-般積層セラミックコンデンサ (温度補償用·Class 1) STANDARD MULTILAYER **CERAMIC CAPACITORS** (CLASS1: TEMPERATURE COMPENSATING DIELECTRIC TYPE)

OPERATING TEMP.

- *042TYPE, 063TYPE, 105TYPEは除く
- *Except for 042TYPE, 063TYPE, 105TYPE

特長 FEATURES

- ・実装密度の向上が図れます
- ・モノリシックの構造のため、信頼性が高い
- ・同一形状、静電容量範囲が広い

- · Improve Higher Mounting Densities.
- · Multilayer block structure provides higher reliability
- · A wide range of capacitance values available in standard case sizes.

用途 APPLICATIONS

- •一般電子機器用
- ・通信機器用(携帯電話、PHS、コードレス電話 etc.)

- · General electronic equipment
- · Communication equipment (portable telephones, PHS, other wireless applications, etc.)

形名表記法 ORDERING CODE

定格電圧 (VDC)	
E	16
Т	25
U	50

シリーズ名	
M	積層コンデンサ

端子電	極
K	メッキ品

形状寸法(EIA)L×W[mm]		
042(01005)	0.4×0.2	
063(0201)	0.6×0.3	
105(0402)	1.0×0.5	
107(0603)	1.6×0.8	

6

温度特性 [ppm/C]			
C	0:CG\CH\CJ\CK		
P□	-150:PH\PJ\PK		
R□	-220: RH\RJ\RK		
S□	-330:SH\SJ\SK	G	± 30
T□	-470:TH,TJ,TK	Н	± 60
U	-750∶UJ\UK	J	±120
SL	+350~-1000	K	±250
= 許容差			

公称静電容量 [pF]			
例			
0R5	0.5		
010	1		
100	10		

※R= 小数点

	7	
	7	
		•
8	_	•

容量許	容差			
С		±	0.25	pF
D		±	0.5	pF
F		\pm	1	pF
J		\pm	5	%
K		+	10	%

製品厚	『み(mm)
С	0.2
Р	0.3
V	0.5
W	0.5
Z	0.8

9

個別仕	:様
_	標準

ï	3天	
	F	テーピング(2mmピッチ・178¢)
	T	テーピング(4mmピッチ・178¢)
		•

1

当社管理記号	
Δ	標準品
	△=スペース

Rated voltage(VDC)		
Е	16	
Т	25	
U	50	

Series name M Multilayer ceramic capacitor

End termination		
K	Plated	

4

Dimensions (case size	$ze)(EIA)L\times W(mm)$
042(01005)	0.4×0.2
063(0201)	0.6×0.3
105(0402)	1.0×0.5
107(0603)	1.6×0.8

Temperat	ure characteristics(p	pm/	(C)
C	0:CG,CH,CJ (C0G,C0H,C0J,(
P□	-150: PH\PJ\PK (P2H\P2J\P2K)		
R□	-220 : RH\RJ\RK (R2H\R2J\R2K)		
S□	-330 : SH,SJ,SK (S2H,S2J,S2K)	2	± 30
T	-470: TH,TJ,TK (T2H,T2J,T2K)	Н	± 60
U	-750 : UJ\UK (U2J\U2K)	2J	±120
SL	+350~-1000	K	±250
□=То	erance		

6

Nominal Capacitance(pF)	
example	
0R5	0.5
010	1
100	10
	*D. destandent

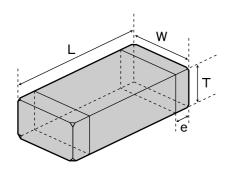
*R=decimal point

7	
Capac	itance Tolerance
	+ 0.25 nF

С	±	0.25	pF
D	±	0.5	pF
F	±	1	pF
J	±	5	%
K	±	10	%

	± 10 /₀
8	
Thickn	ess[mm]
С	0.2
Р	0.3
V	0.5
W	0.5

9


Specia	Special code	
_	Standard Products	
10		

Packaging		
F	Tape(2mm pitch • 178¢)	
Т	Tape(4mm pitch • 178¢)	
	•	

Internal code		l code
	Δ	Standard Products

△=Blank space

Type(EIA)	L	W	T		е
☐MK042	0.4±0.02	0.2 ± 0.02	0.2±0.02)	0.1±0.03
(01005)	(0.016±0.001)	(0.008 ± 0.001)	(0.008±0.001)	С	(0.004 ± 0.001)
☐MK063	0.6±0.03	0.3 ± 0.03	0.3±0.03	Р	0.15±0.05
(0201)	(0.024 ± 0.001)	(0.012 ± 0.001)	(0.012±0.001)	Р	(0.006 ± 0.002)
□MK105	1.0±0.05	0.5±0.05	0.5±0.05	W. V	0.25±0.10
(0402)	(0.039 ± 0.002)	(0.020 ± 0.002)	(0.020±0.002)	vv, v	(0.010 ± 0.004)
□MK107	1.6±0.10	0.8±0.10	0.8±0.10	7	0.35±0.25
(0603)	(0.063 ± 0.004)	(0.031 ± 0.004)	(0.031±0.004)		(0.014 ± 0.010)

温度特性 Temperature Characteristics

温度特性

T K(T2K)

T J(T2J)

T H(T2H)

U K(U2K)

U J(U2J)

SL

Unit: mm(inch)

使用温度範囲

概略バリエーション AVAILABLE CAPACITANCE RANGE

т	уре	042	06	63			10)5				10	07	
		042				_			_					
Tem	p.char.		C	U	R□	S□	Τ□	U	C	SL	C		U	SL
												R□ S□		
١	ΝV	16V	25	5V		16V			50V			50)V	
[pF]	[pF 3digits]													
0.5						_	_		_			_		
1	0R5 010													
1.5	1R5													
2	020													
3	030													
4	040													
5	050			Р										
6	060	С				W	W	W	W					
7	070													
8	080													
9	090				w									
10	100		Р		VV									
12	120													
15	150											Z		
18	180											_		
22	220										l -		-	z
27	270										Z		Z	_
33	330													
39	390													
47	470													
56	560													
68	680													
82	820							V	V					
100 120	101													
150	121													
180	151 181													
220	221									V				
270	271													
330	331													
390	391													
470	471													
560	561													
680	681													
820	821													
1000	102													

注:グラフの記号は製品の厚み記号です。

Note: Letter code in shaded areas are thickness codes.

Temperature	(ppm/°C) **1	Operating Temp. range
char.(EIA)	Temperature coefficient range	
C K(C0K)	0±250	
C J(C0J)	0±120	
C H(C0H)	0±60	
C G(C0G)	0±30	
P K(P2K)	-150±250	
P J(P2J)	-150±120	
P H(P2H)	-150±60	
R K(R2K)	-220±250	
R J(R2J)	-220±120	
R H(R2H)	-220±60	-55~+125°C
S K(S2K)	-330±250	
S J(S2J)	-330±120	
S H(S2H)	-330±60	

温度係数範囲

※1:20℃における静電容量を基準。 Based on the capacitance at 20°C

静電容量許容差 Capacitance Tolerance Symbol

-470±250

-470±120

-470±60

-750±250

-750±120 -1000~+350

記号 Symbol	許容差 Tolerance	区分 Item
С	±0.25pF	~5pF
D	±0.5 pF	~10pF
F	±1pF	6~10 pF
J	±5 %	11pF~
K	±10 %	11pF~

Q

Q*2 Symbol	区分 Item
≥400+20 · C*1	~27pF
≧1000	30pF∼

※1:C=公称静電容量 Nominal capacitance(pF)

※2:測定周波数 Measurement Frequency= 1±0.1MHz(C≦1000pF)

 $1\pm0.1kHz~(C>1000pF)$

測定電圧 Measurement voltage = $0.5\sim5Vrms(C \le 1000pF)$

 $1\pm0.2Vrms(C>1000pF)$

セレクションガイド Selection Guide

アイテム一覧 Part Numbers

アイテム一覧 PART NUMBERS

042TYPE -

Class 1

定格電圧			EHS										特											静電容量 許 容 差	厚み
Rated	形名	(1	Environmental					le	mpe	era	ure	ch	arac	cter	ıstı	cs (I	ΕIΑ)		_		容	量	Capacitance	Thicknees
Voltage	Ordering code		Hazardous	CK	CJ	СН	CG	PK	PJ	PH	RK (R2K) (RJF	RHS	sk s	SJS	ΗТ	кТ	J TI	HUH	ς U.	اوا	Capacit	ance	tolerance	[mm]
(DC)			Substances)	COK)	(COJ)	(COH)	(C0G)	(P2K)	(P2J)	(P2H)	(R2K) (R2J) (F	R2H) (S	32K) (S	2J) (S	2H) (T2	!K) (T2	J) (T2	H) (U2	K) (U2.		[pF]	[%]	(inch)
	EMK042 △ 0R5□C		RoHS	•																		0.5	5		
	EMK042 △010□C		RoHS																			1			
	EMK042 △1R5□C		RoHS																			1.5	5	±0.25pF	
	EMK042 △020□C		RoHS																			2		±0.25pF	
	EMK042 △030□C		RoHS																			3		_0.0p.	
	EMK042 △040□C		RoHS																			4			
16V	EMK042 △ 050□C		RoHS														\perp					5			0.2±0.02
10 V	EMK042 △060□C		RoHS																			6			(0.008±0.001)
	EMK042 △ 070□C		RoHS																			7		+0.5nF	
	EMK042 △ 080□C		RoHS			_																8		±0.5pF ±1pF	
	EMK042 △090□C		RoHS			_							_	_		_						9		p.	
	EMK042 △100□C		RoHS			_																10)		
	EMK042 △120□C		RoHS																			12	<u>'</u>	±5%	
	EMK042 △150□C		RoHS																			15	,	±10%	

注:形名の△には温度特性、□には静電容量許容差記号が入ります。

063TYPE -

Class 1

Class I																							
定格電圧		EHS								温	度特	性								1	公称静電	静電容量	厚み
Rated	形 名	(Environmental				Т	emp	era	ture	e cl	hara	cter	risti	cs	(EIA	١)				7	量	許容差	Thicknees
Voltage	Ordering code	Hazardous	CK	CI	CHC	3 PI	K P.	РН	RK	R.I	ВH	SK	3.1.5	SH-	rk 1		н	ıĸı	Ша	. 0	apacitance	tolerance	[mm]
(DC)	Ŭ	Substances)	(COK)	(COJ)	CH C(G) (P2	K) (P2J	(P2H	(R2K)	(R2J)	(R2H)	(S2K) (S	S2J) (S	2H) ([2K] (1	2J) (1	2H) (I	J2K) (l	J2J) S	L	[pF]	[%]	(inch)
	TMK063 △0R5□P	RoHS	•														-	•			0.5		
	TMK063 △010□P	RoHS															- 1				1		
	TMK063 △1R5□P	RoHS																			1.5	±0.05-5	
	TMK063 △020□P	RoHS															- 1				2	±0.25pF ±0.5pF	
	TMK063 △030□P	RoHS																			3	_0.5pi	
	TMK063 △040□P	RoHS																			4		
	TMK063 △050□P	RoHS																			5		
	TMK063 △060□P	RoHS																			6		
	TMK063 △070□P	RoHS																			7	⊥ 0.5-5	
	TMK063 △080□P	RoHS												П			Т			Т	8	±0.5pF ±1pF	
	TMK063 △090□P	RoHS																			9	- ipi	
25V	TMK063 △100□P	RoHS																- (10		0.3±0.03
25 V	TMK063 △120□P	RoHS																- (12		(0.012±0.001)
	TMK063 △150□P	RoHS						П						П						Т	15		
	TMK063 CH180□P	RoHS																			18		
	TMK063 CH220□P	RoHS																			22		
	TMK063 CH270□P	RoHS												П			Т	T		Т	27		
	TMK063 CH330□P	RoHS																			33	±5%	
	TMK063 CH390□P	RoHS																			39	±10%	
	TMK063 CH470□P	RoHS																			47		
	TMK063 CH560□P	RoHS															T				56		
	TMK063 CH680□P	RoHS																			68		
	TMK063 CH820□P	RoHS			•											T	T				82		
	TMK063 CH101□P	RoHS																			100		

注:形名の△には温度特性、□には静電容量許容差記号が入ります。

 $[\]triangle$ Please specify the temperature characteristics code and \square the capacitance tolerance code.

 $[\]triangle$ Please specify the temperature characteristics code and \square the capacitance tolerance code.

105TYPE -

Class 1																						
定格電圧		EHS							ž	且度	特性								公	称静電	静電容量	= -
Rated	形名	(Environn				Т	emp	era	hire	cha	ract	eris	tics	(F	IA)				容	, =	許容差	厚み
	Ordering code	Hazard	-	\top	1			_				_	_	`		Т	Т		⊣-			Thicknees
Voltage	Ordening code		ins C	KIC	JICH	CG P	KPJ	PH	RK	RJR	HISK		SH	TK	TJ	TH	IUK	IJ SI	L	apacitance	tolerance	[mm]
(DC)		Substan	ces) (C	UK) (C	UJ) (CUH)	/(CUG)/(Pa	2K) (P2J)	(P2H)	(HZK) (F	(2J) (H2	H) (528	J (52J)	(S2H)	(12K)	(12J)	(121) (U2K) (J2J)		[pF]	[%]	(inch)
	UMK105 △ 0R5□W	RoH																		0.5		
	UMK105 △ 010 □ W	RoH																		1		
	UMK105 △1R5□W	RoH																		1.5	±0.25pF	
	UMK105 △ 020□W	RoH										_				╙			_	2	±0.5pF	
	UMK105 △ 030 □ W	RoH																		3		
	UMK105 △ 040 □ W	RoH	_	4						\perp		_				╙			\perp	4		
	UMK105 △ 050 □ W	RoH		4								_				╙	-		\perp	5		
	UMK105 △ 060 □ W	RoH		4	_							_				_			_	6		
	UMK105 △ 070□W	RoH		4						_		_				╙	1		+	7	±0.5pF	
	UMK105 △ 080 □ W	RoH		_					_	_		_				╙	-		_	8	±1pF	
	UMK105 △ 090 □ W	RoH		_								_				╙	1		_	9		
	UMK105 △100□W	RoH		_	_							_				╙			_	10		
	UMK105 △120□W	RoH		4	_					_		_				┡	1		\perp	12		
	UMK105 △150□W	RoH		_								_				╙	-		_	15		
	UMK105 △180□W	RoH		_								_				╙			_	18		
	UMK105 △ 220 □ V	RoH		4	_					_		_				╙	1		+	22		
	UMK105 △ 270 □ V	RoH		\perp						_		_				┡	-		\perp	27		
50V	UMK105 △ 330 □ V	RoH		+						_		-				┡			+	33		0.5±0.05
	UMK105 △390□V	RoH		_								-				_			-	39		(0.020±0.002)
	UMK105 △ 470 □ V	RoH	_	_	_				_			-				┞	+		-	47		
	UMK105 △ 560 □ V	RoH		+	_	•			_	_	-	+		_		⊢			+	56		
	UMK105 △ 680 □ V	RoH		4						_		-				_			+	68		
	UMK105 △ 820 □ V	RoH		_	•							-				_	_		_	82		
	UMK105 △101□V	RoH		+	•				_	_	-	-		_		┡	+		+		±5%	
	UMK105 △ 121 □ V	RoH		+		•			_	_		_				┡			+		±10%	
	UMK105 △151□V	RoH		_								-				_			-	150		
	UMK105 △ 181 □ V	RoH		_	_				_			-				┞			-	180		
	UMK105 △ 221 □ V	RoH		+	_				_	\perp	+	_				_	-		\perp	220		
	UMK105 △ 271 □ V	RoH		4						_		-				_	_		+	270		
	UMK105 △ 331 □ V	RoH		4						_		1				_			\perp	330		
	UMK105 SL121□V	RoH		\perp						_		_				┡				120		
	UMK105 SL151□V	RoH		\perp						_	_	_				_			<u> </u>	150		
	UMK105 SL181□V	RoH		4						_		1					\sqcup			180		
	UMK105 SL221□V	RoH		4						\perp	\perp	_			_	_	\perp			220		
	UMK105 SL271□V	RoH		\perp					_	_	1	_			_	_	\perp			270		
	UMK105 SL331□V	RoH	3																	330		

注:形名の△には温度特性、□には静電容量許容差記号が入ります。

105TYPE -

Class 1																									
定格電圧			EHS									温月	度特	性									公称静電	静電容量	同 7,
Rated	形名		(Environmental					Ter	npe	erat	ure	ch	nara	cte	rist	ics	(EI	A)					容 量	許容差	厚み Thislusses
Voltage	Ordering code		`	CV		211	201	חע	ارم	ווח	שם	DІ	пП	CIZ	<u> </u>	CLI	Ìν	ΤI	TII	111/			Capacitance		Thicknees [mm]
(DC)	ordening code		Substances)	CK (COK) ((COJ)	COH)((00G)(P2K) (P2J) (P2H)	(R2K)	(R2J)	(R2H)	S2K)	(S2J)	S2H)	(T2K)	(T2J)	(T2H)	(U2K)	(U2J)	SL	[pF]	tolerance [%]	(inch)
(20)	EMK105 △ 0R5BW		RoHS																				0.5	[/0]	(- /
	EMK105 △010BW		RoHS	_	\neg	1	\dashv	\neg	\dashv		\exists			ŏ	\neg		ă						1	1	
	EMK105 △1R2BW		RoHS	\neg	T	T	T	T	\neg		\exists			•			Ŏ						1.2	±0.1pF	
	EMK105 △1R5BW		RoHS											•									1.5	1 .	
	EMK105 △1R8BW		RoHS											•			•						1.8		
	EMK105 △2R2JW		RoHS											•			•						2.2		
	EMK105 △2R7JW		RoHS											•									2.7		
	EMK105 △3R3JW		RoHS		_	_	_	_	_														3.3		
16V	EMK105 △3R9JW		RoHS		_		_	_	_		_												3.9		0.5±0.05
101	EMK105 △4R7JW		RoHS																				4.7		(0.020±0.002)
	EMK105 △5R6JW		RoHS																				5.6		
	EMK105 △6R8JW		RoHS					_	_		_				_								6.8	_±5%	
	EMK105 △8R2JW		RoHS						_														8.2		
	EMK105 △100JW		RoHS																				10		
	EMK105 △120JW		RoHS						_														12		
	EMK105 △150JW		RoHS						_														15		
	EMK105 △180JW		RoHS																				18		
	EMK105 △200JW		RoHS																				20		

 $^{{\}scriptscriptstyle \triangle}$ Please specify the temperature characteristics code and \square the capacitance tolerance code.

注:形名の△には温度特性、□には静電容量許容差記号が入ります。 △ Please specify the temperature characteristics code and □ the capacitance tolerance code.

アイテム一覧 PART NUMBERS

107TYPE -

Class 1

Class 1																					***	
定格電圧		EHS								温	度特	性								公称静電	静電容量	厚み
Rated	形名	(Environmental					Te	mpe	eratui	e cl	hara	acte	erist	tics	(E	IA)				容 量	許容差	
Voltage	Ordering code				<u> </u>			اندا	D D.			014		<u> </u>	<u>`</u>	Ĺ.				Capacitance	Capacitance	
J	Ordering code	Substances)	CK Innk		(CH	(CG	PK (DOK)	PJ	PH R1 (P2H) (R21		(DON)	SK (COK)	SJ	SH	TOK)	I J (T2 I)	(HOT)	(LIOK)	(III)		tolerance	[mm]
(DC)				(000)	(0011)	(000)	(1 21()	(1 20)	(1 21 1) (1 121	1/ (1120)	(11211)	(OZIV)	(020)	(0211)	(121)	(120)	(1211)	(0211)	(020)	L1 2	[%]	(inch)
	UMK107 △ 0R5□Z	RoHS	•			_			_	_										0.5		
	UMK107 △ 010□Z	RoHS	•						+											1		
	UMK107 △1R5□Z	RoHS	•																	1.5	±0.25pF	
	UMK107 △ 020□Z	RoHS	•	_					+	-						_				2	±0.5pF	
	UMK107 △ 030□Z	RoHS			_	_			+	-						_				3		
	UMK107 △ 040□Z	RoHS			•															4		
	UMK107 △ 050□Z	RoHS		_	•	_			_	\vdash				_		_				5		-
	UMK107 △ 060□Z	RoHS				_			_	\vdash										6		
	UMK107 △ 070□Z	RoHS				_			_	-						_				7	±0.5pF	
	UMK107 △ 080□Z	RoHS							_											8	±1pF	
	UMK107 △ 090□Z	RoHS		-					+	-						_				9		
	UMK107 △ 100□Z	RoHS		_		•			+	-						_				10		-
	UMK107 △ 120□Z	RoHS							+	-										12		
	UMK107 △ 150□Z	RoHS		-	•	•			_	+										15		
	UMK107 △ 180□Z	RoHS				_			+	+				_						18		
	UMK107 △ 220□Z	RoHS			_	•			+	-										22		
	UMK107 △ 270□Z	RoHS				•			+	+				_		_				27		001040
50V	UMK107 △330□Z UMK107 △390□Z	RoHS		-					_	-						_				33 39		0.8±0.10 (0.031±0.004)
	UMK107 △ 390 □ Z	RoHS		-	H	•			_	-										47		(0.031±0.004)
	UMK107 △ 560□Z	RoHS			_															56		
	UMK107 △ 680 □ Z	RoHS RoHS		\vdash			\vdash		+	+				_		\vdash				68		
	UMK107 △820□Z	RoHS			×	•			+	+				_						82		
	UMK107 △ 101□Z	RoHS			X				-											100	±5%	
	UMK107 △ 121□Z	RoHS			X	•			_											120	±10%	
	UMK107 △ 151□Z	RoHS			×				+	+										150	_ 10 /0	
	UMK107 △ 181□Z	RoHS			×	•			+											180		
	UMK107 △ 221□Z	RoHS			H															220		
	UMK107 △ 271□Z	RoHS			×	•	\vdash		+	+						\vdash				270		
	UMK107 △331□Z	RoHS			×				+	+										330		
	UMK107 △391□Z	RoHS		\vdash		•			+	+	\vdash									390		
	UMK107 △ 391□Z	RoHS		\vdash		_		\vdash	+	+	\vdash					\vdash				470		
	UMK107 △ 561□Z	RoHS		\vdash	•	•		\vdash	+	+	\vdash				_		\vdash			560		
	UMK107 △ 681 □ Z	RoHS	-	\vdash	7	-		\vdash	+	+	\vdash					\vdash				680		
	UMK107 △821□Z	RoHS		\vdash	•	•			_	+	\vdash									820		
	UMK107 △ 102□Z	RoHS		\vdash			\vdash	H	_	+	\vdash									1000		
	UNIKTU/ ATUZLA	HUHS															<u> </u>			1000		

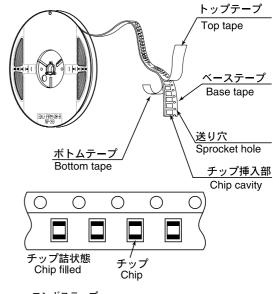
注:形名の△には温度特性、□には静電容量許容差記号が入ります。 △ Please specify the temperature characteristics code and □ the capacitance tolerance code.

梱包 PACKAGING

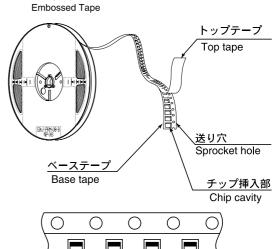
①最小受注单位数 Minimum Quantity

■袋づめ梱包 Bulk packaging

形式(EIA)	製品厚み Thickness		標準数量 Standard
Туре	mm(inch)	code	quantity [pcs]
☐MK105(0402)	0.5(0.020)	V, W	
□VK105(0402)	0.5(0.020)	W	
□MK107(0603)	0.0(0.001)	Α	
□IVIK 107(0603)	0.8(0.031)	Z	
□2K110(0504)	0.8(0.031)	Α	
□2K110(0504)	0.6(0.024)	В	
□MK212(0805)	0.85(0.033)	D	
□IVIK212(0605)	1.25(0.049)	G	
□4K212(0805)	0.85(0.033)	D	
□2K212(0805)	0.85(0.033)	D	1000
	0.85(0.033)	D	1000
□MK316(1206)	1.15(0.045)	F	
□IVIK310(1200)	1.25(0.049)	G	
	1.6(0.063)	L	
	0.85(0.033)	D	
	1.15(0.045)	F	
□MK305(1010)	1.5(0.059)	Н	
□MK325(1210)	1.9(0.075)	N	
	2.0max(0.079)	Υ	
	2.5(0.098)	М	

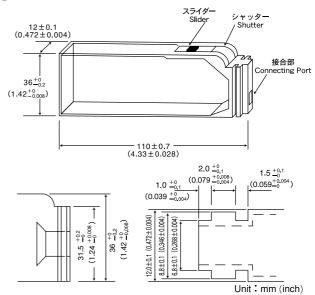

■テーピング梱包 Taped packaging

形式(EIA) Type	製品厚み Thickness		Standard	数量 d quantity cs]
	mm(inch)	code	紙テープ paper	エンボステープ Embossed tape
☐MK042(01005)	0.2(0.008)	С	15000	_
☐MK063(0201)	0.3(0.012)	Р	15000	_
	0.3(0.012)	Р	10000	
□2K096(0302)	0.45(0.018)	K	10000	
☐MK105(0402)	0.5(0.000)	V, W	10000	
□VK105(0402)	0.5(0.020)	W	10000	_
	0.45(0.018)	K	4000	_
☐MK107(0603)	0.0(0.004)	Α	4000	
	0.8(0.031)	Z	4000	_
□0K110/0E04)	0.8(0.031)	Α	4000	_
□2K110(0504)	0.6(0.024)	В	4000	_
	0.45(0.018)	K	4000	_
☐MK212(0805)	0.85(0.033)	D	4000	_
	1.25(0.049)	G	_	3000
□4K212(0805)	0.85(0.033)	D	4000	_
□2K212(0805)	0.85(0.033)	D	4000	_
	0.85(0.033)	D	4000	_
	1.15(0.045)	F		0000
□MK316(1206)	1.25(0.049)	G		3000
	1.6(0.063)	L	_	2000
	0.85(0.033)	D		
	1.15(0.045)	F		0000
□MK005(1010)	1.5(0.059)	Н		2000
□MK325(1210)	1.9(0.075)	N	1	
	2.0max(0.079)	Υ	_	2000
	2.5(0.098)	М	_	500
	1.9(0.075)	Υ	_	1000
□MK432(1812)	2.5(0.098)	М		E00
			_	500


②テーピング材質 Taping material

紙テープ

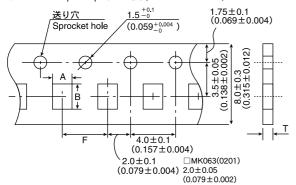
Card board carrier tape


エンボステープ Embossed Tand

③バルクカセット Bulk Cassette

チップ詰状態

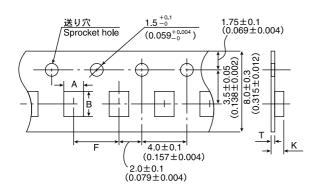
Chip filled



チップ

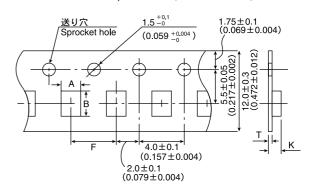
Chip

105, 107, 212形状で個別対応致しますのでお問い合せ下さい。 Please contact any of our offices for accepting your requirement according to dimensions 0402, 0603, 0805.(inch)


③テーピング寸法 Taping dimensions 紙テープ Paper Tape (8mm幅) (0.315inches wide)

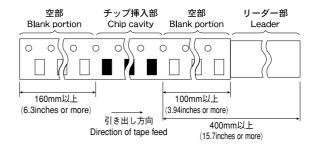
Туре	チッフ	プ挿入部	挿入ピッチ	テープ厚み
(EIA)	Chip	Cavity	Insertion Pitch	Tape Thickness
	Α	В	F	Т
□MK042(01005)	0.25±0.04	0.45±0.04	2.0±0.04	0.45max.
_IVINO42(01003)	(0.010±0.002)	(0.018±0.002)	(0.079±0.002)	(0.018max.)
□MK063(0201)	0.37±0.06	0.67±0.06	2.0±0.05	0.45max.
_IVIN003(0201)	(0.016±0.002)	(0.027±0.002)	(0.079±0.002)	(0.018max.)
□2K00€(0303)	0.72±0.1	1.02±0.1	2.0±0.05	0.6max.(0.024max)
□2K096(0302)	(0.028±0.004)	(0.040±0.004)	(0.079±0.002)	0.45max.(0.018max)
☐MK105(0402)	0.65±0.1	1.15±0.1	2.0±0.05	0.8max.
\square VK105(0402)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max.)
□MI(4.07/0000)	1.0±0.2	1.8±0.2	4.0±0.1	1.1max.
□MK107(0603)	(0.039±0.008)	(0.071±0.008)	(0.157±0.004)	(0.043max.)
□2K110(0504)	1.15±0.2	1.55±0.2	4.0±0.1	1.0max.
	(0.045±0.008)	(0.061±0.008)	(0.157±0.004)	(0.039max.)
□MK212(0805)				
	1.65±0.2	2.4±0.2		
□4K212(0805)	(0.065±0.008)	(0.094±0.008)	4.0±0.1	1.1max.
□2K212(0805)			(0.157±0.004)	(0.043max.)
	2.0±0.2	3.6±0.2		
□MK316(1206)	(0.079±0.008)	(0.142±0.008)		

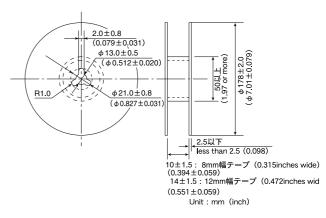
Unit: mm(inch)


エンボステープ Embossed tape (8mm幅)(0.315 inches wide)

Туре	チッフ	[°] 挿入部	挿入ピッチ	テーフ	プ厚み
(EIA)	Chip	cavity	Insertion Pitch	Tape Th	nickness
	A B		F	K	Т
□MIX040/000E)	1.65±0.2	2.4±0.2			
□MK212(0805)	(0.065±0.008)	(0.094±0.008)			
□MK016(1006)	2.0±0.2	3.6±0.2	4.0±0.1	2.5max.	0.6max
□MK316(1206)	(0.079±0.008)	(0.142±0.008)	(0.157±0.004)	(0.098max.)	(0.024max.)
□MIX00E(4040)	2.8±0.2	3.6±0.2		3.4max.	
□MK325(1210)	(0.110±0.008)	(0.142±0.008)		(0.134max.)	

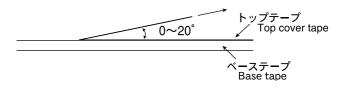
Unit: mm(inch)


エンボステープ Embossed tape (12mm幅) (0.472inches wide)


Туре	チップ挿入部		挿入ピッチ	テーフ	プ厚み
(EIA)	Chip cavity		Insertion Pitch	Tape Th	nickness
	A B		F	K	Т
□MK432(1812)	3.7±0.2 (0.146±0.008)	4.9±0.2 (0.193±0.008)	8.0±0.1 (0.315±0.004)	4.0max. (0.157max.)	0.6max. (0.024max.)

Unit: mm(inch)

④リーダー部/空部 Leader and Blank portion



⑤リール寸法 Reel size

⑥トップテープ強度 Top Tape Strength

トップテープのはがし力は下図矢印方向にて0.1~0.7Nとなります。 The top tape requires a peel-off force of 0.1~0.7N in the direction of the arrow as illustrated below.

Multilayer Ceramic Capacitor Chips

			Specifi	ed Value			
It	tem	Temperature Com	pensating (Class 1)	High Permiti	vity (Class 2)	Test Methods and Remarks	
		Standard	High Frequency Type	Standard Note1	High Value		
	Temperature	-55 to +125℃		B: −55 to +125°C	-25 to +85°C	High Capacitance Type BJ(X7R): −55~+125°C, BJ(X5R): −55~+88	
Range	Temperature	-55 to +125℃		F: -25 to +85°C B: -55 to +125°C	-25 to +85℃	E(Y5U): -30~+85°c, F(Y5V): -30~+85°c	
Range	remperature	-33 to 1123C		F: −25 to +85°C	-23 10 +630	High Capacitance Type BJ(X7R): $-55 \sim +125$ °C, BJ(X5R): $-55 \sim +88$ °C, F(Y5V): $-30 \sim +85$ °C.	
3.Rated Volta	ge	50VDC,25VDC, 16VDC	16VDC 50VDC	50VDC,25VDC	50VDC,35VDC,25VDC 16VDC,10VDC,6.3VDC 4DVC		
4.Withstandin	g Voltage	No breakdown or dam-	No abnormality	No breakdown or dama		Applied voltage: Rated voltage×3 (Class 1)	
Between ter	rminals	age				Rated voltage×2.5 (Class 2) Duration: 1 to 5 sec. Charge/discharge current: 50mA max. (Class 1,2)	
5.Insulation R	lesistance	10000 MΩ min.		500 M Ω μ F. or 10000 smaller.	$M\Omega .,$ whichever is the	Applied voltage: Rated voltage Duration: 60±5 sec. Charge/discharge current: 50mA max.	
6.Capacitance	e (Tolerance)	0.5 to 5 pF: ±0.25 pF 1 to 10pF: ±0.5 pF 5 to 10 pF: ±1 pF 11 pF or over: ± 5% ±10% 105TYPERA, \$\(\), T\(\), U\(\) only 0.5\(\)2pF: ±0.1pF 2.2\(\)20pF: ±5%	0.5 to 2 pF : ±0.1 pF 2.2 to 5.1 pF : ±5%	B: ±10%, ±20% F: +80 %	B: ±10%、±20% F: -20%/+80%	$\begin{array}{c} \text{Measuring frequency:} \\ \text{Class1: } 1\text{MHz}\pm10\%(\text{C} \leq 1000\text{pF}) \\ \text{1 k Hz}\pm10\%(\text{C} > 1000\text{pF}) \\ \text{Class2: } 1\text{ k Hz}\pm10\%(\text{C} \leq 10_{\mu}\text{F}) \\ \text{120Hz}\pm10\text{Hz}(\text{C} > 10_{\mu}\text{F}) \\ \text{Measuring voltage:} \\ \text{Note 4} \qquad \text{Class1: } 0.5\sim5\text{Vrms}(\text{C} \leq 1000\text{pF}) \\ \text{1}\pm0.2\text{Vrms}(\text{C} > 1000\text{pF}) \\ \text{Class2: } 1\pm0.2\text{Vrms}(\text{C} \leq 10_{\mu}\text{F}) \\ \text{0.5}\pm0.1\text{Vrms}(\text{C} > 10_{\mu}\text{F}) \\ \text{Bias application: None} \\ \end{array}$	
7.Q or Tangen (tan δ)	t of Loss Angle	Under 30 pF : Q≥400 + 20C 30 pF or over : Q≥1000 C= Nominal capacitance	Refer to detailed specification	B: 2.5% max.(50V, 25V) F: 5.0% max. (50V, 25V)	B: 2.5% max. F: 7% max. Note 4	Multilayer: Measuring frequency: $ \begin{array}{c} \text{Class1: 1MHz} \pm 10\% (\text{C} \leq 1000 \text{pF}) \\ \text{1 k Hz} \pm 10\% (\text{C} \geq 1000 \text{pF}) \\ \text{1 k Hz} \pm 10\% (\text{C} \leq 10 \mu \text{F}) \\ \text{1 class2: 1 k Hz} \pm 10\% (\text{C} \leq 10 \mu \text{F}) \\ \text{1 20Hz} \pm 10Hz (\text{C} \geq 10 \mu \text{F}) \\ \text{Measuring voltage:} \\ \text{Note 4} & \text{Class1: 0.5} \sim 5 \text{Vrms} (\text{C} \leq 1000 \text{pF}) \\ \text{1 \pm 0.2} \text{Vrms} (\text{C} \geq 1000 \text{pF}) \\ \text{1 \pm 0.2} \text{Vrms} (\text{C} \leq 100 \mu \text{F}) \\ \text{0.5} \pm 0.1 \text{Vrms} (\text{C} \geq 10 \mu \text{F}) \\ \text{0.5} \pm 0.1 \text{Vrms} (\text{C} \geq 10 \mu \text{F}) \\ \text{Measuring frequency- Multilayer:} \\ \text{Measuring frequency: 1GHz} \\ \text{Measuring equipment: HP4291A} \\ \text{Measuring ijg: HP16192A} \\ \end{array} $	
8.Temperature Characteristic of Capacitance	(Without voltage application)	CK: 0±250 CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250 PJ: -150±120 PH: -150±60 RK: -220±250 RJ: -220±120 RH: -220±60 SK: -330±250 SJ: -330±120 SH: -330±60 TK: -470±250 TJ: -470±250 TJ: -470±250 UK: -750±250 UJ: -750±120 US: -750±120	CH: 0±60 RH: -220±60 (ppm/C)	B:±10%(-25~85°) F: +30 %(-25~85°) B(X7R):±15% F(Y5V): +82 %	B:±10% (-25~+85°C) F:+30%/-80% (-25~+85°C) B(X7R, X5R): ±15% F(Y5V): +22%/-82%	According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation. (Ces - C20) C20 × ΔT High permitivity: Change of maximum capacitance deviation in step 1 to 100 t	
9.Resistance Substrate	to Flexure of	SL: +350 to -1000 (ppm/°C) Appearance: No abnormality Capacitance change: Within ±5% or ±0.5 pF, whichever is larger.	Appearance: No abnormality Capacitance change: Within±0.5 pF	Appearance: No abnormality Capacitance change: B, BJ: Within ±12.5% F: Within ±30%		Warp: 1mm Testing board: glass epoxy-resin substrate Thickness: 1.6mm (063 TYPE: 0.8mm) The measurement shall be made with board in the bent position Board R-230 Warp 45±2 45±2 (Unit: mm)	

Multilayer Ceramic Capacitor Chips

		Specifie	d Value		
Item	Temperature Com	pensating (Class 1)	High Permitti	vity (Class 2)	Test Methods and Remarks
	Standard	High Frequency Type	Standard Note1	High Value	
10.Body Strength	_	No mechanical damage.	_	_	High Frequency Multilayer: Applied force: 5N Duration: 10 sec. Pressing jig Chip W L L W
11.Adhesion of Electrode	No separation or indicat	on of separation of electr	ode.		Applied force: 5N Duration: 30±5 sec. (01005, 0201, 0302 TYPE 2N Hooked jig R=05 Chip Cross-section
12.Solderability	At least 95% of terminal	electrode is covered by n	ew solder.		Solder temperature: 230±5°C Duration: 4±1 sec.
13.Resistance to soldering	Appearance: No abnor-	Appearance: No abnor-	Appearance: No abnorm	nality	Preconditioning: Thermal treatment (at 150°C for 1 hr)
	mality Capacitance change: Within ± 2.5% or ±0.25pF, whichever is larger. Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	mality Capacitance change: Within ±2.5% Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	Capacitance change: Within $\pm 7.5\%$ (B, BJ) Within $\pm 20\%$ (F) tan δ : Initial value Note 4 Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality		(Applicable to Class 2.) Solder temperature: 270±5°C Duration: 3±0.5 sec. Preheating conditions: 80 to 100°C, 2 to 5 min. or 5 to 10 m 150 to 200°C, 2 to 5 min. or 5 to 10 m Recovery: Recovery for the following period under the stadard condition after the test. 24±2 hrs (Class 1) 48±4 hrs (Class 2)
14.Thermal shock	Appearance: No abnormality Capacitance change: Within ± 2.5% or ±0.25pF, whichever is larger. Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	Appearance: No abnormality Capacitance change: Within ±0.25pF Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	Capacitance change: Within $\pm 7.5\%$ (B, BJ) Within $\pm 20\%$ (F) tan δ : Initial value Note 4 Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality		Preconditioning: Thermal treatment (at 150°C for 1 hr) (Applicable to Class 2.) (Applicable to Class 2.) Conditions for 1 cycle: Step 1: Minimum operating temperature $^{+0}_{-3}$ °C 30 ± 3 m Step 2: Room temperature 2 to 3 mi Step 3: Maximum operating temperature $^{-0}_{+3}$ °C 30 ± 3 m Step 4: Room temperature 2 to 3 mi Number of cycles: 5 times Recovery after the test: 24 ± 2 hrs (Class 1) 48 ± 4 hrs (Class 2)
15.Damp Heat (steady state)	Appearance: No abnormality Capacitance change: Within $\pm 5\%$ or ± 0.5 pF, whichever is larger. Q: C ≥ 30 pF : Q ≥ 250 $10 \leq C < 30$ pF: Q ≥ 275 $+ 2.5$ C C < 10 pF : Q ≥ 200 + 10 C C: Nominal capacitance Insulation resistance: 1000 MΩ min.	Appearance: No abnormality Capacitance change: Within $\pm 0.5 pF$, Insulation resistance: $1000 \ M\Omega \ min$.	Appearance: No abnormality Capacitance change: B: Within $\pm 12.5\%$ F: Within $\pm 30\%$ tan δ : B: 5.0% max. F: 7.5% max. Note 4 Insulation resistance: 50 M Ω μ F or 1000 M Ω whichever is smaller. Note 5	Appearance: No abnormality Capacitance change: BJ:Within $\pm 12.5\%$ Note 4 $\tan \delta$: BJ: 5.0% max. F: 11.0% max. Insulation resistance: $50~\mathrm{M}\Omega~\mu\mathrm{F}$ or $1000~\mathrm{M}\Omega$ whichever is smaller. Note 5	Multilayer: Preconditioning: Thermal treatment (at 150°C for 1 hr) (Applicable to Class 2.) Temperature: 40±2°C Humidity: 90 to 95% RH Duration: 500 *20 hrs Recovery: Recovery for the following period under the state dard condition after the removal from test chamber. 24±2 hrs (Class 1) 48±4 hrs (Class 2) High-Frequency Multilayer: Temperature: 60±2°C Humidity: 90 to 95% RH Duration: 500 *20 hrs Recovery: Recovery for the following period under the state dard condition after the removal from test chamber. 24±2 hrs (Class 1)

Multilayer Ceramic Capacitor Chips

		Specifie	ed Value		
Item	Temperature Compensating (Class 1)		High Permittivity (Class 2)		Test Methods and Remarks
	Standard	High Frequency Type	Standard Note1	High Value	
6.Loading under Damp Heat	Appearance: No abnormality Capacitance change: Within ± 7.5% or ±0.75pF, whichever is larger. Q: C≧30 pF: Q≧200 C<30 pF: Q≥100 + 10C/3 C: Nominal capacitance Insulation resistance: 500 MΩ min.	Appearance: No abnormality Capacitance change: C≤2 pF: Within ±0.4 pF C>2 pF: Within ±0.75 pF C: Nominal capacitance Insulation resistance: 500 MΩ min.	Appearance: No abnormality Capacitance change: B: Within $\pm 12.5\%$ F: Within $\pm 30\%$ tan δ : B: 5.0% max. F: 7.5% max. Note 4 Insulation resistance: 25 M Ω μ F or 500 M Ω , whichever is the smaller. Note 5	Appearance: No abnormality Capacitance change: BJ: Within $\pm 12.5\%$ F: Within $\pm 30\%$ Note 4 $\tan \delta$: BJ: 5.0%max. F: 11%max. Insulation resistance: $25 \text{ M}\Omega \mu \text{F} \text{ or } 500 \text{ M}\Omega$, whichever is the smaller. Note 5	According to JIS C 5102 Clause 9. 9. Multilayer: Preconditioning: Voltage treatment (Class 2) Temperature: 40±2°C Humidity: 90 to 95% RH Duration: 500 +24 hrs Applied voltage: Rated voltage Charge and discharge current: 50mA max. (Class 1,2) Recovery: Recovery for the following period under the stand condition after the removal from test chamber. 24±2 hrs (Class 1) 48±4 hrs (Class 2) High-Frequency Multilayer: Temperature: 60±2°C Humidity: 90 to 95% RH Duration: 500 +20 hrs Applied voltage: Rated voltage Charge and discharge current: 50mA max. Recovery: 24±2 hrs of recovery under the standard co tion after the removal from test chamber.
7.Loading at High Temperature	Appearance: No abnormality Capacitance change: Within ±3% or ±0.3pF, whichever is larger. Q: C≥30 pF: Q≥350 10≤C<30 pF: Q≥275 +2.5C C<10 pF: Q≥200 + 10C C: Nominal capacitance Insulation resistance: 1000 MΩ min.	Appearance: No abnormality Capacitance change: Within ±3% or ±0.3pF, whichever is larger. Insulation resistance: 1000 MΩ min.	Appearance: No abnormality Capacitance change: B: Within $\pm 12.5\%$ F: Within $\pm 30\%$ Note 4 $\tan \delta$: B: 4.0% max. F: 7.5% max. Insulation resistance: $50 \ \mathrm{M}\Omega \ \mu\mathrm{F}$ or $1000 \ \mathrm{M}\Omega$, whichever is smaller. Note 5	Appearance: No abnormality Capacitance change: BJ: Within $\pm 12.5\%$ Within $\pm 20\%\%\%$ Within $\pm 25\%\%\%$ F: Within $\pm 30\%$ Note 4 tan $\mathfrak s$: BJ: 5.0% max. F: 11% max. Insulation resistance: $50~\mathrm{M}\Omega_\mu\mathrm{F}$ or $1000~\mathrm{M}\Omega$, whichever is smaller. Note 5	According to JIS C 5102 clause 9.10. Multilayer: Preconditioning: Voltage treatment (Class 2) Temperature:125±3°C(Class 1, Class 2: B, BJ(X7R)) 85±2°C (Class 1, Class 2: B, BJ(X7R)) 00000000000000000000000000000000000

Note 1 For 105 type, specified in "High value".

Note 2 Thermal treatment (Multilayer): 1 hr of thermal treatment at 150 +0 /-10 °C followed by 48±4 hrs of recovery under the standard condition shall be performed before the measurement.

Note 3 Voltage treatment (Multilayer): 1 hr of voltage treatment under the specified temperature and voltage for testing followed by 48±4 hrs of recovery under the standard condition shall be performed before the measurement.

Note 4, 5 The figure indicates typical inspection. Please refer to individual specifications.

Note 6 Some of the parts are applicable in rated voltage×1.5. Please refer to individual specifications.

Note on standard condition: "standard condition" referred to herein is defined as follows: 5 to 35°C of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results: In order to provide correlation data, the test shall be conducted under condition of 20±2°C of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure.

Stages	Precautions	Technical considerations
1.Circuit Design	Verification of operating environment, electrical rating and performance 1. A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any capacitors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. Operating Voltage (Verification of Rated voltage) 1. The operating voltage for capacitors must always be lower than their rated values. If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages should be lower than the rated value of the capacitor chosen. For a circuit where both an AC and a pulse voltage may be present, the sum of their peak voltages should also be lower than the capacitor's rated voltage.	
	Even if the applied voltage is lower than the rated value, the reliability of capacitors might be reduced if either a high frequency AC voltage or a pulse voltage having rapid rise time is present in the circuit.	
2.PCB Design	Pattern configurations (Design of Land-patterns) 1. When capacitors are mounted on a PCB, the amount of solder used (size of fillet) can directly affect capacitor performance. Therefore, the following items must be carefully considered in the design of solder land patterns: (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets. (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist.	1.The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amourts.(larger fillets which extend above the component end terminations) Examples of improper pattern designs are also shown. (1) Recommended land dimensions for a typical chip capacitor land patterns for PCBs Land pattern Chip capacitor Chip capacitor Solder-resist Chip capacitor W Recommended land dimensions for wave-soldering (unit: mm) Type 107 212 316 325 L 1.6 2.0 3.2 3.2 Size W 0.8 1.25 1.6 2.5 A 0.8~1.0 1.0~1.4 1.8~2.5 1.8~2.5 B 0.5~0.8 0.8~1.5 0.8~1.7 0.8~1.7 C 0.6~0.8 0.9~1.2 1.2~1.6 1.8~2.5
		Recommended land dimensions for reflow-soldering (unit: mm) Type
		A 0.15~0.25 0.20~0.30 0.45~0.55 0.6~0.8 0.8~1.2 1.8~2.5 1.8~2.5 2.5~3.5 B 0.10~0.20 0.20~0.30 0.40~0.50 0.6~0.8 0.8~1.2 1.0~1.5 1.0~1.5 1.5~1.8 C 0.15~0.30 0.25~0.40 0.45~0.55 0.6~0.8 0.9~1.6 1.2~2.0 1.8~3.2 2.3~3.5 Excess solder can affect the ability of chips to withstand mechanical stresses. Therefore, please take proper precautions when designing land-patterns. Type 212 (4 circuits) 1.25 2.0
		Type 212 (2 circuits) 110 (2 circuits) 096 (2 circuits) U

0.45

0.64

Stages	Precautions		Technical consid	lerations
2.PCB Design		(2) Examples of	of good and bad solder applicat	ion
		Items	Not recommended	Recommended
		Mixed mounting of SMD and leaded components	Lead wire of component	Solder-resist
		Component placement close to the chassis	Chassis Solder(for grounding)	Solder-resist
		Hand-soldering of leaded components near mounted components	Lead wire of component- Soldering iron—	Solder-resist -
		Horizontal component placement		Solder-resist
	Pattern configurations (Capacitor layout on panelized [breakaway] PC boards) 1. After capacitors have been mounted on the boards, chips can			pacitor layout; SMD capacitors should be tresses from board warp or deflection.
	be subjected to mechanical stresses in subsequent manufac-		Not recommended	Recommended
	turing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD capacitors should be carefully performed to minimize stress.	Deflection of the board		Position the component at a right angle to the direction of the mechanical stresses that are anticipated.
	Stoud be carefully performed to minimize stress.	of mechanical		board, it should be noted that the amount ding on capacitor layout. The example ign.
		Perforati	on C A Slit	D
			Magnitude of stress	A>B = C>D>E
		the capacitors	can vary according to the met	ons, the amount of mechanical stress on thod used. The following methods are essful: push-back, slit, V-grooving, and yout must also consider the PCB splitting

	Multilayer Ceramic Capacitors					
Stages	Precautions		Technical consider	ations		
3.Considerations for automatic placement	,		sing damage. To avoid this, the fithe pick-up nozzle: of the pick-up nozzle should be a certing for deflection of the board. essure should be adjusted betwee amount of deflection of the board of	aused by impact of the pick-up nozzle, nder the PC board. The following dia-		
			Not recommended	Recommended		
		Single-sided mounting	Cracks	Supporting pin-L		
		Double-sided mounting	Solder peeling Cracks	Supporting pin		
		As the alignment pin wears out, adjustment of the nozzle height can cause chipping or cracking of the capacitors because of mechanical impact on the capacitors. To avoid this, the monitoring of the width between the alignment pin in the stopped position, and maintenance, inspection and replacement of the pin should be conducted periodically.				
	Selection of Adhesives 1. Mounting capacitors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded capacitor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, it is imperative to consult the manufacturer of the adhesives on proper usage and amounts of adhesive to use.	shrinkage percor on the capacito to the board mands should be noted (1)Required adhera. The adhesive solder process.	entage of the adhesive and that of rs and lead to cracking. Moreover, ay adversely affect component pla d in the application of adhesives. sive characteristics hould be strong enough to hold par	sistance. The difference between the the capacitors may result in stresses too little or too much adhesive applied coment, so the following precautions ts on the board during the mounting &		
		c. The adhesive s d. The adhesive s e. The adhesive s f. The adhesive r g. The adhesive s	whould have good coating and thick should have good coating and thick should be used during its prescribe should harden rapidly nust not be contaminated. Should have excellent insulation checkbould not be toxic and have no en	d shelf life. aracteristics.		
			aded amount of adhesives is as fol	·		
		Figure	0.3mm	·		
		b	100 ~120) μm		
		Amou	Adhesives should no	fter capacitors are bonded		

Stages	Precautions	Technical considerations
I. Soldering	1. Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use; (1) Flux used should be with less than or equal to 0.1 wt% (equivelent to chroline) of halogenated content. Flux having a strong acidity content should not be applied. (2) When soldering capacitors on the board, the amount of flux applied should be controlled at the optimum level. (3) When using water-soluble flux, special care should be taken to properly clean the boards.	1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the capacitors. 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system. 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of capacitors in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux.
	Soldering Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions.	1-1. Preheating when soldering Heating: Ceramic chip components should be preheated to within 100 to 130°C of the soldering. Cooling: The temperature difference between the components and cleaning process should not be greater than 100°C. Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted with great care so as to prevent malfunction of the components due to excessive thermal shock.
	And please contact us about peak temperature when you use lead-free paste.	Recommended conditions for soldering [Reflow soldering] Temperature profile Temperature (**C) Peak 280°C max Peak 280°C m

Stages	Precautions	Technical considerations
4. Soldering		[Hand soldering] Temperature profile Temperature (**C) 300 Preheating Over 1 minute Within 3 seconds Temperature(**C) (Pb free soldering) 400 400 400 400 400 400 400 4
5.Cleaning	Cleaning conditions 1. When cleaning the PC board after the capacitors are all mounted, select the appropriate cleaning solution according to the type of flux used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the capacitor's characteristics.	1. The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the capacitor or deteriorate the capacitor's outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance). 2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the capacitors. (1)Excessive cleaning In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking of the capacitor or the soldered portion, or decrease the terminal electrodes' strength. Thus the following conditions should be carefully checked; Ultrasonic output Below 20 W/& Ultrasonic frequency Below 40 kHz Ultrasonic washing period 5 min. or less
6.Post cleaning processes	1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the capacitor's performance. 2. When a resin's hardening temperature is higher than the capacitor's operating temperature, the stresses generated by the excess heat may lead to capacitor damage or destruction. The use of such resins, molding materials etc. is not recommended.	
7.Handling	Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting capacitors and other components, care is required so as not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices. Mechanical considerations 1. Be careful not to subject the capacitors to excessive mechanical shocks. (1)If ceramic capacitors are dropped onto the floor or a hard surface, they should not be used. (2)When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components.	

Stages	Precautions	Technical considerations
8.Storage conditions	Storage 1. To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Ambient temperature Below 40°C Humidity Below 70% RH The ambient temperature must be kept below 30°C. Even under ideal storage conditions capacitor electrode solderability decreases as time passes, so should be used within 6 months from the time of delivery. Ceramic chip capacitors should be kept where no chlorine or sulfur exists in the air. 2. The capacitance value of high dielectric constant capacitors (type 2 &3) will gradually decrease with the passage of time, so this should be taken into consideration in the circuit design. If such a capacitance reduction occurs, a heat treatment of 150°C for 1hour will return the capacitance to its initial level.	If the parts are stored in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the capacitors.