4 Mbit (x16) Multi-Purpose Flash SST39WF400A **EOL Data Sheet** #### **FEATURES:** - Organized as 256K x16 - Single Voltage Read and Write Operations - 1.65-1.95V - Superior Reliability - Endurance: 100,000 cycles (typical) - Greater than 100 years data retention - Low Power Consumption (typical values at 5 MHz) - Active Current: 5 mA (typical) - Standby Current: 1 μA (typical) - Sector-Erase Capability - Uniform 2 KWord sectors - Block-Erase Capability - Uniform 32 KWord blocks - Fast Read Access Time - 90 ns - Latched Address and Data ## Fast Erase and Word-Program Sector-Erase time: 36 ms (typical)Block-Erase time: 36 ms (typical) Chip-Erase time: 140 ms (typical) Word-Program time: 28 µs (typical) #### Automatic Write Timing - Internal V_{PP} generation ## End-of-Write Detection - Toggle Bit - Data# Polling - CMOS I/O Compatibility - JEDEC Standard - Flash EEPROM pinouts and command sets - Packages Available - 48-ball TFBGA (6mm x 8mm) - 48-ball WFBGA (4mm x 6mm) Micro Package - 48-bump XFLGA (4mm x 6mm) Micro Package - 48-ball XFBGA Z-Scale Package #### PRODUCT DESCRIPTION The SST39WF400A device is a 256K x16 CMOS Multi-Purpose Flash (MPF) manufactured with SST's proprietary, high performance CMOS SuperFlash technology. The split-gate cell design and thick-oxide tunneling injector attain better reliability and manufacturability compared with alternate approaches. The SST39WF400A writes (Program or Erase) with a 1.65-1.95V power supply. This device conforms to JEDEC standard pin assignments for x16 memories. Featuring high-performance Word-Program, the SST39WF400A device provides a typical Word-Program time of 28 μsec . The device uses Toggle Bit or Data# Polling to detect the completion of the Program or Erase operation. To protect against inadvertent writes, it has on-chip hardware and software data protection schemes. Designed, manufactured, and tested for a wide spectrum of applications, this device is offered with a guaranteed typical endurance of 100,000 cycles. Data retention is rated at greater than 100 years. The SST39WF400A device is suited for applications that require convenient and economical updating of program, configuration, or data memory. For all system applications, it significantly improves performance and reliability, while lowering power consumption. It inherently uses less energy during Erase and Program than alternative flash technologies. When programming a flash device, the total energy consumed is a function of the applied voltage, current, and time of application. Since for any given voltage range, the SuperFlash technology uses less current to program and has a shorter erase time, the total energy consumed during any Erase or Program operation is less than alternative flash technologies. These devices also improve flexibility while lowering the cost for program, data, and configuration storage applications. The SuperFlash technology provides fixed Erase and Program times, independent of the number of Erase/Program cycles that have occurred. Therefore the system software or hardware does not have to be modified or de-rated as is necessary with alternative flash technologies, whose Erase and Program times increase with accumulated Erase/Program cycles. To meet surface mount requirements, the SST39WF400A is offered in both a 48-ball TFBGA package, 48-ball Micro-Packages, and a 48-ball Z-Scale package. See Figures 2, 3, and 4 for pin assignments. ## **Device Operation** Commands are used to initiate the memory operation functions of the device. Commands are written to the device using standard microprocessor write sequences. A command is written by asserting WE# low while keeping CE# low. The address bus is latched on the falling edge of WE# or CE#, whichever occurs last. The data bus is latched on the rising edge of WE# or CE#, whichever occurs first. #### Read The Read operation of the SST39WF400A is controlled by CE# and OE#, both have to be low for the system to obtain data from the outputs. CE# is used for device selection. When CE# is high, the chip is deselected and only standby power is consumed. OE# is the output control and is used to gate data from the output pins. The data bus is in high impedance state when either CE# or OE# is high. Refer to the Read cycle timing diagram for further details (Figure 5). # **Word-Program Operation** The SST39WF400A is programmed on a word-by-word basis. Before programming, the sector where the word exists must be fully erased. The Program operation is accomplished in three steps. The first step is the three-byte load sequence for Software Data Protection. The second step is to load word address and word data. During the Word-Program operation, the addresses are latched on the falling edge of either CE# or WE#, whichever occurs last. The data is latched on the rising edge of either CE# or WE#, whichever occurs first. The third step is the internal Program operation which is initiated after the rising edge of the fourth WE# or CE#, whichever occurs first. The Program operation, once initiated, will be completed within 40 μs. See Figures 6 and 7 for WE# and CE# controlled Program operation timing diagrams and Figure 18 for flowcharts. During the Program operation, the only valid reads are Data# Polling and Toggle Bit. During the internal Program operation, the host is free to perform additional tasks. Any commands issued during the internal Program operation are ignored. ## **Sector/Block-Erase Operation** The Sector- (or Block-) Erase operation allows the system to erase the device on a sector-by-sector (or block-by-block) basis. The SST39WF400A offers both Sector-Erase and Block-Erase mode. The sector architecture is based on uniform sector size of 2 KWord. The Block-Erase mode is based on uniform block size of 32 KWord. The Sector-Erase operation is initiated by executing a six-byte command sequence with Sector-Erase command (30H) and sector address (SA) in the last bus cycle. The Block-Erase operation is initiated by executing a six-byte command sequence with Block-Erase command (50H) and block address (BA) in the last bus cycle. The sector or block address is latched on the falling edge of the sixth WE# pulse, while the command (30H or 50H) is latched on the rising edge of the sixth WE# pulse. The internal Erase operation begins after the sixth WE# pulse. The End-of-Erase operation can be determined using either Data# Polling or Toggle Bit methods. See Figures 11 and 12 for timing waveforms. Any commands issued during the Sector- or Block-Erase operation are ignored. ## **Chip-Erase Operation** The SST39WF400A provides a Chip-Erase operation, which allows the user to erase the entire memory array to the "1" state. This is useful when the entire device must be quickly erased. The Chip-Erase operation is initiated by executing a sixbyte command sequence with Chip-Erase command (10H) at address 5555H in the last byte sequence. The Erase operation begins with the rising edge of the sixth WE# or CE#, whichever occurs first. During the Erase operation, the only valid read is Toggle Bit or Data# Polling. See Table 4 for the command sequence, Figure 10 for timing diagram, and Figure 21 for the flowchart. Any commands issued during the Chip-Erase operation are ignored. ## Write Operation Status Detection The SST39WF400A provides two software means to detect the completion of a write (Program or Erase) cycle, in order to optimize the system write cycle time. The software detection includes two status bits: Data# Polling (DQ₇) and Toggle Bit (DQ₆). The End-of-Write detection mode is enabled after the rising edge of WE#, which initiates the internal Program or Erase operation. The actual completion of the nonvolatile Write is asynchronous with the system; therefore, either a Data# Polling or Toggle Bit read may be simultaneous with the completion of the Write cycle. If this occurs, the system may possibly get an erroneous result, i.e., valid data may appear to conflict with either DQ₇ or DQ₆. In order to prevent spurious rejection, if an erroneous result occurs, the software routine should include a loop to read the accessed location an additional two (2) times. If both Reads are valid, then the device has completed the Write cycle, otherwise the rejection is valid. # 4 Mbit Multi-Purpose Flash SST39WF400A **EOL Data Sheet** # Data# Polling (DQ₇) When the SST39WF400A is in the internal Program operation, any attempt to read DQ7 will produce the complement of the true data. Once the Program operation is completed, DQ7 will produce true data. Note that even though DQ7 may have valid data immediately following the completion of an internal Write operation, the remaining data outputs may still be invalid: valid data on the entire data bus will appear in subsequent successive Read cycles after an interval of 1 µs. During internal Erase operation, any attempt to read DQ7 will produce a '0'. Once the internal Erase operation is completed, DQ7 will produce a '1'. The Data# Polling is valid after the rising edge of fourth WE# (or CE#) pulse for Program operation. For Sector-, Block- or Chip-Erase, the Data# Polling is valid after the rising edge of sixth WE# (or CE#) pulse. See Figure 8 for Data# Polling timing diagram and Figure 19 for a flowchart. # Toggle Bit (DQ₆) During the internal Program or Erase operation, any consecutive attempts to read DQ_6 will produce alternating 1s and 0s, i.e., toggling between 1 and 0. When the internal Program or Erase operation is completed, the DQ_6 bit will stop toggling. The device is then ready for the next operation. The Toggle Bit is valid after the rising edge of fourth WE# (or CE#) pulse for Program operation. For Sector-, Block- or Chip-Erase, the Toggle Bit is valid after the rising edge of sixth WE# (or CE#) pulse. See Figure 9 for Toggle Bit timing diagram and Figure 19 for a flowchart. ## **Data Protection** The SST39WF400A provides both hardware and software features to protect nonvolatile data from inadvertent writes. ## **Hardware Data Protection** Noise/Glitch Protection: A WE# or CE# pulse of less than 5 ns will not initiate a write cycle. V_{DD} Power Up/Down Detection: The Write operation is inhibited when V_{DD} is less than 1.0V. <u>Write Inhibit Mode</u>: Forcing OE# low, CE# high, or WE# high will inhibit the Write operation. This prevents inadvertent writes during power-up or power-down. # **Software Data Protection (SDP)** The SST39WF400A provides the JEDEC approved Software Data Protection scheme for all data alteration operations, i.e., Program and Erase. Any Program operation requires the inclusion of the three-byte sequence. The three-byte load sequence is used to initiate the Program operation, providing optimal protection from inadvertent Write operations, e.g., during the system power-up or power-down. Any Erase operation requires the inclusion of six-byte sequence. This group of devices are shipped with the Software Data Protection permanently enabled. See Table 4 for the specific software command codes. During SDP command sequence, invalid commands will abort the device to Read mode within $T_{\rm RC}$. The contents of DQ_{15} - DQ_{8} can be $V_{\rm IL}$ or $V_{\rm IH}$, but no other value, during any SDP command sequence. # Common Flash Memory Interface (CFI) The SST39WF400A also contains the CFI information to describe the characteristics of the device. In order to enter the CFI Query mode, the system must write three-byte sequence, same as Software ID Entry command with 98H (CFI Query command) to address 5555H in the last byte sequence. Once the device enters the CFI Query mode, the system can read CFI data at the addresses given in Tables 5 through 7. The system must write the CFI Exit command to return to Read mode from the CFI Query mode. #### **Product Identification** The Product Identification mode identifies the devices as the SST39WF400A and manufacturer as SST. This mode may be accessed by software operations. Users may use the Software Product Identification operation to identify the part (i.e., using the device ID) when using multiple manufacturers in the same socket. For details, see Table 4 for software operation, Figure 13 for the Software ID Entry and Read timing diagram, and Figure 20 for the Software ID Entry command sequence flowchart. **TABLE 1: Product Identification Table** | | Address | Data | |-------------------|---------|-------| | Manufacturer's ID | 0000H | 00BFH | | Device ID | | | | SST39WF400A | 0001H | 272FH | T1.0 1220 ## Product Identification Mode Exit/ CFI Mode Exit In order to return to the standard Read mode, the Software Product Identification mode must be exited. Exit is accomplished by issuing the Software ID Exit command sequence, which returns the device to the Read mode. This command may also be used to reset the device to the Read mode after any inadvertent transient condition that apparently causes the device to behave abnormally, e.g., not read correctly. Please note that the Software ID Exit/ CFI Exit command is ignored during an internal Program or Erase operation. See Table 4 for software command codes, Figure 15 for timing waveform, and Figure 20 for a flowchart. FIGURE 1: Functional Block Diagram FIGURE 2: Pin Assignments for 48-ball TFBGA FIGURE 3: Pin Assignments for 48-ball WFBGA and 48-bump XFLGA FIGURE 4: Pin Assignments for 48-ball XFBGA **TABLE 2: Pin Description** | Symbol | Pin Name | Functions | | | | | |--|-------------------|--|--|--|--|--| | A _{MS} ¹ -A ₀ | Address Inputs | To provide memory addresses. During Sector-Erase A_{MS} - A_{11} address lines will select the sector. During Block-Erase A_{MS} - A_{15} address lines will select the block. | | | | | | DQ ₁₅ -DQ ₀ | Data Input/output | To output data during Read cycles and receive input data during Write cycles. Data is internally latched during a Write cycle. The outputs are in tri-state when OE# or CE# is high. | | | | | | CE# | Chip Enable | To activate the device when CE# is low. | | | | | | OE# | Output Enable | To gate the data output buffers. | | | | | | WE# | Write Enable | To control the Write operations. | | | | | | V_{DD} | Power Supply | To provide power supply voltage: 1.65-1.95V for SST39WF400A | | | | | | V_{SS} | Ground | | | | | | | NC | No Connection | Unconnected pins. | | | | | ^{1.} $A_{MS} = Most$ significant address. $A_{MS} = A_{17}$ for SST39WF400A T2.0 1220 T3.0 1220 **TABLE 3: Operation Modes Selection** | Mode | CE# | OE# | WE# | DQ | Address | |------------------------|-----------------|-----------------|-----------------|--------------------------|--| | Read | V _{IL} | V _{IL} | V _{IH} | D _{OUT} | A _{IN} | | Program | V_{IL} | V_{IH} | V_{IL} | D _{IN} | A _{IN} | | Erase | V _{IL} | V _{IH} | V_{IL} | X ¹ | Sector or Block address,
XXH for Chip-Erase | | Standby | V_{IH} | X | Х | High Z | X | | Write Inhibit | Х | V_{IL} | Х | High Z/ D _{OUT} | X | | | X | X | V _{IH} | High Z/ D _{OUT} | X | | Product Identification | | | | | | | Software Mode | V_{IL} | V_{IL} | V_{IH} | | See Table 4 | 1. X can be V_{IL} or V_{IH} , but no other value. ©2010 Silicon Storage Technology, Inc. S71220-07-EOL 01/1 **TABLE 4: Software Command Sequence** | Command
Sequence | 1st I
Write | | 2nd I
Write (| | 3rd
Write | | 4th
Write | | 5th E
Write (| | 6th
Write | | |---|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------------|-------------------| | | Addr ¹ | Data ² | | Word-Program | 5555H | AAH | 2AAAH | 55H | 5555H | A0H | WA ³ | Data | | | | | | Sector-Erase | 5555H | AAH | 2AAAH | 55H | 5555H | 80H | 5555H | AAH | 2AAAH | 55H | SA _X ⁴ | 30H | | Block-Erase | 5555H | AAH | 2AAAH | 55H | 5555H | 80H | 5555H | AAH | 2AAAH | 55H | BA _X ⁴ | 50H | | Chip-Erase | 5555H | AAH | 2AAAH | 55H | 5555H | 80H | 5555H | AAH | 2AAAH | 55H | 5555H | 10H | | Software ID Entry ^{5,6} | 5555H | AAH | 2AAAH | 55H | 5555H | 90H | | | | | | | | CFI Query Entry ⁵ | 5555H | AAH | 2AAAH | 55H | 5555H | 98H | | | | | | | | Software ID Exit ⁷ /
CFI Exit | XXH | F0H | | | | | | | | | | | | Software ID Exit ⁷ /
CFI Exit | 5555H | AAH | 2AAAH | 55H | 5555H | F0H | | | | | | | T4.0 1220 - 1. Address format A_{14} - A_0 (Hex), Addresses A_{MS} - A_{15} can be V_{IL} or V_{IH} , but no other value, for the Command sequence. - A_{MS} = Most significant address A_{MS} = A_{17} for SST39WF400A - 2. DQ_{15} - DQ_{8} can be V_{IL} or V_{IH} , but no other value, for the Command sequence - 3. WA = Program word address - 4. SA_X for Sector-Erase; uses A_{MS} - A_{11} address lines BA_X for Block-Erase; uses A_{MS} - A_{15} address lines - 5. The device does not remain in Software Product ID mode if powered down. - 6. With A_{MS} - A_1 = 0; SST Manufacturer's ID = 00BFH, is read with A_0 = 0, SST39WF400A Device ID = 272FH, is read with A_0 = 1. - 7. Both Software ID Exit operations are equivalent TABLE 5: CFI Query Identification String¹ for SST39WF400A | Address | Data | Data | |---------|-------|---| | 10H | 0051H | Query Unique ASCII string "QRY" | | 11H | 0052H | | | 12H | 0059H | | | 13H | 0001H | Primary OEM command set | | 14H | 0007H | | | 15H | 0000H | Address for Primary Extended Table | | 16H | 0000H | | | 17H | 0000H | Alternate OEM command set (00H = none exists) | | 18H | 0000H | | | 19H | 0000H | Address for Alternate OEM extended Table (00H = none exits) | | 1AH | 0000H | | 1. Refer to CFI publication 100 for more details. T5.0 1220 # TABLE 6: System Interface Information for SST39WF400A | Address | Data | Data | |---------|-------|---| | 1BH | 0016H | V _{DD} Min (Program/Erase) | | | | DQ ₇ -DQ ₄ : Volts, DQ ₃ -DQ ₀ : 100 millivolts | | 1CH | 0020H | V _{DD} Max (Program/Erase) | | | | DQ ₇ -DQ ₄ : Volts, DQ ₃ -DQ ₀ : 100 millivolts | | 1DH | 0000H | V_{PP} min (00H = no V_{PP} pin) | | 1EH | 0000H | V_{PP} max (00H = no V_{PP} pin) | | 1FH | 0005H | Typical time out for Word-Program 2^N µs ($2^5 = 32$ µs) | | 20H | 0000H | Typical time out for min size buffer program 2 ^N µs (00H = not supported) | | 21H | 0005H | Typical time out for individual Sector/Block-Erase 2 ^N ms (2 ⁵ = 32 ms) | | 22H | 0007H | Typical time out for Chip-Erase 2 ^N ms (2 ⁷ = 128 ms) | | 23H | 0001H | Maximum time out for Word-Program 2^N times typical $(2^1 \times 2^5 = 64 \mu s)$ | | 24H | 0000H | Maximum time out for buffer program 2 ^N times typical | | 25H | 0001H | Maximum time out for individual Sector/Block-Erase 2 ^N times typical (2 ¹ x 2 ⁵ = 64 ms) | | 26H | 0001H | Maximum time out for Chip-Erase 2 ^N times typical (2 ¹ x 2 ⁷ = 256 ms) | T6.0 1220 # TABLE 7: Device Geometry Information for SST39WF400A | Address | Data | Data | |---------|-------|---| | 27H | 0013H | Device size = 2 ^N Byte (13H = 19; 2 ¹⁹ = 512 KByte) | | 28H | 0001H | Flash Device Interface description; 0001H = x16-only asynchronous interface | | 29H | 0000H | | | 2AH | 0000H | Maximum number of byte in multi-byte write = 2 ^N (00H = not supported) | | 2BH | 0000H | | | 2CH | 0002H | Number of Erase Sector/Block sizes supported by device | | 2DH | 007FH | Sector Information (y + 1 = Number of sectors; z x 256B = sector size) | | 2EH | 0000H | y = 127 + 1 = 128 sectors (007FH = 127) | | 2FH | 0010H | | | 30H | 0000H | z = 16 x 256 Bytes = 4 KByte/sector (0010H = 16) | | 31H | 0007H | Block Information (y + 1 = Number of blocks; z x 256B = block size) | | 32H | 0000H | y = 7 + 1 = 8 blocks (0007H = 7) | | 33H | 0000H | | | 34H | 0001H | z = 256 x 256 Bytes = 64 KByte/block (0100H = 256) | T7.0 1220 # 4 Mbit Multi-Purpose Flash SST39WF400A **EOL Data Sheet** **Absolute Maximum Stress Ratings** (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.) | Temperature Under Bias | 55°C to +125°C | |---|-------------------------------| | Storage Temperature | 65°C to +150°C | | D. C. Voltage on Any Pin to Ground Potential | 0.5V to V _{DD} +0.5V | | Transient Voltage (<20 ns) on Any Pin to Ground Potential | 2.0V to V _{DD} +2.0V | | Voltage on A ₉ Pin to Ground Potential | 0.5V to 11V | | Package Power Dissipation Capability (Ta = 25°C) | | | Surface Mount Lead Soldering Temperature (3 Seconds) | 240°C | | Output Short Circuit Current ¹ | | | 1. Outpute shorted for no more than one accord. No more than one output shorted at a time | | ^{1.} Outputs shorted for no more than one second. No more than one output shorted at a time. #### **Operating Range** | Range | Ambient Temp | V_{DD} | | |------------|----------------|------------|--| | Commercial | 0°C to +70°C | 1.65-1.95V | | | Industrial | -40°C to +85°C | 1.65-1.95V | | #### **AC Conditions of Test** | Input Rise/Fall Time 5 ns | |---------------------------| | Output Load | | See Figures 16 and 17 | TABLE 8: DC Operating Characteristics V_{DD} = 1.65-1.95V¹ | | | | Limits | | Test Conditions | | |-----------------|---------------------------------|----------------------|--------------------|-------|---|--| | Symbol | Parameter | Min | Max | Units | | | | I _{DD} | Power Supply Current | | | | Address input=V _{ILT} /V _{IHT} , at f=5 MHz, V _{DD} =V _{DD} Max | | | | Read | | 15 | mA | CE#=V _{IL} , OE#=WE#=V _{IH} , all I/Os open | | | | Program and Erase | | 20 | mA | CE#=WE#=V _{IL} , OE#=V _{IH} | | | I _{SB} | Standby V _{DD} Current | | 5 ² | μΑ | CE#=V _{DD} , V _{DD} =V _{DD} Max | | | I _{LI} | Input Leakage Current | | 1 | μA | V _{IN} =GND to V _{DD} , V _{DD} =V _{DD} Max | | | I_{LO} | Output Leakage Current | | 1 | μΑ | V _{OUT} =GND to V _{DD} , V _{DD} =V _{DD} Max | | | V _{IL} | Input Low Voltage | | 0.2V _{DD} | | V _{DD} =V _{DD} Min | | | V_{IH} | Input High Voltage | $0.8V_{DD}$ | | V | V _{DD} =V _{DD} Max | | | V _{OL} | Output Low Voltage | | 0.1 | V | I _{OL} =100 μA, V _{DD} =V _{DD} Min | | | V_{OH} | Output High Voltage | V _{DD} -0.1 | | V | I _{OH} =-100 μA, V _{DD} =V _{DD} Min | | T8.2 1220 #### TABLE 9: Recommended System Power-up Timings | Symbol | Parameter | Minimum | Units | |------------------------------------|-------------------------------------|---------|-----------| | T _{PU-READ} 1 | Power-up to Read Operation | 100 | μs | | T _{PU-WRITE} ¹ | Power-up to Program/Erase Operation | 100 | μs | | | | | T9.0 1220 | ^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter. #### TABLE 10: Capacitance (Ta = 25°C, f=1 MHz, other pins open) | Parameter | Description | Test Condition | Maximum | |-------------------------------|---------------------|----------------|---------| | C _{I/O} ¹ | I/O Pin Capacitance | $V_{I/O} = 0V$ | 12 pF | | C _{IN} ¹ | Input Capacitance | $V_{IN} = 0V$ | 6 pF | T10.0 1220 #### **TABLE 11: Reliability Characteristics** | Symbol | Parameter | Minimum Specification | Units | Test Method | |---------------------------------|----------------|-----------------------|--------|---------------------| | N _{END} ^{1,2} | Endurance | 10,000 | Cycles | JEDEC Standard A117 | | T _{DR} ¹ | Data Retention | 100 | Years | JEDEC Standard A103 | | I _{LTH} ¹ | Latch Up | 100 + I _{DD} | mA | JEDEC Standard 78 | T11.0 1220 1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter. S71220-07-EOL 01/10 ©2010 Silicon Storage Technology, Inc. 10 ^{1.} Typical conditions for the Active Current shown on the front page of the data sheet are average values at 25°C (room temperature), and $V_{DD} = 1.8V$. Not 100% tested. ^{2. 5} μA is the maximum I_{SB} for all 39WF400A commercial grade devices. 20 μA is the maximum I_{SB} for all 39WF400A industrial grade devices. For all 39WF400A commercial and industrial devices, I_{SB} typical is 1 μA . ^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter. ^{2.} N_{END} endurance rating is qualified as a 10,000 cycle minimum for the whole device. A sector- or block-level rating would result in a higher minimum specification. #### **AC CHARACTERISTICS** **TABLE 12: Read Cycle Timing Parameters** $V_{DD} = 1.70 \text{-} 1.95 \text{V for } 90 \text{ ns}^1$ $V_{DD} = 1.65 \text{-} 1.95 \text{V for } 100 \text{ ns}$ | | | | SST39WF400A-90 | | SST39WF400A-100 | | |-----------------|---------------------------------|-----|----------------|-----|-----------------|-------| | Symbol | Parameter | Min | Max | Min | Max | Units | | T _{RC} | Read Cycle Time | 90 | | 100 | | ns | | T_CE | Chip Enable Access Time | | 90 | | 100 | ns | | T_{AA} | Address Access Time | | 90 | | 100 | ns | | T _{OE} | Output Enable Access Time | | 50 | | 50 | ns | | T_{CLZ}^2 | CE# Low to Active Output | 0 | | 0 | | ns | | T_{OLZ}^2 | OE# Low to Active Output | 0 | | 0 | | ns | | T_{CHZ}^2 | CE# High to High-Z Output | | 40 | | 40 | ns | | T_{OHZ}^2 | OE# High to High-Z Output | | 40 | | 40 | ns | | T_{OH}^2 | Output Hold from Address Change | 0 | | 0 | | ns | T12.2 1220 **TABLE 13: Program/Erase Cycle Timing Parameters** | Symbol | Parameter | Min | Max | Units | |-------------------------------|----------------------------------|-----|-----|-------| | T _{BP} | Word-Program Time | | 40 | μs | | T _{AS} | Address Setup Time | 0 | | ns | | T _{AH} | Address Hold Time | 50 | | ns | | T _{CS} | WE# and CE# Setup Time | 0 | | ns | | T _{CH} | WE# and CE# Hold Time | 0 | | ns | | T _{OES} | OE# High Setup Time | 0 | | ns | | T _{OEH} | OE# High Hold Time | 10 | | ns | | T _{CP} | CE# Pulse Width | 50 | | ns | | T _{WP} | WE# Pulse Width | 50 | | ns | | T _{WPH} ¹ | WE# Pulse Width High | 30 | | ns | | T _{CPH} ¹ | CE# Pulse Width High | 30 | | ns | | T _{DS} | Data Setup Time | 50 | | ns | | T _{DH} ¹ | Data Hold Time | 0 | | ns | | T _{IDA} ¹ | Software ID Access and Exit Time | | 150 | ns | | T _{SE} | Sector-Erase | | 50 | ms | | T _{BE} | Block-Erase | | 50 | ms | | T _{SCE} | Chip-Erase | | 200 | ms | T13.0 1220 ^{1. 90} ns parts will ONLY support voltage range 1.70-1.95V. ^{2.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter. ^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter. FIGURE 5: Read Cycle Timing Diagram FIGURE 6: WE# Controlled Program Cycle Timing Diagram ©2010 Silicon Storage Technology, Inc. S71220-07-EOL 01/10 FIGURE 7: CE# Controlled Program Cycle Timing Diagram FIGURE 8: Data# Polling Timing Diagram FIGURE 9: Toggle Bit Timing Diagram FIGURE 10: WE# Controlled Chip-Erase Timing Diagram FIGURE 11: WE# Controlled Block-Erase Timing Diagram FIGURE 12: WE# Controlled Sector-Erase Timing Diagram FIGURE 13: Software ID Entry and Read FIGURE 14: CFI Query Entry and Read FIGURE 15: Software ID Exit/CFI Exit AC test inputs are driven at V_{IHT} (V_{DD}) for a logic "1" and V_{ILT} (V_{SS}) for a logic "0". Measurement reference points for inputs and outputs are V_{IT} (0.5 V_{DD}) and V_{OT} (0.5 V_{DD}). Input rise and fall times are (10% \leftrightarrow 90%) <5 ns. Note: V_{IT} - V_{INPUT} Test V_{OT} - V_{OUTPUT} Test V_{IHT} - V_{INPUT} HIGH Test V_{ILT} - V_{INPUT} LOW Test FIGURE 16: AC Input/Output Reference Waveforms FIGURE 17: A Test Load Example FIGURE 18: Word-Program Algorithm FIGURE 19: Wait Options FIGURE 20: Software ID/CFI Command Flowcharts FIGURE 21: Erase Command Sequence #### PRODUCT ORDERING INFORMATION Environmental suffix "E" denotes non-Pb solder. SST non-Pb solder devices are "RoHS Compliant". #### Valid combinations for SST39WF400A SST39WF400A-90-4C-B3KE SST39WF400A-90-4C-C1QE SST39WF400A-90-4C-M1QE SST39WF400A-90-4I-B3KE SST39WF400A-90-4I-C1QE SST39WF400A-90-4I-M1QE SST39WF400A-90-4I-ZKE¹ **Note:** Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative to confirm availability of valid combinations and to determine availability of new combinations. ^{1.} For additional XFBGA, ZKE information contact SST Sales. #### **PACKAGING DIAGRAMS** FIGURE 22: 48-ball Thin-profile, Fine-pitch Ball Grid Array (TFBGA) 6mm x 8mm SST Package Code: B3K FIGURE 23: 48-ball Very-very-thin-profile, Fine-pitch Ball Grid Array (WFBGA) 4mm x 6mm SST Package Code: M1Q FIGURE 24: 48-bump Extremely-thin-profile, Fine-pitch Land Grid Array (XFLGA) 4mm x 6mm SST Package Code: C1Q # **TABLE 14: Revision History** | Number | | Description | Date | |--------|---|--|----------| | 00 | • | Initial release | Mar 2003 | | 01 | • | Added 90 ns speed parts | Apr 2003 | | | • | Output leakage current changed from 10 μA to 1 μA in Table 8 on page 10 | | | 02 | • | Removed "Typical" column from Table 8 on page 10 | Jun 2003 | | 03 | • | Added 90 ns commercial temperature range MPNs for all packages | Oct 2003 | | 04 | • | 2004 Data Book | Nov 2003 | | | • | Updated the B3K, M1Q, and C1Q package diagrams | | | 05 | • | Added footnote to max ISB parameter in Table 8 on page 10 | Jun 2004 | | 06 | • | Added XFBGA, ZKE package information to Features on page 1 | Jun 2009 | | | • | Added XFBGA, ZKE Pin Assignment Figure 4 on page 6 | | | | • | Added ZKE valid combinations to Product Ordering Information | | | | • | Removed 100 ns valid combinations from Product Ordering Information | | | | • | Removed Pb products from valid combinations | | | 07 | • | EOL of all SST39WF400A products. Replacement parts are the SST39WF400B products found in S71370. | Jan 2010 | Silicon Storage Technology, Inc. • 1171 Sonora Court • Sunnyvale, CA 94086 • Telephone 408-735-9110 • Fax 408-735-9036 www.SuperFlash.com or www.sst.com