

HCPL0600, HCPL0601, HCPL0611, HCPL0637, HCPL0638, HCPL0639 High Speed-10 MBit/s Logic Gate Optocouplers

Single Channel: HCPL0600, HCPL0601, HCPL0611 Dual Channel: HCPL0637, HCPL0638, HCPL0639

Features

- Compact SO8 package
- Very high speed-10 MBit/s
- Superior CMR
- Logic gate output
- Strobable output (single channel devices)
- Wired OR-open collector
- U.L. recognized (File # E90700)
- IEC60747-5-2 approved (VDE option)
 HCPL0600, HCPL0601, HCPL0611 only

Applications

- Ground loop elimination
- LSTTL to TTL, LSTTL or 5-volt CMOS
- Line receiver, data transmission
- Data multiplexing
- Switching power supplies
- Pulse transformer replacement
- Computer-peripheral interface

Description

The HCPL06XX optocouplers consist of an AlGaAS LED, optically coupled to a very high speed integrated photo-detector logic gate with a strobable output (single channel devices). The devices are housed in a compact small-outline package. This output features an open collector, thereby permitting wired OR outputs. The HCPL0600, HCPL0601 and HCPL0611 output consists of bipolar transistors on a bipolar process while the HCPL0637, HCPL0638, and HCPL0639 output consists of bipolar transistors on a CMOS process for reduced power consumption. The coupled parameters are guaranteed over the temperature range of -40°C to +85°C. An internal noise shield provides superior common mode rejection.

April 2009

www.fairchildsemi.com

Single-channel circuit drawing (HCPL0600, HCPL0601 and HCPL0611)

Dual-channel circuit drawing (HCPL0637, HCPL0638 and HCPL0639)

Truth Table (Positive Logic)

Input	Enable	Output
Н	Н	L
L	Н	Н
Н	L	Н
L	L	Н
H*	NC*	L*
L*	NC*	H*

*Dual channel devices or single channel devices with pin 7 not connected.

A $0.1 \mu F$ bypass capacitor must be connected between pins 8 and 5. (See note 1)

Absolute Maximum Ratings (No derating required up to 85°C)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Value	Units
T _{STG}	Storage Temperature	-40 to +125	°C	
T _{OPR}	Operating Temperature		-40 to +85	°C
EMITTER				
١ _F	DC/Average Forward Input Current	Single Channel	50	mA
	(each channel)	Dual Channel		
V _E	Enable Input Voltage Not to exceed VCC by more than 500mV	Single Channel	5.5	V
V _R	Reverse Input Voltage (each channel)		5.0	V
PI	Power Dissipation	Single Channel	45	mW
		Dual Channel		
DETECTOR			· · · · ·	
V _{CC} (1 minute max)	Supply Voltage		7.0	V
Ι _Ο	Output Current (each channel)	Single Channel	50	mA
			15	
Vo	Output Voltage (each channel)		7.0	V
Po	Collector Output Power Dissipation	Single Channel	85	mW
		Dual Channel	85	

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Param	Min.	Max.	Units	
I _{FL}	Input Current, Low Level		0	250	μA
I _{FH}	Input Current, High Level		*6.3	15	mA
V _{CC}	Supply Voltage, Output		4.5	5.5	V
V _{EL}	Enable Voltage, Low Level	Single Channel only	0	0.8	V
V _{EH}	Enable Voltage, High Level	Single Channel only	2.0	V _{CC}	V
T _A	Operating Temperature	•	-40	+85	°C
N	Fan Out (TTL load)	Single Channel		8	TTL Loads
		Dual Channel		5	
RL	Output Pull-up		330	4K	Ω

*6.3mA is a guard banded value which allows for at least 20% CTR degradation. Initial input current threshold value is 5.0mA or less

Electrical Characteristics ($T_A = -40^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified.) Individual Component Characteristics

Symbol	Parameter	Г	Test Condi	tions	Min.	Тур.*	Max.	Unit
EMITTER								
V _F	Input Forward Voltage	I _F = 10mA					1.8	V
				$T_A = 25^{\circ}C$			1.75	
B _{VR}	Input Reverse Breakdown Voltage	I _R = 10μΑ		•	5.0			V
$\Delta VF/\Delta TA$	Input Diode Temperature Coefficient	I _F = 10mA			-1.5		mV/°C	
DETECTOR	3							
I _{CCH}	High Level Supply Current	I _F = 0mA,	V _E = 0.5 V	Single Channel			10	mA
		$V_{CC} = 5.5V$		Dual Channel			15	
I _{CCL}	Low Level Supply Current	I _F = 10mA,	V _E = 0.5 V	Single Channel			13	mA
		$V_{CC} = 5.5V$		Dual Channel			21	
I _{EL}	Low Level Enable Current	V _{CC} = 5.5V, V	_E = 0.5V	Single Channel			-1.6	mA
I _{EH}	High Level Enable Current	V _{CC} = 5.5V, V	_E = 2.0V	Single Channel			-1.6	mA
V _{EH}	High Level Enable Voltage	$V_{\rm CC} = 5.5 V, I_{\rm F}$	= 10mA	Single Channel	2.0			V
V _{EL}	Low Level Enable Voltage	$V_{CC} = 5.5 V, I_{F}$	= 10mA ⁽²⁾	Single Channel			0.8	V

Symbol	AC Characteristics	Test Conditi	ons	Device	Min.	Тур.	Max.	Unit
T _{PLH}	Propagation Delay Time	$R_L = 350\Omega, C_L = 15pF^{(3)}$	$T_A = 25^{\circ}C$	All	20		75	ns
	to Output High Level	(Fig. 20)					100	
T _{PHL}	Propagation Delay Time	$R_L = 350\Omega, C_L = 15pF^{(4)}$	$T_A = 25^{\circ}C$	All	25		75	ns
	to Output Low Level	(Fig. 20)					100	
IT _{PHL} -T _{PLH} I	Pulse Width Distortion	$R_L = 350\Omega$, $C_L = 15pF$ (Fig.	20)	All			35	ns
t _r	Output Rise Time (10-90%)	$R_L = 350\Omega, C_L = 15pF^{(5)}$ (Fi	g. 20)	Single Ch		50		ns
				Dual Ch		17		
t _f	Output Fall Time (90-10%)	$R_L = 350\Omega$, $C_L = 15 pF^{(6)}$ (Fi	g. 20)	Single Ch		12		ns
				Dual Ch		5		
t _{ELH}	Enable Propagation Delay Time to Output High Level	I _F = 7.5mA, V _{EH} = 3.5V, R _L = 350Ω, C _L = 15pF ⁽⁷⁾ (Fig. 21)		HCPL0600 HCPL0601 HCPL0611		20		ns
t _{EHL}	Enable Propagation Delay Time to Output Low Level	I _F = 7.5mA, V _{EH} = 3.5V, R _L = 350Ω, C _L = 15 pF ⁽⁸⁾ (Fig. 21)		HCPL0600 HCPL0601 HCPL0611		20		ns
ICM _H I	Common Mode Transient Immunity	$R_{L} = 350\Omega, T_{A} = 25^{\circ}C,$ $I_{F} = 0mA,$	IV _{CM} I = 10V	HCPL0600 HCPL0637				V/µs
	(at Output High Level)	V _{OH} (Min.) = 2.0 V ⁽⁹⁾ (Fig. 22, 23)	$ V_{CM} = 50V$	HCPL0601 HCPL0638	5000			
			$ V_{CM} = 1,000V$	HCPL0611	10,000			K
				HCPL0639	25,000			
ICM _H I	Common Mode Transient Immunity	$R_{L} = 350\Omega, T_{A} = 25^{\circ}C,$ $I_{F} = 7.5mA,$ (10)	$ V_{CM} = 10V$	HCPL0600 HCPL0637				V/µs
		V _{OL} (Max.) = 0.8 V ⁽¹⁰⁾ (Fig. 22, 23)	$ V_{CM} = 50V$	HCPL0601 HCPL0638	5000			
			V _{CM} = 1,000V	HCPL0611	10,000			
				HCPL0639	25,000			ĺ

Transfer	Transfer Characteristics ($T_A = -40^{\circ}C$ to +85°C unless otherwise specified.)					
Symbol	DC Characteristics	Test Conditions	Min.	Typ.*	Max.	Unit
I _{OH}	High Level Output Current	$V_{CC} = 5.5 \text{V}, V_{O} = 5.5 \text{ V}, I_{F} = 250 \mu\text{A}, \\ V_{E} = 2.0 \text{V}^{(2)}$			100	μΑ
V _{OL}	Low Level Output Voltage	$V_{CC} = 5.5$ V, $I_{F} = 5$ mA, $V_{E} = 2.0$ V, $I_{OL} = 13$ mA ⁽²⁾			0.6	V
I _{FT}	Input Threshold Current	$V_{CC} = 5.5$ V, $V_{O} = 0.6$ V, $V_{E} = 2.0$ V, $I_{OL} = 13$ mA			5	mA

Isolation Characteristics ($T_A = -40^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified.)

Symbol	Characteristics	Test Conditions	Min.	Тур.*	Max.	Unit
I _{I-O}	Input-Output Insulation Leakage Current	$\label{eq:relative} \begin{split} & \text{Relative humidity} = 45\%, \\ & \text{T}_{\text{A}} = 25^{\circ}\text{C}, t = 5\text{s}, \\ & \text{V}_{\text{I-O}} = 3000 \text{VDC}^{(11)} \end{split}$			1.0*	μA
V _{ISO}	Withstand Insulation Test Voltage	$\begin{array}{l} R_{H} < 50\%, T_{A} = 25^{\circ}C, \\ I_{I-O} \leq 2\mu A, t = 1 min.^{(11)} \end{array}$	3750			V _{RMS}
R _{I-O}	Resistance (Input to Output)	$V_{I-O} = 500V^{(11)}$		10 ¹²		Ω
C _{I-O}	Capacitance (Input to Output)	$f = 1MHz^{(11)}$		0.6		pF

*All typical values are at V_{CC} = 5 V, T_A = 25 ^{\circ}C

Notes:

- The V_{CC} supply to each optoisolator must be bypassed by a 0.1µF capacitor or larger. This can be either a ceramic
 or solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible
 to the package V_{CC} and GND pins of each device.
- 2. Enable Input No pull up resistor required as the device has an internal pull up resistor.
- t_{PLH} Propagation delay is measured from the 3.75mA level on the HIGH to LOW transition of the input current pulse to the 1.5V level on the LOW to HIGH transition of the output voltage pulse.
- t_{PHL} Propagation delay is measured from the 3.75mA level on the LOW to HIGH transition of the input current pulse to the 1.5V level on the HIGH to LOW transition of the output voltage pulse.
- 5. t_r Rise time is measured from the 90% to the 10% levels on the LOW to HIGH transition of the output pulse.
- 6. t_f Fall time is measured from the 10% to the 90% levels on the HIGH to LOW transition of the output pulse.
- t_{ELH} Enable input propagation delay is measured from the 1.5V level on the HIGH to LOW transition of the input voltage pulse to the 1.5V level on the LOW to HIGH transition of the output voltage pulse.
- 8. t_{EHL} Enable input propagation delay is measured from the 1.5V level on the LOW to HIGH transition of the input voltage pulse to the 1.5V level on the HIGH to LOW transition of the output voltage pulse.
- CM_H The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high state (i.e., V_{OUT} > 2.0V). Measured in volts per microsecond (V/µs).
- CM_L The maximum tolerable rate of fall of the common mode voltage to ensure the output will remain in the low output state (i.e., V_{OUT} < 0.8V). Measured in volts per microsecond (V/μs).
- 11. Device considered a two-terminal device: Pins 1, 2, 3 and 4 shorted together, and Pins 5, 6, 7 and 8 shorted together.

Typical Performance Curves (HCPL0600, HCPL0601 and HCPL0611 only)

Fig. 3 Input Threshold Current vs. Temperature

Fig. 4 High Level Output Current vs. Temperature

7

8

9

HCPL06XX — High Speed-10 MBit/s Logic Gate Optocouplers

HCPL06XX — High Speed-10 MBit/s Logic Gate Optocouplers

Ordering Information

Option	Order Entry Identifier	Description
No Suffix	HCPL0600	Shipped in tubes (50 units per tube)
V*	HCPL0600V	IEC60747-5-2 approval
R2	HCPL0600R2	Tape and Reel (2500 units per reel)
R2V*	HCPL0600R2V	IEC60747-5-2 approval, Tape and Reel (2500 units per reel)

*Available for HCPL0600, HCPL0601, HCPL0611 only.

Marking Information

Definiti	ons			
1	Fairchild logo			
2	Device number			
3	VDE mark indicates IEC60747-5-2 approval (Note: Only appears on parts ordered with VDE option – See order entry table)			
4	One digit year code, e.g., '3'			
5	Two digit work week ranging from '01' to '53'			
6	Assembly package code			

Profile Freature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (t _S) from (Tsmin to Tsmax)	60–120 seconds
Ramp-up Rate (t _L to t _P)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60–150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max.
Time 25°C to Peak Temperature	8 minutes max.

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK[®] EfficentMax™ EZSWITCH™*

EZ ₽®

Fairchild[®] Fairchild Semiconductor[®] FACT Quiet Series[™] FACT[®] FastvCore[™] FETBench[™] FlashWriter[®]* FPS™

FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck[™] MICROCOUPLER™ MicroFFT™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ **OPTOLOGIC**[®] **OPTOPLANAR[®]** PDP SPM™

F-PFS™

PowerTrench[®] PowerXS™ Programmable Active Droop™ QFET QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ Sync-Lock™ SYSTEM ®

 The wer

 franchise

 TinyBoost™

 TinyBuck™

 TinyDogic®

 TinyPower™

 TinyPWM™

 TinyWire™

 TrinyEut Detect™

 TRUCURRENT™*

 µSerDes™

The Power Franchise®

UniFET™ VCX™ VisualMax™ XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

Power-SPM™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild for from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition	of Terms
------------	----------

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.