7 105 G*1	RoHS	1	X7R	3.5			1.25±0.1
25V	TMK212 B7 105 G*1	RoHS	1	X7R	5	R	±10%	1.25±0.1
	EMK212 B7 474 D	RoHS	0.47	X7R	3.5	R/W		0.85±0.1
101/	EMK212 B7 105 D	RoHS	1	X7R	5	R	±10%	0.85±0.1
16V	EMK212 B7 105 G	RoHS	1	X7R	3.5	R/W		1.25±0.1
	EMK212 B7 225 G*1	RoHS	2.2	X7R	10	R		1.25±0.1
	LMK212 B7 105 D	RoHS	1	X7R	3.5	n		0.85±0.1
101/	LMK212 B7 105 G	RoHS	1	X7R	3.5	R/W		1.25±0.1
10V	LMK212 B7225 G	RoHS	2.2	X7R	5	R		1.25±0.1
	LMK212 B7 475 G*1	RoHS	4.7	X7R	10	R/W		1.25±0.15

形名の□には静電容量許容差記号が入ります。

*1 高温負荷試験の試験電圧は定格電圧の 1.5 倍

□ Please specify the capacitance tolerance code.

*1 Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage.

【温度特性 Temp.char. F:F/Y5V】

定格電圧 Rated Voltage	形 名 Ordering code	EHS (Environmental Hazardous Substances)	公称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tanδ Dissipation factor [%]Max.	実装条件 Soldering method R:リフロー Reflow soldering W: フロー Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚 み Thickness 〔mm〕
	UMK212 F224ZD	RoHS	0.22	F/Y5V	7			0.85±0.1
50V	UMK212 F474ZG	RoHS	0.47	F/Y5V	7	R/W	1.000/	1.25±0.1
	UMK212 F105ZG	RoHS	1	F/Y5V	7	R/ W		1.25±0.1
16V	EMK212 F225ZG	RoHS	2.2	F/Y5V	7	n/ W		1.25±0.1
	LMK212 F225ZD	RoHS	2.2	F/Y5V	9		+80% -20%	0.85±0.1
10V	LMK212 F475ZG	RoHS	4.7	F/Y5V	9		-20%	1.25±0.1
	LMK212 F106ZG	RoHS	10	F/Y5V	16	R		1.25±0.1
6.01/	JMK212 F475ZD	RoHS	4.7	F/Y5V	16			0.85±0.1
6.3V	JMK212 F106ZG	RoHS	10	F/Y5V	16			1.25±0.1

	emp.char. BJ:B/X5R							
定格電圧 Rated Voltage	形 名 Ordering code	EHS (Environmental Hazardous Substances)	公称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tanδ Dissipation factor [%]Max.	実装条件 Soldering method R:リフロ- Reflow soldering W: フロ- Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚 み Thicknes 〔mm〕
	UMK316 BJ224 L	RoHS	0.22	B/X5R* ²	2.5	R/W		1.6±0.2
50V	UMK316 BJ474 L	RoHS	0.47	B/X5R*2	3.5	R/W		1.6±0.2
500	UMK316 BJ105 L	RoHS	1	B/X5R*2	3.5		許容差 Capacitance	1.6±0.
	UMK316 BJ475 L*1	RoHS	4.7	X5R	10			1.6±0.
	TMK316 BJ105 D	RoHS	1	B/X5R	3.5			0.85±0
	TMK316 BJ225 D*1	RoHS	2.2	B/X5R	3.5			0.85±0
	TMK316 BJ475 D*1	RoHS	4.7	X5R	5			0.85±0
25V	TMK316 BJ225	RoHS	2.2	B/X5R*2	3.5	R		1.6±0.
	TMK316 BJ475 L*1	RoHS	4.7	B/X5R	5		±10%	1.6±0.
	TMK316 BJ106 L*1	RoHS	10	X5R	5		±20%	1.6±0.
	EMK316 BJ225 D	RoHS	2.2	B/X5R	3.5			0.85±0
	EMK316 BJ475 D	RoHS	4.7	X5R	5			0.85±0
	EMK316 BJ106 D*1	RoHS	10	X5R	10			0.85±0
L	EMK316 BJ105 F	RoHS	1	B/X5R*2	3.5	R/W		1.15±0
16V	EMK316 BJ106 F*1	RoHS	10	X5R	10	R	±20%	1.15±0
	EMK316 BJ225	RoHS	2.2	B/X5R*2	3.5	R/W		1.6±0.
	EMK316 BJ475 L	RoHS	4.7	B/X5R	5			1.6±0.
	EMK316 BJ106 L*1	RoHS	10	B/X5R	5			1.6±0.
	EMK316 BJ226ML*1	RoHS	22	B/X5R	10		±20%	1.6±0.
	LMK316 BJ475 D	RoHS	4.7	B/X5R	5		±10%	0.85±0
	LMK316 BJ106 D	RoHS	10	B/X5R	10		±20%	0.85±0
	LMK316 BJ226MD* ^{1,*3}	RoHS	22	X5R	10		±20%	0.85±0
10V	LMK316 BJ106 L	RoHS	10	B/X5R	5			1.6±0.
	LMK316 BJ226ML*1	RoHS	22	B/X5R	10		1.000/	1.6±0.
	LMK316 BJ476ML* ^{1,*3}	RoHS	47	X5R	10	R	±20%	1.6±0
	JMK316 BJ106 D	RoHS	10	B/X5R	10			0.85±0
	JMK316 BJ226MD* ^{1,*3}	RoHS	22	X5R	10		1.000/	0.85±0
	JMK316 BJ476MD* ^{1,*3}	RoHS	47	X5R	10		±20%	0.85±0
6.3V	JMK316 BJ106 L	RoHS	10	B/X5R*2	5		±10%	1.6±0
	JMK316 BJ226 L	RoHS	22	B/X5R	10			1.6±0
	JMK316 BJ476ML*3	RoHS	47	X5R	10			1.6±0
	JMK316 BJ107ML* ^{1,*3}	RoHS	100	X5R	10		±20%	1.6±0
4V	AMK316 BJ107ML*1	RoHS	100	X5R	10			1.6±0

形名の□には静電容量許容差記号が入ります。

*1 高温負荷試験の試験電圧は定格電圧の 1.5 倍

*2 個別仕様の取交しにより、X7R仕様に対応している場合があります。 *3 ご使用の回路や機器により、個別仕様の取り交わしが必要になります。 必ず正規販売チャンネルにお問い合わせください。

□ Please specify the capacitance tolerance code.

*1 Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage.

*2 We may provide X7R for some items according to the individual specification.

*3 The exchange of individual specification is necessary depending on the application and circuit condition. Please contact Taiyo Yuden sales channel.

【温度蛙性	Temp.char.	B7:X7R
【加反付注	remp.char.	

	IK316 B7 224 L				[%]Max.	R:リフロー Reflow soldering W: フロー Wave soldering	Capacitance tolerance	Thickness (mm)
50V UMK		RoHS	0.22	X7R	2.5			1.6±0.2
	IK316 B7 474 L	RoHS	0.47	X7R	3.5			1.6±0.2
UMK	IK316 B7 105 L	RoHS	1	X7R	3.5	R/W		1.6±0.2
TMK	K316 B7224 F	RoHS	0.22	X7R	2.5			1.15±0.1
TMK	K316 B7 105 L	RoHS	1	X7R	3.5			1.6±0.2
25V TMK	K316 B7 225 L	RoHS	2.2	X7R	3.5	R		1.6±0.2
TMK	K316 B7 106□L* ¹	RoHS	10	X7R	10	ň	±10%	1.6±0.2
EMK	K316 B7 105 F	RoHS	1	X7R	3.5	R/W	±20%	1.15±0.1
16V EMK	K316 B7225 L	RoHS	2.2	X7R	3.5	R/W		1.6±0.2
EMK	K316 B7 106 L*1	RoHS	10	X7R	10	R		1.6±0.2
LMK	K316 B7 225 L	RoHS	2.2	X7R	3.5	R/W		1.6±0.2
10V LMK	K316 B7 475 L	RoHS	4.7	X7R	5			1.6±0.2
LMK	K316 B7 106 L*1	RoHS	10	X7R	5	R		1.6±0.2
6.3V JMK	K316 B7 106 L	RoHS	10	X7R	5			1.6±0.2

形名の□には静電容量許容差記号が入ります。 *1 高温負荷試験の試験電圧は定格電圧の 1.5 倍

50

*1 Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage.

【温度特性 Temp.char. F:F/Y5V】

定格電圧 Rated Voltage	形 名 Ordering code	EHS (Environmental Hazardous Substances)	公称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tanδ Dissipation factor [%]Max.	実装条件 Soldering method R:リフロー Reflow soldering W: フロー Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚 み Thickness 〔mm〕
50V	UMK316 F225ZG	RoHS	2.2	F/Y5V	7	R/W		1.25±0.1
35V	GMK316 F475ZG	RoHS	4.7	F/Y5V	7			1.25±0.1
357	GMK316 F106ZL	RoHS	10	F/Y5V	9			1.6±0.2
25V	TMK316 F106ZL	RoHS	10	F/Y5V	9		1.000/	1.6±0.2
16V	EMK316 F106ZL	RoHS	10	F/Y5V	9	В	+80% -20%	1.6±0.2
	LMK316 F475ZD	RoHS	4.7	F/Y5V	9	ň	2070	0.85±0.1
10V	LMK316 F106ZF	RoHS	10	F/Y5V	16			1.15±0.1
	LMK316 F226ZL	RoHS	22	F/Y5V	16			1.6±0.2
6.3V	JMK316 F106ZD	RoHS	10	F/Y5V	16			0.85±0.1

■ 325TYPE -

温度特性 1	emp.char. BJ:B/X5R]								
定格電圧 Rated Voltage	形 名 Ordering code		EHS (Environmental Hazardous Substances)	公称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tanδ Dissipation factor [%]Max.	実装条件 Soldering method R:リフロー Reflow soldering W: フロー Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚 み Thickness 〔mm〕
	UMK325 BJ105 H		RoHS	1	B/X5R* ²	3.5	R/W	±10% ±20%	1.5±0.1
50V	UMK325 BJ475MM*1		RoHS	4.7	X5R	5			2.5±0.2
	UMK325 BJ106MM*1		RoHS	10	X5R	5		許容差 Capacitance tolerance ±10%	2.5±0.2
	GMK325 BJ225MN		RoHS	2.2	B/X5R	3.5			1.9±0.2
35V	GMK325 BJ475MN*1		RoHS	4.7	X5R	10		thod 許容差 didering Capacitance tolerance 土10% 土20%	1.9±0.2
	GMK325 BJ106MN*1		RoHS	10	B/X5R	5			1.9±0.2
	TMK325 BJ106MD*1		RoHS	10	B/X5R	5			0.85±0.1
	TMK325 BJ225MH		RoHS	2.2	B/X5R*2	3.5			1.5±0.1
051/	TMK325 BJ335MN		RoHS	3.3	B/X5R*2	3.5			1.9±0.2
25V	TMK325 BJ475MN		RoHS	4.7	B/X5R* ²	3.5			1.9±0.2
	TMK325 BJ106MN		RoHS	10	B/X5R	5			1.9±0.2
	TMK325 BJ106MM*1		RoHS	10	B/X5R	3.5			2.5±0.2
	EMK325 BJ106MD*1		RoHS	10	B/X5R	5			0.85±0.1
	EMK325 BJ226MD* ^{1,*3}		B/X5R	10			0.85±0.1		
1011	EMK325 BJ475MN		RoHS	4.7	B/X5R*2	3.5			1.9±0.2
16V	EMK325 BJ106MN		RoHS	10	B/X5R	3.5	R	+200/	1.9±0.2
	EMK325 BJ226MM*1		RoHS	22	B/X5R	5		12070	2.5±0.2
	EMK325 BJ476MM*1		RoHS	47	X5R	10		t 許 容 差 Capacitance tolerance ±10% ±20%	2.5±0.2
	LMK325 BJ335MD		RoHS	3.3	B/X5R	3.5			0.85±0.1
	LMK325 BJ475MD		RoHS	4.7	B/X5R	5			0.85±0.1
	LMK325 BJ106MD*1		RoHS	10	B/X5R	5			0.85±0.1
1011	LMK325 BJ226MY*1		RoHS	22	B/X5R	5			1.9+0.1/-0.1
10V	LMK325 BJ106MN		RoHS	10	B/X5R* ²	3.5			1.9±0.2
	LMK325 BJ226MM		RoHS	22	B/X5R	5			2.5±0.2
	LMK325 BJ476MM*1		RoHS	47	X5R	10			2.5±0.2
	LMK325 BJ107MM* ^{1,*3}		RoHS	100	X5R	10			2.5±0.3
	JMK325 BJ226MY		RoHS	22	B/X5R	5			1.9+0.1/-0.1
	JMK325 BJ107MY* ^{1,*3}		RoHS	100	X5R	10			1.9+0.1/-0.1
6.3V	JMK325 BJ476MN*1		RoHS	47	X5R	10			1.9±0.2
	JMK325 BJ476MM*1		RoHS	47	X5R	10			2.5±0.2
	JMK325 BJ107MM*1		RoHS	100	X5R	10			2.5±0.3

形名の□には静電容量許容差記号が入ります。

*1 高温負荷試験の試験電圧は定格電圧の 1.5 倍

*2 個別仕様の取交しにより、X7R仕様に対応している場合があります。

*3 ご使用の回路や機器により、個別仕様の取り交わしが必要になります。

必ず正規販売チャンネルにお問い合わせください。

 $\hfill\square$ Please specify the capacitance tolerance code.

*1 Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage.

*2 We may provide X7R for some items according to the individual specification.

*3 The exchange of individual specification is necessary depending on the application and circuit condition. Please contact Taiyo Yuden sales channel.

アイテム一覧 PART NUMBERS

【温度特性 Temp.char. B7:X7R】

定格電圧 Rated Voltage	形 名 Ordering code	EHS (Environmental Hazardous Substances)	公称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tanδ Dissipation factor [%]Max.	実装条件 Soldering method R:リフロー Reflow soldering W: フロー Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚 み Thickness 〔mm〕
50V	UMK325 B7 105 H	RoHS	1	X7R	3.5	R/W	±10% ±20%	1.5±0.1
	TMK325 B7225MH	RoHS	2.2	X7R	3.5			1.5±0.1
0514	TMK325 B7335MN	RoHS	3.3	X7R	3.5			1.9±0.2
25V	TMK325 B7 475MN*1	RoHS	4.7	X7R	3.5		1.000/	1.9±0.2
	TMK325 B7 106MN*1	RoHS	10	X7R	5	R	±20%	1.9±0.2
16V	EMK325 B7 475MN	RoHS	4.7	X7R	3.5			1.9±0.2
10V	LMK325 B7 106MN	RoHS	10	X7R	3.5			1.9±0.2

形名の□には静電容量許容差記号が入ります。 *1 高温負荷試験の試験電圧は定格電圧の 1.5 倍 \Box Please specify the capacitance tolerance code.

*1 Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage.

【温度特性 Temp.char. F:F/Y5V】

定格電圧 Rated Voltage	形 名 Ordering code	EHS (Environmental Hazardous Substances)	公称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tanδ Dissipation factor [%]Max.	実装条件 Soldering method R:リフロー Reflow soldering W: フロー Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚 み Thickness 〔mm〕
50V	UMK325 F475ZH	RoHS	4.7	F/Y5V	7			1.5±0.1
35V	GMK325 F106ZH	RoHS	10	F/Y5V	7			1.5±0.1
16V	EMK325 F226ZN	RoHS	22	F/Y5V	16	R	+80%	1.9±0.2
10V	LMK325 F106ZF	RoHS	10	F/Y5V	16	ň	-20%	1.15±0.1
100	LMK325 F226ZN	RoHS	22	F/Y5V	16			1.9±0.2
6.3V	JMK325 F476ZN	RoHS	47	F/Y5V	16			1.9±0.2

0.001 0.0001 100 1000 10000 100000 10 100 1000 10000 100000 1 Frequency (kHz)

1 10 100 1000 10000 100000

Frequency (kHz)

0.0001

0.0001

10

Frequency (kHz)

▲当社カタログをご使用の際には「当社製品に関するお断り」を必ずお読みください。

特性図 ELECTRICAL CHARACTERISTICS

▲当社カタログをご使用の際には「当社製品に関するお断り」を必ずお読みください。

①最小受注単位数 Minimum Quantity ■テーピング梱包 Taped packaging

Imm(nch) Code paper Between MK042(01005) 0.2(0.008) C 15000		Tapeu packaging			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				Standar	d quantity
MK063 (0201) 0.3 (0.012) P 15000 - 2K096 (0302) 0.3 (0.012) P 10000 - WK105 (0204) 0.3 (0.012) P 10000 - MK105 (0204) 0.3 (0.012) P 10000 - MK105 (0402) 0.5 (0.020) V, W 10000 - MK107 (0603) 0.45 (0.018) K 4000 - MK107 (0603) 0.5 (0.020) V - 400 MK107 (0603) 0.5 (0.020) V - 400 MK107 (0603) 0.5 (0.020) V - 4000 WK107 (0504) 0.45 (0.031) A 4000 - 0.5 (0.020) V 4000 - - 0.45 (0.018) K 4000 - - MK212 (0805) 0.85 (0.033) D 4000 - WK212 (0805) 0.85 (0.033) D 4000 - 2K212 (0805) 0.85 (0.033) D 4000 -	Type	mm(inch)	code		エンボステープ Embossed tape
Image: constraint of the second sec	MK042(01005)	0.2(0.008)	С	15000	—
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MK063(0201)	0.3(0.012)	Р	15000	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.3(0.012)	Р	10000	
□MK105(0402) 0.5(0.020) V, W 10000 - □MK105(0402) 0.45(0.018) K 4000 - □MK107(0603) 0.5(0.020) V - 400 □MK107(0306) 0.5(0.020) V - 400 □MK107(0306) 0.5(0.020) V - 400 □2K110(0504) 0.8(0.031) A 4000 - □MK212(0805) 0.65(0.020) V 4000 - □MK212(0805) 0.45(0.018) K 4000 - □MK212(0805) 0.85(0.033) D 4000 - □MK212(0805) 0.85(0.033) D 4000 - □MK212(0805) 0.85(0.033) D 4000 - □2K212(0805) 0.85(0.033) D 4000 - □AK316(1206) 1.15(0.045) F - 300 □AK325(1210) 1.5(0.059) H - 200 □AK325(1210) 1.9(0.075) N 200 <td< td=""><td>L2K090(0302)</td><td>0.45(0.018)</td><td>К</td><td>10000</td><td>_</td></td<>	L2K090(0302)	0.45(0.018)	К	10000	_
UK105 (0402) 0.5 (0.020) W 10000 UK105 (0402) 0.45 (0.018) K 4000 UK107 (0603) 0.5 (0.020) V 400 UK107 (0306) 0.5 (0.020) V 400 0.8 (0.031) A 4000 400 0.5 (0.020) V 4000 400 0.5 (0.020) V 4000 400 0.5 (0.020) V 4000 0.5 (0.020) V 4000 0.6 (0.024) B 4000 MK212 (0805) 0.85 (0.033) D 4000 WK212 (0805) 0.85 (0.033) D 4000 UK212 (0805) 0.85 (0.033) D 4000 UK316 (1206) 0.85 (0.033) D 4000 UK316 (1206) 1.5 (0.049) G 200	UWK105(0204)	0.3(0.012)	Р	10000	—
UVK105 (0402) W 0.45 (0.018) K 4000 0.K107 (0603) 0.5 (0.020) V 400 0.WK107 (0306) 0.8 (0.031) A 4000 0.2K110 (0504) 0.8 (0.031) A 4000 0.5 (0.020) V 4000 0.5 (0.020) V 4000 0.5 (0.020) V 4000 0.6 (0.024) B 4000 0.45 (0.018) K 4000 0.45 (0.018) K 4000 0.45 (0.033) D 4000 0.85 (0.033) D 4000	MK105(0402)	0 5 (0.000)	V, W	10000	
MK107 (0603) (WK107 (0306) 0.5 (0.020) V 400 0.8 (0.031) A 4000 400 0.5 (0.020) V 4000 4000 0.2 K110 (0504) 0.8 (0.031) A 4000 400 0.45 (0.020) V 4000	UK105 (0402)	0.5(0.020)	W	10000	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.45(0.018)	К	4000	—
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.5(0.020)	V	_	4000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(0300)	0.8(0.031)	A	4000	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.5(0.020)	V	4000	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2K110(0504)	0.8(0.031)	A	4000	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.6(0.024)	В	4000	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.45(0.018)	К	4000	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.85(0.033)	D	4000	_
$ \boxed{\begin{array}{c c c c c c c c c c c c c c c c c c c$		1.25(0.049)	G	_	3000
$\square MK316(1206) = \begin{bmatrix} 0.85(0.033) & D & 4000 &\\ 1.15(0.045) & F &\\ 1.25(0.049) & G &\\ 1.6(0.063) & L & & 200\\ \hline 1.6(0.063) & L & & 200\\ \hline 0.85(0.033) & D & -\\ 1.15(0.045) & F &\\ 1.5(0.059) & H &\\ 1.9(0.075) & N &\\ \hline 2.0max(0.079) & Y & & 200\\ \hline 2.0max(0.079) & Y & & 200\\ \hline 2.5(0.008) & M & -500(1)\\ \hline 0.0000 &\\& -&\\& -& -& -\\& -& -& -\\& -& -& -\\& -& -& -\\& -& -& -\\& -& -& -\\& -& -& -\\& -& -& -\\& -& -& -\\& -& -& -\\& -& -& -\\& -& -& -& -& -\\& -& -& -& -& -\\& -& -& -& -& -\\& -& -& -& -& -\\& -& -& -& -& -\\& -& -& -& -& -\\& -& -& -& -& -\\& -& -& -& -& -& -\\& -& -& -& -& -& -\\& -& -& -& -& -& -\\& -& -& -& -& -& -\\& -& -& -& -& -& -\\& -& -& -& -& -& -\\& -& -& -& -& -& -\\& -& -& -& -& -& -\\& -& -& -& -& -& -& -\\& -& -& -& -& -& -& -\\& -& -& -& -& -& -& -\\& -& -& -& -& -& -& -& -\\& -& -& -& -& -& -& -& -\\& -& -& -& -& -& -& -& -& -\\& -& -& -& -& -& -& -& -\\& -& -& -& -& -& -& -& -& -& -\\& -& -& -& -& -& -& -& -& -& -\\& -& -& -& -& -& -& -& -& -& -& -& -&$	4K212(0805)	0.85(0.033)	D	4000	_
Implementation Impleme	2K212(0805)	0.85(0.033)	D	4000	_
MK316(1206) 1.25(0.049) G - 300 1.6(0.063) L - 200 0.85(0.033) D - 200 1.15(0.045) F - 200 1.5(0.059) H - 200 1.9(0.075) N - 200 2.0max(0.079) Y - 200		0.85(0.033)	D	4000	_
$\square MK325(1210) = \frac{1.25(0.049)}{1.25(0.049)} = \frac{G}{G} = \frac{1.25(0.049)}{1.6(0.063)} = \frac{G}{L} = -\frac{200}{1.5(0.053)} = \frac{1.15(0.045)}{1.5(0.059)} = \frac{1.15(0.059)}{1.9(0.075)} = \frac{H}{L} = -\frac{200}{1.9(0.075)} = \frac{1.5(0.059)}{1.9(0.079)} = \frac{H}{L} = -\frac{1.5(0.059)}{2.000} = \frac{1.5(0.059)}{2.0000} = \frac{1.5(0.059)}{1.9(0.079)} = \frac{1.5(0.059)}{1$		1.15(0.045)	F		2000
0.85 (0.033) D - 200 1.15 (0.045) F - - 200 1.5 (0.059) H - 200 - 200 1.9 (0.075) N - 200 - 200 2.0 max (0.079) Y - 200 - - 200	_MK316(1206)	1.25(0.049)	G] —	3000
1.15(0.045) F 200 1.5(0.059) H - 200 1.9(0.075) N - 200 2.0max(0.079) Y - 200 2.5 (0.098) M 500(7) 500(7)		1.6(0.063)	L	_	2000
$\square MK325(1210) \xrightarrow{1.5(0.059)} H \longrightarrow - 200$ $1.9(0.075) N \longrightarrow - 200$ $2.0max(0.079) Y \longrightarrow - 200$ $2.5(0.009) M \longrightarrow - 500(7)$		0.85(0.033)	D		
Implementation Impleme		1.15(0.045)	F]	0000
1.9(0.075) N 2.0max(0.079) Y 200 2.5 (0.009) M 500(7)		1.5(0.059)	Н] —	2000
2.5 (0.008) M 500(⁻	_IMK325(1210)	1.9(0.075)	N		
		2.0max(0.079)	Y	_	2000
1000		2.5(0.098)	М	_	500(T), 1000(P)
□MK432(1812) 2.5(0.098) M - 50	MK432(1812)	2.5(0.098)	М	—	500

②テーピング材質 Taping material 紙テープ ※プレスポケットタイプは、 ボトムテープ無し。

③バルクカセット Bulk Cassette

105, 107, 212形状で個別対応致しますのでお問い合せ下さい。 Please contact any of our offices for accepting your requirement according to dimensions 0402, 0603, 0805.(inch)

%□WK

③テーピング寸法 Taping dimensions 紙テープ Paper Tape (8mm幅) (0.315inches wide)

Type (EIA)		挿入部 Cavity	挿入ピッチ Insertion Pitch		プ厚み iickness
(ETA) A		В	F	Т	T1
MK042(01005)	0.25 (0.010)	0.45 (0.018)	2.0±0.05 (0.079±0.002)	0.36max. (0.014)	0.27max. (0.011)
_MK063(0201)	0.37 (0.016)	0.67 (0.027)	2.0±0.05 (0.079±0.002)	0.45max. (0.018)	0.42max. (0.017)
□WK105(0204)	0.65 (0.026)	1.15 (0.045)	2.0±0.05 (0.079±0.002)	0.45max (0.018max)	0.42max (0.017max)

Unit : mm (inch)

Tura	チップ挿入部		挿入ピッチ	テープ厚み
Type (EIA)	Chip (Chip Cavity		Tape Thickness
(EIA)	А	В	F	Т
	0.72	1.02	2.0±0.05	0.45max.(0.018max)
2K096(0302)	(0.028)	(0.040)	(0.079±0.002)	0.6max.(0.024max)
MK105(0402)	0.65	1.15	2.0±0.05	0.8max.
UK105(0402)	(0.026)	(0.045)	(0.079±0.002)	(0.031max.)

Unit : mm (inch)

Tuna	チッフ	『挿入部	挿入ピッチ	テープ厚み	
Type (EIA)	Chip Cavity		Insertion Pitch	Tape Thickness	
(EIA)	А	В	F	Т	
MK107(0603)	1.0	1.8	4.0±0.1	1.1max.	
□WK107(0306)	(0.039)	(0.071)	(0.157±0.004)	(0.043max.)	
	1.15	1.55	4.0±0.1	1.0max.	
2K110(0504)	(0.045)	(0.061)	(0.157±0.004)	(0.039max.)	
MK212(0805)					
WK212(0508)	1.65	2.4			
4K212(0805)	(0.065)	(0.094)	4.0±0.1	1.1max.	
2K212(0805)			(0.157±0.004)	(0.043max.)	
MK316(1206)	2.0	3.6			
LIVING 10 (1206)	(0.079)	(0.142)			

エンボステープ Embossed tape (8mm幅) (0.315 inches wide)

Ŧ	チップ挿入部		挿入ピッチ	テーフ	プ厚み
Туре	Chip cavity		Insertion Pitch	Tape Th	ickness
(EIA)	А	В	F	K	Т
	1.0	1.8		1.3max.	0.25±0.1
□WK107 (0306)	(0.039)	(0.071)		(0.051max.)	(0.01±0.004)
	1.65	2.4			
□MK212 (0805)	(0.065)	(0.094)	4.0±0.1		
	2.0	3.6	(0.157±0.004)	3.4max.	0.6max.
□MK316 (1206)	(0.079)	(0.142)		(0.134max.)	(0.024max.)
	2.8	3.6	1		
□MK325 (1210)	(0.110)	(0.142)			

Unit : mm (inch)

Turne	チップ挿入部		挿入ピッチ	テープ厚み	
Туре	Chip cavity		Insertion Pitch	Tape Thickness	
(EIA)	A	В	F	K	Т
□MK432 (1812)	3.7 (0.146)	4.9 (0.193)	8.0±0.1 (0.315±0.004)		0.6max. (0.024max.)

Unit : mm (inch)

99

梱包 PACKAGING

⑤リール寸法 Reel size

⑥トップテープ強度 Top Tape Strength

トップテープのはがし力は下図矢印方向にて0.1 \sim 0.7Nとなります。 The top tape requires a peel-off force of 0.1 \sim 0.7N in the direction of the arrow as illustrated below.

ップテープ Ь Top cover tape 0~20 ・ステープ Base tape

Multilayer Ceramic Capacitor Chips

		Specifi	ed Value		
Item	Temperature Com	censating (Class 1)	High Permiti	vity (Class 2)	Test Methods and Remarks
	Standard	High Frequency Type	Standard Note1	High Value	
1.Operating Temperature	−55 to +125°C	I	BJ : −55 to +125°C	−25 to +85°C	High Capacitance Type BJ (X7R): -55~+125°C, BJ (X5R): -55~+85°
Range 2.Storage Temperature			$F: -25 \text{ to } +85^{\circ}\text{C}$ $BJ: -55 \text{ to } +125^{\circ}\text{C}$		E (Y5U) : -30~+85°C, F (Y5V) : -30~+85° High Capacitance Type BJ (X7R) : -55~+125°C, BJ (X5R) : -55~+85°
Range	0010 11200		F : −25 to +85°C		High Capacitance Type BJ (X7R) : -55~+125°C, BJ (X5R) : -55~+85° E (Y5U) : -30~+85°C, F (Y5V) : -30~+85°
3.Rated Voltage	50VDC,25VDC, 16VDC	16VDC 50VDC	50VDC,25VDC	50VDC,35VDC,25VDC 16VDC,10VDC,6.3VDC 4DVC, 2.5VDC	
4.Withstanding Voltage Between terminals	No breakdown or damage	No abnormality	No breakdown or dama	ge	Applied voltage: Rated voltage ×3 (Class 1) Rated voltage ×2.5 (Class 2) Duration: 1 to 5 sec. Charge/discharge current: 50mA max. (Class 1,2)
5.Insulation Resistance	10000 MΩ min.	1	500 MΩ μF. or 10000 smaller. Note 5	$M\Omega$., whichever is the	Applied voltage: Rated voltage Duration: 60±5 sec. Charge/discharge current: 50mA max.
6.Capacitance (Tolerance)	0.5 to 5 pF: ±0.25 pF 1 to 10pF: ±0.5 pF 5 to 10 pF: ±1 pF 11 pF or over: ± 5% ±10% 105TYPER△, S△, T△, U△ only 0.5~2pF: ±0.1pF 2.2~20pF: ±5%	0.5 to 2 pF : ±0.1 pF 2.2 to 5.1 pF : ±5%	BJ: ±10%, ±20% F: +80% -20	BJ:±10%,±20% F:−20%/+80%	$\label{eq:constraints} \begin{array}{l} \mbox{Measuring frequency:} \\ \mbox{Class1: 1MHz\pm10% (C$1000pF)} \\ \mbox{1 k Hz\pm10\% (C$1000pF)} \\ \mbox{Class2: 1 k Hz±10\% (C$100pF)} \\ \mbox{120Hz\pm10Hz (C$10\muF)} \\ \mbox{Measuring voltage:} \\ \mbox{Note 4 } \mbox{Class1: 0.5}{\sim}5Vrms (C$1000pF) \\ \mbox{1\pm0.2Vrms (C$1000pF)} \\ \mbox{Class2: 1\pm0.2Vrms (C$10\muF)} \\ \mbox{0.5\pm0.1Vrms (C$10\muF)} \\ \mbox{Bias application: None} \end{array}$
7.Q or Tangent of Loss Angle (tan δ)	Under 30 pF : Q≧400 + 20C 30 pF or over : Q≧1000 C= Nominal capacitance	Refer to detailed specification	BJ: 2.5% max. (50V, 25V) F: 5.0% max. (50V, 25V) Note 4	BJ : 2.5% max. F : 7% max. Note 4	$\label{eq:main_state} \begin{array}{c} \mbox{Multilayer:} \\ \mbox{Measuring frequency:} \\ \mbox{Class1}: 1MHz\pm10\% (C \leq 1000 pF) \\ \mbox{1 k Hz}\pm10\% (C > 1000 pF) \\ \mbox{Class2}: 1 k Hz\pm10\% (C \leq 10\muF) \\ \mbox{120Hz}\pm10Hz (C > 10\muF) \\ \mbox{Measuring voltage:} \\ \mbox{Note 4} & \mbox{Class1}: 0.5 \sim 5Vrms (C \leq 1000 pF) \\ \mbox{1 \pm 0.2Vrms (C > 100 0pF)} \\ \mbox{Class2}: 1\pm0.2Vrms (C > 100 \muF) \\ \mbox{0.5 \pm 0.1Vrms (C > 10\muF)} \\ \mbox{Bias application: None} \\ \mbox{High} - \mbox{Frequency} - \mbox{Multilayer:} \\ \mbox{Measuring frequency: 1GHz} \\ \mbox{Measuring quipment: HP4291A} \\ \mbox{Measuring jig: HP16192A} \end{array}$
8.Temperature (Without Characteristic voltage ap- of Capacitance plication)	$\begin{array}{c} CK: 0\pm 250\\ CJ: 0\pm 120\\ CH: 0\pm 60\\ CG: 0\pm 30\\ RH: -220\pm 60\\ SK: -330\pm 250\\ SJ: -330\pm 120\\ SH: -330\pm 60\\ TK: -470\pm 250\\ TJ: -470\pm 120\\ UK: -750\pm 250\\ UJ: -750\pm 120\\ SL: +350\ to -1000\\ (ppm/C) \end{array}$	CH: 0±60 RH: -220±60 (ppm/°C)	BJ: ±10% (-25~85°C) F: +30% (-25~85°C) BJ (X7R): ±15% F (Y5V):+22% -82	BJ: ±10% (-25~+85℃) F:+30%/-80% (-25~+85℃) BJ(X7R, X5R): ±15% F(Y5V): +22%/-82%	According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the fol- lowing equation. $\frac{(C_{65} - C_{20})}{C_{20} \times \bigtriangleup T} \times 10^{6} \text{ (ppm/°C)}$ High permitivity: Change of maximum capacitance deviation in step 1 to 5 Temperature at step 1: +20°C Temperature at step 2: minimum operating temperature Temperature at step 3: +20°C (Reference temperature) Temperature at step 4: maximum operating temperature Temperature at step 5: +20°C Reference temperature for X7R, X5R, Y5U and Y5V shall be +25°C
9.Resistance to Flexure of Substrate	Appearance: No abnormality Capacitance change: Within ±5% or ±0.5 pF, whichever is larger.	Appearance: No abnormality Capacitance change: Within±0.5 pF	Appearance: No abnormality Capacitance change: BJ : Within ±12.5% F : Within ±30%	1	Warp: 1mm Testing board: glass epoxy-resin substrate Thickness: 1.6mm (063 TYPE: 0.8mm) The measurement shall be made with board in the bent position. Board P_{23} P_{33} P_{33} $P_{45\pm2}$ $P_{45\pm2}$ (Unit: mm)

4 CAPACITORS

▲ 当社カタログをご使用の際には「当社製品に関するお断り」を必ずお読みください。

TAIYO YUDEN 2009

Multilayer Ceramic Capacitor Chips

		Specifie	ed Value			
Item	Temperature Comp	pensating (Class 1)	High Permitti	vity (Class 2)	Test Methods and Remarks	
	Standard	High Frequency Type	Standard Note1	High Value		
10.Body Strength		No mechanical dam- age.			High Frequency Multilayer: Applied force: 5N Duration: 10 sec. (LW Reverse)	
11.Adhesion of Electrode	No separation or indicat	tion of separation of elect	rode.		Applied force: 5N Duration: 30±5 sec. (01005, 0201, 0302 TYPE 2N) Hooked jig F=05 Chip Chip Cross-section	
12.Solderability	At least 95% of termina	l electrode is covered by	new solder.		Solder temperature: 230±5°C Duration: 4±1 sec.	
13.Resistance to soldering	Appearance: No ab- normality Capacitance change: Within $\pm 2.5\%$ or ± 0.25 pF, whichever is larger. Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	Appearance: No ab- normality Capacitance change: Within ±2.5% Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	tan δ : Initial value Insulation resistance: In	Vithin $\pm 7.5\%$ (BJ) Vithin $\pm 20\%$ (F) Note 4	$eq:preconditioning: Thermal treatment (at 150 °C for 1 hr) (Applicable to Class 2.) Solder temperature: 270 \pm 5°C Duration: 3 \pm 0.5 sec. Preheating conditions: 80 to 100°C, 2 to 5 min. or 5 to 10 min. 150 to 200°C, 2 to 5 min. or 5 to 10 min. Recovery: Recovery for the following period under the standard condition after the test. 6 \sim 24 hrs (Class 1) 24 \pm 2 hrs (Class 2)$	
14.Thermal shock	Appearance: No ab- normality Capacitance change: Within $\pm 2.5\%$ or $\pm 0.25pF$, whichever is larger. Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	Appearance: No ab- normality Capacitance change: Within ±0.25pF Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	Capacitance change: Within $\pm 7.5\%$ (BJ) Within $\pm 20\%$ (F) tan δ : Initial value Note 4 Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality		Preconditioning: Thermal treatment (at 150°C for 1 hr) (Applicable to Class 2.) Conditions for 1 cycle: Step 1: Minimum operating temperature $^{+0}_{-3}$ °C 30±3 min. Step 2: Room temperature 2 to 3 min. Step 3: Maximum operating temperature $^{-0}_{+3}$ °C 30±3 min. Step 4: Room temperature 2 to 3 min. Step 4: Room temperature 2 to 3 min. Number of cycles: 5 times Recovery after the test: 6~24 hrs (Class 1) 24±2 hrs (Class 2) 24±2 hrs (Class 2)	
15.Damp Heat (steady state)	Appearance: No ab- normality Capacitance change: Within $\pm 5\%$ or $\pm 0.5pF$, whichever is larger. Q: $C \ge 30 pF : Q \ge 350$ $10 \le C < 30 pF : Q \ge 275 + 2.5C$ $C < 10 pF : Q \ge 200$ + 10C C: Nominal capacitance Insulation resistance: $1000 M\Omega$ min.	Appearance: No ab- normality Capacitance change: Within ±0.5pF, Insulation resistance: 1000 MΩ min.	Appearance: No ab- normality Capacitance change: BJ: Within $\pm 12.5\%$ F: Within $\pm 30\%$ tan δ : BJ: 5.0% max. F: 7.5% max. Note 4 Insulation resistance: 50 M $\Omega\mu$ F or 1000 M Ω whichever is smaller. Note 5	Appearance: No abnormality Capacitance change: BJ:Within $\pm 12.5\%$ Note 4 tan δ : BJ: 5.0% max. Note 4. F: 11.0% max. Insulation resistance: 50 M $\Omega\mu$ F or 1000 M Ω whichever is smaller. Note 5	Multilayer : Multilayer : Preconditioning: Thermal treatment (at 150°C for 1 hr) (Applicable to Class 2.) Temperature: $40\pm 2^{\circ}$ C Humidity: 90 to 95% RH Duration: $500 \frac{+2^{4}}{-0}$ hrs Recovery: Recovery for the following period under the standard condition after the removal from test chamber. $6\sim 24$ hrs (Class 1) 24 ± 2 hrs (Class 2) High-Frequency Multilayer: Temperature: $60\pm 2^{\circ}$ C Humidity: 90 to 95% RH Duration: $500 \frac{+2^{4}}{-0}$ hrs Recovery: Recovery for the following period under the standard condition after the removal from test chamber. $6\sim 24$ hrs (Class 1)	

Multilayer Ceramic Capacitor Chips

	Specified Value				
Item	Item Temperature Compensating (Class 1) High Permittivity (Class 2)		Test Methods and Remarks		
	Standard	High Frequency Type	Standard Note1	High Value	
16.Loading under Damp Heat	Appearance: No ab- normality Capacitance change: Within \pm 7.5% or \pm 0.75pF, whichever is larger. Q: C \geq 30 pF: Q \geq 200 C<30 pF: Q \geq 100 + 10C/3 C : Nominal capaci- tance Insulation resistance: 500 M Ω min.	Appearance: No ab- normality Capacitance change: C≦2 pF: Within ±0.4 pF C>2 pF: Within ±0.75 pF C : Nominal capaci- tance Insulation resistance: 500 MΩ min.	Appearance: No ab- normality Capacitance change: BJ: Within $\pm 12.5\%$ F: Within $\pm 12.5\%$ F: Within $\pm 30\%$ Note 4 tan δ : BJ: 5.0% max. F: 7.5% max. Note 4 Insulation resistance: $25 M\Omega\mu$ F or 500 MQ, whichever is the smaller. Note 5	Appearance: No ab- normality Capacitance change: BJ : Within $\pm 12.5\%$ F : Within $\pm 30\%$ Note 4 tan δ : BJ : 5.0% max. F : 11% max. Note 4 Insulation resistance: 25 M $\Omega\mu$ F or 500 M Ω , whichever is the smaller. Note 5	According to JIS C 5102 Clause 9. 9. Multilayer: Preconditioning: Voltage treatment (Class 2) Temperature: $40 \pm 2^{\circ}$ C Humidity: 90 to 95% RH Duration: 500 $^{+24}_{-2}$ hrs Applied voltage: Rated voltage Charge and discharge current: 50mA max. (Class 1,2) Recovery: Recovery for the following period under the standard condition after the removal from test chamber. $6^{\sim}24$ hrs (Class 1) 24 ± 2 hrs (Class 2) High—Frequency Multilayer: Temperature: $60 \pm 2^{\circ}$ C Humidity: 90 to 95% RH Duration: 500 $^{+24}_{-24}$ hrs Applied voltage: Rated voltage Charge and discharge current: 50mA max. Recovery: $6^{\sim}24$ hrs of recovery under the standard condition after the removal from test chamber.
17.Loading at High Tempera- ture	Appearance: No ab- normality Capacitance change: Within $\pm 3\%$ or $\pm 0.3pF$, whichever is larger. Q: C $\geq 30 pF$: Q ≥ 350 $10 \leq C < 30 pF$: Q ≥ 275 + 2.5C $C < 10 pF$: Q $\geq 200 + 10C$ C : Nominal capacitance Insulation resistance: $1000 M\Omega$ min.	Appearance: No ab- normality Capacitance change: Within $\pm 3\%$ or \pm 0.3pF, whichever is larger. Insulation resistance: 1000 M Ω min.	Appearance: No ab- normality Capacitance change: BJ: Within $\pm 12.5\%$ F: Within $\pm 30\%$ Note 4 tan δ : BJ: 4.0% max. F: 7.5% max. F: 7.5% max. Note 4 Insulation resistance: $50 M\Omega \ \mu$ F or 1000 M Ω whichever is smaller. Note 5	Appearance: No abnormality Capacitance change: BJ : Within $\pm 12.5\%$ Within $\pm 20\% \% \%$ F : Within $\pm 25\% \% \%$ F : Within $\pm 30\%$ Note 4 tan δ : BJ : 5.0% max. F : 11% max. Note 4 Insulation resistance: 50 M $\Omega \mu$ F or 1000 M Ω , whichever is smaller. Note 5	According to JIS C 5102 clause 9.10. Multilayer: Preconditioning: Voltage treatment (Class 2) Temperature:125±3°C (Class 1, Class 2: B, BJ (X7R)) 85±2°C (Class 2: BJ,F) Duration: 1000 ^{+,48} / ₋ hrs Applied voltage: Rated voltage×2 Note 6 Recovery: Recovery for the following period under the standard condition after the removal from test chamber. 6~24 hrs (Class 1) 24±2 hrs (Class 2) High-Frequency Multilayer: Temperature: 125±3°C (Class 1) Duration: 1000 ^{+,48} / ₋ hrs Applied voltage: Rated voltage×2 Recovery: 6~24 hrs of recovery under the standard condition after the removal from test chamber.

Note 1 :For 105 type, specified in "High value". Note 2 :Thermal treatment (Multilayer): 1 hr of thermal treatment at 150 +0/-10 °C followed by 24±2 hrs of recovery under the standard condition shall be performed before the measurement. Note 3 :Voltage treatment (Multilayer): 1 hr of voltage treatment under the specified temperature and voltage for testing followed by 24±2 hrs of recovery under the standard condition shall be performed before the measurement. Note 4 . 5 :The figure indicates typical inspection. Please refer to individual specifications. Note 6 :Some of the parts are applicable in rated voltage ×1.5. Please refer to individual specifications. Note on standard condition "referred to herein is defined as follows: 5 to 35°C of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure. When there are questions concerning measurement results: In order to provide correlation data, the test shall be conducted under condition of 20±2°C of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition."

4 CAPACITORS

Precautions on the use of Multilayer Ceramic Capacitors

Stages	Precautions	Technical considerations
1.Circuit Design	 Verification of operating environment, electrical rating and performance 1. A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any capacitors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. Operating Voltage (Verification of Rated voltage) 1. The operating voltage for capacitors must always be lower than their rated values. If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages should be lower than the rated value of the capacitor chosen. For a circuit where both an AC and a pulse voltage may be present, the sum of their peak voltages should also be lower than the rated value, the reliability of capacitors might be reduced if either a high frequency AC voltage or a pulse voltage having rapid rise time is present in the circuit. 	
2.PCB Design	 Pattern configurations (Design of Land-patterns) When capacitors are mounted on a PCB, the amount of solder used (size of fillet) can directly affect capacitor per- formance. Therefore, the following items must be carefully considered in the design of solder land patterns: The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropri- ate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets. When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist. 	1. The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amounts. (larger fillets which extend above the component end terminations) Examples of improper pattern designs are also shown. (1) Recommended land dimensions for a typical chip capacitor land patterns for PCBs Land pattern Chip capacitor Chip capacitor Chip capacitor Chip capacitor Chip capacitor Recommended land dimensions for wave-soldering (unit: mm) $\overline{\frac{y_{pe}\ 107\ 212\ 316\ 325\ 1.6\ 2.5\ A\ 0.8 - 1.2\ 1.6\ 2.5\ 1.8 - 2.5\ B\ 0.5 - 0.8\ 0.8 - 1.2\ 1.2 - 1.6\ 1.8 - 2.5\ 1.8 - 2.5\ B\ 0.5 - 0.8\ 0.8 - 1.2\ 1.2 - 1.6\ 1.8 - 2.5\ 1.8 - 2.5\ B\ 0.5 - 0.8\ 0.8 - 1.2\ 1.2 - 1.6\ 1.8 - 2.5\ 1.8 - 2.5\ B\ 0.5 - 0.8\ 0.8 - 1.2\ 0.2\ 0.3\ 2.3\ 2.4\ 5\ 0.8 - 1.2\ 0.1\ 0.1\ 0.1\ 0.1\ 0.8 - 1.2\ 0.3\ 2.3\ 2.3\ 2.4\ 5\ 0.8 - 1.2\ 0.3\ 2.3\ 2.3\ 2.3\ 2.3\ 2.3\ 2.3\ 2.3\ 2$

1/6

Precautions on the use of Multilayer Ceramic Capacitors

Stages	Precautions		Technical conside	prations
		Chip cau C C C C C C C C C C C C C	Land pattern Dacitor Solder-resist	
2.PCB Design		B 0.2~ C 0.9~	-0.22 0.25∼0.3 0.5∼0.7 -0.25 0.3∼0.4 0.4∼0.5 -1.1 1.5∼1.7 1.9∼2.1 (unit: mm) of good and bad solder applicat Not recommended Lead wire of component	tion Recommended Solder-resist
		Component placement close to the chassis Hand-soldering of leaded components	Lead wire of component Soldering iron	Solder-resist
	Pattern configurations	Horizontal components Horizontal component placement		apacitor layout; SMD capacitors should
	 (Capacitor layout on panelized [breakaway] PC boards) 1. After capacitors have been mounted on the boards, chips can be subjected to mechanical stresses in subsequent 	-	ninimize any possible mechanical	stresses from board warp or deflection.
	manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD ca-	Deflection of the board	Not recommended	Position the component at a right angle to the direction of the mechanical stresses that are anticipated.
	pacitors should be carefully performed to minimize stress.	amount of me		PC board, it should be noted that the y depending on capacitor layout. The etter design.
		Perforati	on c	D 00000
		on the capacit are listed in or	tors can vary according to the r rder from least stressful to most n. Thus, any ideal SMD capaci	tions, the amount of mechanical stress nethod used. The following methods : stressful: push-back, slit, V-grooving, tor layout must also consider the PCB

▲当社カタログをご使用の際には「当社製品に関するお断り」を必ずお読みください。 TAIYO YUDEN 2009 Please read the "Notice for TAIYO YUDEN products" before using this catalog.

Precautions on the use of Multilayer Ceramic Capacitors

Stages	Precautions	Technical considerations
3.Considerations for auto- matic placement	Adjustment of mounting machine1. Excessive impact load should not be imposed on the capacitors when mounting onto the PC boards.2. The maintenance and inspection of the mounters should be conducted periodically.	 If the lower limit of the pick-up nozzle is low, too much force may be imposed on the capacitors, causing damage. To avoid this, the following points should be considered before lowering the pick-up nozzle: The lower limit of the pick-up nozzle should be adjusted to the surface level of the PC board after correcting for deflection of the board. The pick-up pressure should be adjusted between 1 and 3 N static loads. To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins should be used under the PC board. The following diagrams show some typical examples of good pick-up nozzle placement:
		Not recommended Recommended Single-sided mounting Image: Cracks Image: Cracks Double-sided mounting Image: Cracks Image: Cracks
	Selection of Adhesives 1. Mounting capacitors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded capacitor	 As the alignment pin wears out, adjustment of the nozzle height can cause chipping or cracking of the capacitors because of mechanical impact on the capacitors. To avoid this, the monitoring of the width between the alignment pin in the stopped position, and maintenance, inspection and replacement of the pin should be conducted periodically. Some adhesives may cause reduced insulation resistance. The difference between the shrinkage percentage of the adhesive and that of the capacitors may result in stresses on the capacitors and lead to cracking. Moreover, too little or too much
	characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, it is imperative to consult the manufacturer of the adhesives on proper usage and amounts of adhesive to use.	 adhesive applied to the board may adversely affect component placement, so the following precautions should be noted in the application of adhesives. (1) Required adhesive characteristics a. The adhesive should be strong enough to hold parts on the board during the mounting & solder process. b. The adhesive should have sufficient strength at high temperatures. c. The adhesive should have good coating and thickness consistency. d. The adhesive should be used during its prescribed shelf life. e. The adhesive should have not be contaminated. g. The adhesive should have excellent insulation characteristics. h. The adhesive should have excellent insulation characteristics.
		 (2) The recommended amount of adhesives is as follows; Figure 212/316 case sizes as examples a 0.3mm min b 100 ~120 μ m c Adhesives should not contact the pad Amount of adhesive After capacitors are bonded

Precautions on the use of Multilayer Ceramic Capacitors

Stages	Precautions	Technical considerations
4. Soldering	 Selection of Flux 1. Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use; (1) Flux used should be with less than or equal to 0.1 wt% (equivelent to chroline) of halogenated content. Flux having a strong acidity content should not be applied. (2) When soldering capacitors on the board, the amount of flux applied should be controlled at the optimum level. (3) When using water-soluble flux, special care should be taken to properly clean the boards. 	 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the capacitors. 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system. 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of capacitors in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux.
	Soldering Temperature, time, amount of solder, etc. are specified in ac- cordance with the following recommended conditions.	 1-1. Preheating when soldering Heating: Ceramic chip components should be preheated to within 100 to 130°C of the soldering. Cooling: The temperature difference between the components and cleaning process should not be greater than 100°C. Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted with great care so as to prevent malfunction of the components due to excessive thermal shock.
	Sn-Zn solder paste can affect MLCC reliability performance. Please contact us prior to usage.	Recommended conditions for soldering [Fleflow soldering] Temperature profile Temperature for the soldering to the solder mass of the capacitor, as shown below: Caution 1. The ideal condition is to have solder mass (fillet) controlled to 1/2 to 1/3 of the thickness of the capacitor, as shown below: 2. Because excessive dwell times can detrimentally affect solderability, soldering duration should be kept as close to recommended times as possible. [Wave soldering] Temperature for the capacitors are preheated sufficiently. 2. Caution 1. Make sure the capacitors are preheated sufficiently. 2. The temperature for the capacitors are preheated sufficiently. 2. The temperature of the capacitors are preheated sufficiently. 2. The temperature of the capacitors are preheated sufficiently. 3. Caution 3. Caution 3. Caution 3. Caution 4. Make sure the capacitors are preheated sufficiently. 3. Caution 4. Make solder mass of the capacitor as presented sufficiently. 3. Caution 4. Make soldering the capacitor as presented sufficiently. 4. Temperature of the capacitors are preheated sufficiently. 3. Cooling after soldering should be as gradual as possible. 4. Wave soldering must not be applied to the capacitors of the capacitor solder should not be greater than 100 to 130°C 4. Wave soldering the capacitor solder as presented sufficiently. 5. The temperature difference between the capacitor and melted solder should not be greater than 100 to 130°C 6. Cooling after soldering hould be as gradual as possible. 4. Wave soldering must not be applied to the capacitors designated as for reflow soldering the soldering soldering soldering solder to the capacitor soldering sol

Precautions on the use of Multilayer Ceramic Capacitors

Stages	Precautions	Technical considerations
4. Soldering		[Hand soldering] Temperature profile 400 (Pb free soldering)
		Temperature 230°C 250 250 250 250 250 250 250 250
		Soldering condition, therefore these profiles not always recommended. Caution 1. Use a 20W soldering iron with a maximum tip diameter of 1.0 mm. 2. The soldering iron should not directly touch the capacitor.
5.Cleaning	 Cleaning conditions 1. When cleaning the PC board after the capacitors are all mounted, select the appropriate cleaning solution according to the type of flux used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the capacitor's characteristics. 	 The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the capacitor or deteriorate the capacitor's outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance). Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimen- tally affect the performance of the capacitors. Excessive cleaning In the case of ultrasonic cleaning, too much power output can cause excessive vibra- tion of the PC board which may lead to the cracking of the capacitor or the soldered portion, or decrease the terminal electrodes' strength. Thus the following conditions should be carefully checked;
		Ultrasonic outputBelow 20 W/ ℓUltrasonic frequencyBelow 40 kHzUltrasonic washing period5 min. or less
.Post cleaning processes	 With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hard- ening period or while left under normal storage conditions resulting in the deterioration of the capacitor's performance. When a resin's hardening temperature is higher than the capacitor's operating temperature, the stresses generated by the excess heat may lead to capacitor damage or destruction. The use of such resins, molding materials etc. is not recom- mended. 	
7.Handling	 Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting capacitors and other components, care is required so as not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices. 	
	 Mechanical considerations 1. Be careful not to subject the capacitors to excessive mechanical shocks. (1)If ceramic capacitors are dropped onto the floor or a hard surface, they should not be used. (2)When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components. 	

▲当社カタログをご使用の際には「当社製品に関するお断り」を必ずお読みください。 TAIYO YUDEN 2009 ▲ Please read the "Notice for TAIYO YUDEN products" before using this catalog. 117

Precautions on the use of Multilayer Ceramic Capacitors

▲当社カタログをご使用の際には「当社製品に関するお断り」を必ずお読みください。

Stages	Precautions	Technical considerations
8.Storage conditions	 Storage 1. To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Ambient temperature Below 30°C Humidity Below 70% RH The ambient temperature must be kept below 40°C. Even under ideal storage conditions capacitor electrode solderability decreases as time passes, so should be used within 6 months from the time of delivery. Ceramic chip capacitors should be kept where no chlorine or sulfur exists in the air. The capacitance value of high dielectric constant capacitors (type 2 &3) will gradually decrease with the passage of time, so this should be taken into consideration in the circuit design. If such a capacitance reduction occurs, a heat treatment of 150°C for 1hour will return the capacitance to its initial level.	1. If the parts are stored in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and dete- rioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the capacitors.