MLX92241LUA-BAA

2-Wire Hall Effect Switch

1. Features and Benefits

- Wide operating voltage range : from 2.7V to 24V
- Integrated self-diagnostic functions activating dedicated Safe Mode
- Reverse supply voltage protection
- Under-Voltage Lockout protection
- Integrated capacitor for PCB less designs
- HW component Qualified according to ISO26262-8:13 for use in safety critical systems.

3. Ordering Information

2. Application Examples

- Automotive, Consumer and Industrial
- Brake light switch
- Window lifter
- Door lock
- Seatbelt buckle
- Seat positioning
- Transmission applications
- Electrical power steering

Product Code	Temperature Code	Package Code	Option Code	Packing Form Code
MLX92241	L	UA	BAA-1xx	BU
MLX92241	L	SE	BAA-0xx	RE

Legend:

Temperature Code: Package Code: Option Code:	L(-40°C to 150°C) UA=TO-92-3L/ SE=TSOT-23 BAA-1xx => 2 wire hall effect Switch with integrated capacitor BAA-0xx => 2 wire hall effect Switch
Packing Form:	BU=Bulk RE = Reel CA = Ammopack delivery
Ordering example:	MLX92241LUA-BAA-1xx-BU

MLX92241LUA-BAA

2-Wire Hall Effect Switch

5. Functional Diagram

6. General Description

The Melexis MLX92241 is based on the Melexis Hall-effect switch latest platform, designed in mixed signal submicron CMOS technology.

The device integrates a voltage regulator, Hall sensor with advanced offset cancellation system and a current sink-configured output driver and integrated capacitor all in a single package.

Based on the proven in use platform, the magnetic core is using an improved offset cancellation system allowing faster and more accurate processing while being temperature insensitive and stress independent. In addition a pre-programmable temperature coefficient is implemented to compensate the natural behavior of certain types of magnets becoming weaker with rise in temperature.

The included voltage regulator operates from 2.7 to 24V, hence covering a wide range of applications. With the built-in reverse voltage protection, a serial resistor or diode on the supply line is not required so that even remote sensors can be specified for low voltage operation down to 2.7V while being reverse voltage tolerant.

MLX92241LUA-BAA

2-Wire Hall Effect Switch

In an event of a drop below the minimum supply voltage during operation, the under-voltage lock-out protection will automatically freeze the device, preventing the electrical perturbation to affect the magnetic measurement circuitry. The output current state is therefore only updated based on a proper and accurate magnetic measurement result.

The two-wire interface not only saves one wire, but also allows implementation of diagnostic functions as reverse polarity connection and malfunction detection.

The on-chip thermal protection also switches off the output if the junction temperature increases above an abnormally high threshold. It will automatically recover once the temperature decreases below a safe value.

The MLX92241 is delivered in a Green and RoHS compliant Plastic Single-in-Line (TO-92 flat) for throughhole mount, or PCB-less design with integrated capacitor or in 3-pin Thin Small Outline Transistor (TSOT) for surface mount process.

Contents

1. Features and Benefits	1
2. Application Examples	1
3. Ordering Information	1
5. Functional Diagram	2
6. General Description	2
7. Glossary of Terms	6
8. Absolute Maximum Ratings	6
9. General Electrical Specifications	7
10. Magnetic Specifications ⁽⁾	8
10.1. MLX92241LUA-BAA-101	8
10.2. MLX92241LUA-BAA-103	8
10.3. MLX92241LUA-BAA-106	8
10.4. MLX92241LUA-BAA-107	9
10.5. MLX92241LUA-BAA-108	9
10.6. MLX92241LSE-BAA-019	9
10.7. MLX92241LSE-BAA-021	9
10.8. MLX92241LUA-BAA-110	9
10.9. MLX92241LUA-BAA-111	10
10.10. MLX92241LUA-BAA-112	10
10.11. MLX92241LUA-BAA-113	10
10.12. MLX92241LSE-BAA-024	10
11. Magnetic Behavior	11
11.1. Unipolar Switch sensor	11
12. Application Information	12
12.1. Typical Automotive Application Circuit	12
12.2. Automotive and Harsh, Noisy Environments Application Circuit	12
 Standard information regarding manufacturability of Melexis products with different soldering processes. 	13
14. ESD Precautions	13
15. Package Information	14
15.1. SE (TSOT-3L) Package Information	14

15.2. UA (TO92 - 3L) Package Information	15
15.3. UA (TO92 - 3L) with integrated capacitor Package Information	16
16. Contact	
17. Disclaimer	

7. Glossary of Terms

Tesla	Units for the magnetic flux density, 1 mT = 10 Gauss
ТС	Temperature Coefficient in ppm/°C
NC	Not Connected
ADC	Analog-to-Digital Converter
PTC	Programming Through Connector
POR	Power on Reset
INL	Integral Non Linearity
DNL	Differential Non Linearity
PWM	Pulse Width Modulation

8. Absolute Maximum Ratings

Parameter	Symbol	Value	Units
Supply Voltage ^(1, 2)	V _{DD}	+28	V
Supply Voltage (Load Dump) ^(1, 4)	V _{DD}	+32	V
Supply Current ^(1, 2, 3)	I _{DD}	+20	mA
Supply Current ^(1, 3, 4)	I _{DD}	+50	mA
Reverse Supply Voltage ^(1, 2)	V _{DDREV}	-24	V
Reverse Supply Voltage ^(1, 4)	V _{DDREV}	-30	V
Reverse Supply Current ^(1, 2, 5)	I _{DDREV}	-20	mA
Reverse Supply Current ^(1, 4, 5)	I _{DDREV}	-50	mA
Maximum Junction Temperature ⁽⁶⁾	ΤJ	+165	°C
ESD Sensitivity – HBM ⁽⁷⁾	-	8	kV
ESD Sensitivity – System level ⁽⁸⁾	-	15	kV
ESD Sensitivity – CDM ⁽⁹⁾	-	1000	V
Magnetic Flux Density	В	Unlimited	mT

Table 1: Absolute maximum ratings

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

¹ The maximum junction temperature should not be exceeded

² For maximum 1 hour

³ Including current through protection device

⁴ For maximum 500ms

⁵ Through protection device

⁶ For 1000 hours.

⁷ Human Model according AEC-Q100-002 standard

⁸ Indirect discharge according VW TL82466 standard, typical value, only for option MLX92242LUA-AAA-1xx

⁹ Charged Device Model according AEC-Q100-011 standard

9. General Electrical Specifications

DC Operating Parameters V_{DD} = 2.7V to 24V, T_J = -40°C to 165°C (unless otherwise specified)

Parameter		Test Conditions	Min	Typ ⁽¹⁾	Max	Units
OFF Supply Current			2	-	5	mA
(selectable by a dedicated bit)	I _{OFF}	V _{DD} = 3.5 to 24V	5	-	6.9	mA
ON Supply Current	I _{ON}	V _{DD} = 3.5 to 24V	12	-	17	mA
Reverse Supply current	I _{DDREV}	V _{DD} = -16V	-1	-	-	mA
Safe Mode Supply Current	I _{SAFE}		-	-	1	mA
Supply Current Rise/Fall Time ⁽²⁾	t _R /t _F	V_{DD} = 12V, C_{LOAD} = 50pF to GND	0.1	0.3	1	μs
Power-On Time ^(3, 4)	t _{on}	V _{DD} = 5V, dV _{DD} /dt > 2V/us, activated output with >1mT overdrive	-	40	70	μs
Chopping Frequency	f _{CHOP}		-	350	-	kHz
Delay Time ^(2, 5)	t _D	Average over 1000 successive switching events @10kHz, Latch, B_{OP} set to 5mT, square wave magnetic field with B > ± 20 mT, $t_{RISE} = t_{FALL} \le 20$ µs	-	7.5	I	μs
Output Jitter (p-p) ^(2, 6)	t _{JITTER}	Over 1000 successive switching events @ 1kHz, Latch, B_{OP} set to 5mT, square wave magnetic field with B > ±20mT, $t_{RISE} = t_{FALL}$ $\leq 20\mu s$	-	±4	-	μs
Maximum Switching Frequency ⁽²⁾	f_{SW}	Latch, B _{OP} set to 5mT, square wave magnetic field with B > ±20mT	-	50	-	kHz
Under-voltage Lockout Threshold	V _{UVL}		-	-	2.7	V
Under-voltage Lockout Reaction time ⁽²⁾	t _{UVL}		-	1	-	μs
Integrated capacitor	C _{INT}	Only for option MLX92241LUA- BAA-1xx	-	68	-	nF
Thermal Protection Activation	T _{PROT}		-	190 ⁽⁷⁾	-	°C
Thermal Protection Release	T _{REL}		-	180 ⁽⁷⁾	-	°C

¹ Typical values are defined at $T_A = +25^{\circ}C$ and $V_{DD} = 12V$.

² Guaranteed by design and verified by characterization, not production tested, without integrated capacitor.

³ The Power-On Time represents the time from reaching V_{DD} = 2.7V to the first refresh of the supply current state.

⁴ Power-On Slew Rate is not critical for the proper device start-up.

⁵ The Delay Time is the time from magnetic threshold reached to the start of the output switching.

⁶ Output jitter is the unpredictable deviation of the Delay time.

⁷ T_{PROT} and T_{REL} are the corresponding junction temperature values.

UA Package Thermal Resistance	R_{THJA}	-	200	-	°C/W
SE Package Thermal	D		300		°C/W
Resistance	K _{THJA}	-	500	-	C/ VV

Table 2: General electrical parameters

10. Magnetic Specifications ⁽¹⁾

10.1. MLX92241LUA-BAA-101

DC Operating Parameters V_{DD} = 3.5V to 24V, T_J = -40°C to 165°C (unless otherwise specified)

Test Condition	Operating Point B _{OP} (mT)						TC (ppm/°C)	loff (mA)	Output & Active Pole
	Min	Typ ⁽²⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾	Typ ⁽¹⁾	
T _J = -40°C	12	17	22.8	11.4	15.4	21.4			
T _J = 25°C	14.5	17	19.5	13	15.4	17.8	0	6	Inverted South pole
T _J = 150°C	12	17	22.8	11.4	15.4	21.4			pore

10.2. MLX92241LUA-BAA-103

DC Operating Parameters V_{DD} = 3.5V to 24V, T_J = -40°C to 165°C (unless otherwise specified)

Test Condition	Operating Point B _{OP} (mT)			Release Point B _{RP} (mT)			TC (ppm/°C)	loff (mA)	Active Pole	
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾	Typ ⁽¹⁾		
$T_J = -40^{\circ}C$	4.4	6.4	8.7	2.2	4.3	6.3				
T _J = 25°C	4.4	6	7.6	2.3	4	5.5	-1100	3.3	Inverted South pole	
T _J = 150°C	3.1	5.2	7.5	1.6	3.5	5.6			pole	

10.3. MLX92241LUA-BAA-106

DC Operating Parameters V_{DD} = 3.5V to 24V, T_J = -40°C to 165°C (unless otherwise specified)

Test Condition	Operating Point B _{OP} (mT)			Release Point B _{RP} (mT)			TC (ppm/°C)	loff (mA)	Active Pole
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Тур ⁽¹⁾	Typ ⁽¹⁾	
T _J = -40°C	2	4	6	1	2.7	5.5			
T _J = 25°C	2	4	6	1	2.7	5.5	0	6	Direct South pole
T _J = 150°C	2	4	6	1	2.7	5.5			pore

² Typical values are defined at $T_A = +25$ °C and $V_{DD} = 12V$.

¹ Final magnetic parameters will be covered in the ppap documentation set, the tables below are based on estimations and simula tions

10.4. MLX92241LUA-BAA-107

DC Operating Parameters V_{DD} = 3.5V to 24V, T_J = -40°C to 165°C (unless otherwise specified)

Test Condition	Operating Point B _{OP} (mT)			Release Point B _{RP} (mT)			TC (ppm/°C)	loff (mA)	Active Pole
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾	Typ ⁽¹⁾	
$T_J = -40^{\circ}C$	2.7	4.3	5.9	1.7	3.3	5.0			
$T_J = 25^{\circ}C$	2.8	4	5.2	1.8	3	4.2	-1100	6	Inverted South pole
T _J = 150°C	1.9	3.5	5.3	0.8	2.5	4.3			pore

10.5. MLX92241LUA-BAA-108

DC Operating Parameters V_{DD} = 3.5V to 24V, T_J = -40°C to 165°C (unless otherwise specified)

Test Condition	Operating Point B _{OP} (mT)		Release Point B _{RP} (mT)			TC (ppm/°C)	loff (mA)	Active Pole	
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Тур ⁽¹⁾	Typ ⁽¹⁾	
T _J = -40°C	5.9	8.5	10.9	3.5	5.5	7.9			
T _J = 25°C	6.1	7.9	9.5	3.9	5.3	7.0	-1100	3.3	Direct South pole
T _J = 150°C	3.8	6.8	9.6	2.7	5.0	8.2			pole

10.6. MLX92241LSE-BAA-019

DC Operating Parameters V_{DD} = 3.5V to 24V, T_J = -40°C to 165°C (unless otherwise specified)

Test Condition	Operating Point B _{OP} (mT)		Release Point B _{RP} (mT)			TC (ppm/°C)	loff (mA)	Active Pole	
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾	Typ ⁽¹⁾	
$T_J = -40^{\circ}C$	6	9.2	12	5	7.2	10.5			
T _J = 25°C	6	9.2	12	5	7.2	10.5	0	3.3	Inverted South pole
T _J = 150°C	5.7	9.2	12.5	4.6	7.2	11			pore

10.7. MLX92241LSE-BAA-021

```
DC Operating Parameters V_{DD} = 3.5V to 24V, T_J = -40°C to 165°C (unless otherwise specified)
```

Test Condition	Operating Point B _{op} (mT)		Release Point B _{RP} (mT)			TC (ppm/°C)	loff (mA)	Active Pole	
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾	Typ ⁽¹⁾	
T _J = -40°C	6	9.2	12	5	7.2	10.5			
T _J = 25°C	6	9.2	12	5	7.2	10.5	0	6	Inverted South pole
T _J = 150°C	5.7	9.2	12.5	4.6	7.2	11			pole

10.8. MLX92241LUA-BAA-110

DC Operating Parameters V_{DD} = 3.5V to 24V, T_J = -40°C to 165°C (unless otherwise specified)

Test Condition	Operating Point B _{OP} (mT)		R	Release Po B _{RP} (mT)	int	TC (ppm/°C)	loff (mA)	Active Pole	
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾	Typ ⁽¹⁾	
$T_J = -40^{\circ}C$	5.9	8.5	10.9	3.5	5.5	7.9	1100	c	Direct South
T _J = 25°C	6.1	7.9	9.5	3.9	5.3	7.0	-1100	6	pole

2-Wire Hall Effect Switch

h	-							·
T _J = 150°C	3.8	6.8	9.6	2.7	5.0	8.2		

10.9. MLX92241LUA-BAA-111

DC Operating Parameters $V_{DD} = 6V$ to 10V, $T_J = -40^{\circ}$ C to 165°C (unless otherwise specified)

Test Condition	Operating Point B _{OP} (mT)		Release Point B _{RP} (mT)			TC (ppm/°C)	loff (mA)	Active Pole	
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾	Typ ⁽¹⁾	
T _J = -40°C	2.4	3.9	5.5	1.4	2.7	4.1			
T _J = 25°C	2.5	3.8	5.1	1.5	2.6	3.7	0	6	Direct South pole
T _J = 150°C	2	3.8	5.7	1	2.6	4.3			pole

10.10. MLX92241LUA-BAA-112

DC Operating Parameters $V_{DD} = 6V$ to 10V, $T_J = -40^{\circ}$ C to 165°C (unless otherwise specified)

Test Condition	Operating Point B _{OP} (mT)		Release Point B _{RP} (mT)			TC (ppm/°C)	loff (mA)	Active Pole	
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾	Typ ⁽¹⁾	
T _J = -40°C	-5.5	-3.9	-2.4	-4.1	-2.7	-1.4			
T _J = 25°C	-5.1	-3.8	-2.5	-3.7	-2.6	-1.5	0	6	Inverted North pole
T _J = 150°C	-5.7	-3.8	-2	-4.3	-2.6	-1			pore

10.11. MLX92241LUA-BAA-113

DC Operating Parameters V_{DD} = 3.5V to 24V, T_J = -40°C to 165°C (unless otherwise specified)

Test Condition	Operating Point B _{OP} (mT)		Release Point B _{RP} (mT)			TC (ppm/°C)	loff (mA)	Active Pole	
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾	Typ ⁽¹⁾	
$T_J = -40^{\circ}C$	5.9	8.5	10.9	3.5	5.5	7.9			
$T_J = 25^{\circ}C$	6.1	7.9	9.5	3.9	5.3	7.0	-1100	3.3	Inverted South pole
T _J = 150°C	3.8	6.8	9.6	2.7	5.0	8.2			pole

10.12. MLX92241LSE-BAA-024

DC Operating Parameters V_{DD} = 3.5V to 24V, T_J = -40°C to 165°C (unless otherwise specified)

Test Condition	Operating Point B _{OP} (mT)		Release Point B _{RP} (mT)			TC (ppm/°C)	loff (mA)	Active Pole	
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾	Тур ⁽¹⁾	
$T_J = -40^{\circ}C$	6.5	8.7	11	5.2	7.3	9.8			
T _J = 25°C	6.5	8.7	11	5.2	7.3	9.8	0	6	Inverted South pole
T _J = 85°C	6.5	8.7	11	5.2	7.3	9.8			pole

11. Magnetic Behavior

11.1. Unipolar Switch sensor

Pole Active	Output Polarity	Remark
South	Direct	Fig.1
South	Inverted	Fig.2
North	Direct	Fig.3
North	Inverted	Fig.4

Fig.1 – Direct South Pole Active

Fig.3 – Direct North Pole Active

Fig.2 – Inverted South Pole Active

Fig.4 – Inverted North Pole Active

12. Application Information

12.1. Typical Automotive Application Circuit

Notes:

1. For proper operation, a 10 to 100nF bypass capacitor should be placed as close as possible to the V_{DD} and ground (GND) pin. For MLX92241LUA-BAA-1xx C1 is not required. 2. The TEST pin is to be connected to GND or left open.

12.2. Automotive and Harsh, Noisy Environments Application Circuit

Notes:

1. For proper operation, a 10 to 100nF bypass capacitor should be placed as close as possible to the V_{DD} and ground (GND) pin. For MLX92241LUA-BAA-1xx C1 is not required. 2. The device can tolerate positive voltages up to +28 (+32)V and negative voltages down to -24 (-30)V.

If bigger transients over the supply line are expected the usage of D1 and DZ1 (24...27V) is recommended.

The series resistor R1 is used to limit the current through DZ1 and to improve the EMC performance.

13. Standard information regarding manufacturability of Melexis products with different soldering processes

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods:

Reflow Soldering SMD's (Surface Mount Devices)

- IPC/JEDEC J-STD-020
 - Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)
- EIA/JEDEC JESD22-A113
 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2)

Wave Soldering SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

- EN60749-20 Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat
- EIA/JEDEC JESD22-B106 and EN60749-15
 Resistance to soldering temperature for through-hole mounted devices

Iron Soldering THD's (<u>Through Hole Devices</u>)

 EN60749-15 Resistance to soldering temperature for through-hole mounted devices

Solderability SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

 EIA/JEDEC JESD22-B102 and EN60749-21 Solderability

For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

Melexis recommends reviewing on our web site the General Guidelines <u>soldering recommendation</u> (<u>http://www.melexis.com/Quality_soldering.aspx</u>) as well as <u>trim&form recommendations</u> (<u>http://www.melexis.com/Assets/Trim-and-form-recommendations-5565.aspx</u>).

Melexis is contributing to global environmental conservation by promoting **lead free** solutions. For more information on qualifications of **RoHS** compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx

14. ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

15. Package Information

15.1. SE (TSOT-3L) Package Information

Notes:

- 1. All dimensions are in millimeters
- Outermost plastic extreme width does not include mold flash or protrusions. Mold flash and protrusions shall not exceed 0.15mm per side.
- Outermost plastic extreme length does not include mold flash or protrusions. Mold flash and protrusions shall not exceed 0.25mm per side.
- 4. The lead width dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.07mm total in excess of the lead width dimension at maximum material condition.
- 5. Dimension is the length of terminal for soldering to a substrate.
- Dimension on SECTION B-B' applies to the flat section of the lead between 0.08mm and 0.15mm from the lead tip.
- 7. Formed lead shall be planar with respect to one another with 0.076mm at seating plane.

END VIEW

Marking: <u>TOP:</u> 42WW WW: Assembly week <u>BOTTOM:</u> YLLL Y: Assembly Year LLL: Last 3 digits from lot#

Hall plate location

TOP VIEW

END VIEW

SE Pin №	Name	Туре	Function	3 cide
1	VDD	Supply	Supply Voltage pin	Top Marking Side
2	TEST	I/O	For Melexis use only	
3	GND	Ground	Ground pin	

Table 3: SE Package pinout

15.2. UA (TO92 - 3L) Package Information

Pin №	Name	Туре	Function
1	VDD	Supply	Supply Voltage pin
2	GND	Ground	Ground pin
3	TEST	I/O	For Melexis use only

15.3. UA (TO92 - 3L) with integrated capacitor Package Information

Ground

Ground pin

16. Contact

For the latest version of this document, go to our website at <u>www.melexis.com</u>.

For additional information, please contact our Direct Sales team and get help for your specific needs:

Europe, Africa	Telephone: +32 13 67 04 95
	Email : sales_europe@melexis.com
Americas	Telephone: +1 603 223 2362
	Email : sales_usa@melexis.com
Asia	Email : sales_asia@melexis.com

17. Disclaimer

The information furnished by Melexis herein ("Information") is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product(s) as described herein ("Product") (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, including warranties of fitness for particular purpose, non-infringement and merchantability. No obligation or liability shall arise or flow out of Melexis' rendering of technical or other services.

The Information is provided "as is" and Melexis reserves the right to change the Information at any time and without notice. Therefore, before placing orders and/or prior to designing the Product into a system, users or any third party should obtain the latest version of the relevant information to verify that the information being relied upon is current.

Users or any third party must further determine the suitability of the Product for its application, including the level of reliability required and determine whether it is fit for a particular purpose.

The Information is proprietary and/or confidential information of Melexis and the use thereof or anything described by the Information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights.

This document as well as the Product(s) may be subject to export control regulations. Please be aware that export might require a prior authorization from competent authorities.

The Product(s) are intended for use in normal commercial applications. Unless otherwise agreed upon in writing, the Product(s) are not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or life-sustaining equipment are specifically not recommended by Melexis.

The Product(s) may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of 1) chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons: 2) civil firearms, including spare parts or ammunition for such arms; 3) defense related products, or other material for military use or for law enforcement; 4) any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation.

The Products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found at https://www.melexis.com/en/legal/terms-andconditions.

This document supersedes and replaces all prior information regarding the Product(s) and/or previous versions of this document.

Melexis NV © - No part of this document may be reproduced without the prior written consent of Melexis. (2016)

ISO/TS 16949 and ISO14001 Certified