Analog Multiplexers/Demultiplexers The NLHV4051, NLHV4052, and NLHV4053 analog multiplexers are digitally-controlled analog switches. The NLHV4051 effectively implements an SP8T solid state switch, the NLHV4052 a DP4T, and the NLHV4053 a Triple SPDT. All three devices feature low ON impedance and very low OFF leakage current. Control of analog signals up to the complete supply voltage range can be achieved. #### **Features** - Triple Diode Protection on Control Inputs - Switch Function is Break Before Make - Supply Voltage Range = 3.0 Vdc to 18 Vdc - Analog Voltage Range (V_{DD} V_{EE}) = 3.0 to 18 V Note: V_{EE} must be ≤ V_{SS} - Linearized Transfer Characteristics - Low-noise 12 nV/ $\sqrt{\text{Cycle}}$, f \geq 1.0 kHz Typical - Pin-for-Pin Replacement for CD4051, CD4052, and CD4053 - For 4PDT Switch, See MC14551B - For Lower R_{ON}, Use the HC4051, HC4052, or HC4053 High–Speed CMOS Devices - These Devices are Pb-Free and are RoHS Compliant #### MAXIMUM RATINGS (Voltages Referenced to VSS) | Symbol | Parameter | Value | Unit | |---------------------------------------|---|-------------------------------|------| | V _{DD} | DC Supply Voltage Range (Referenced to V_{EE} , $V_{SS} \ge V_{EE}$) | -0.5 to +18.0 | ٧ | | V _{in} ,
V _{out} | Input or Output Voltage Range (DC or Transient) (Referenced to V _{SS} for Control Inputs and V _{EE} for Switch I/O) | -0.5 to V _{DD} + 0.5 | ٧ | | I _{in} | Input Current (DC or Transient)
per Control Pin | +10 | mA | | I _{SW} | Switch Through Current | ±25 | mA | | P _D | Power Dissipation per Package (Note 1) | 500 | mW | | T _A | Ambient Temperature Range | -55 to +125 | °C | | T _{stg} | Storage Temperature Range | -65 to +150 | °C | | TL | Lead Temperature (8–Second Soldering) | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Temperature Derating: "D/DW" Packages: -7.0 mW/°C From 65°C To 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} , V_{EE} or V_{DD}). Unused outputs must be left open. #### ON Semiconductor® www.onsemi.com **CASE 948F** #### **MARKING DIAGRAMS** TSSOP-16 x = 1, 2, or 3 A = Assembly Location WL, L = Wafer Lot Y = Year Y = Year WW, W = Work Week G or ■ = Pb–Free Package (Note: Microdot may be in either location) #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet. Note: Control Inputs referenced to V_{SS} , Analog Inputs and Outputs reference to V_{EE} . V_{EE} must be $\leq V_{SS}$. #### **ELECTRICAL CHARACTERISTICS** | | | | | –55°C | | 25°C | | 125°C | | | | |--|---------------------|-----------------|---|------------------|-------------------|------------------|--|-----------------------|------------------|--------------------|-----------------| | Characteristic | Symbol | V _{DD} | Test Conditions | Min | Max | Min | Typ
(Note 2) | Max | Min | Max | Unit | | SUPPLY REQUIREMENTS | (Voltages I | | nced to V _{EF}) | I | 1 | I | | I | I | | 1 | | Power Supply Voltage
Range | V _{DD} | - | $V_{DD} - 3.0 \ge V_{SS} \ge V_{EE}$ | 3.0 | 18 | 3.0 | _ | 18 | 3.0 | 18 | V | | Quiescent Current Per
Package | I _{DD} | 5.0
10
15 | Control Inputs: $\begin{aligned} &V_{in} = V_{SS} \text{ or } V_{DD}, \\ &Switch \text{ I/O: } V_{EE} \leq V_{\text{I/O}} \leq \\ &V_{DD}, \text{ and } \Delta V_{switch} \leq \\ &500 \text{ mV (Note 3)} \end{aligned}$ | | 5.0
10
20 | | 0.005
0.010
0.015 | 5.0
10
20 | | 150
300
600 | μΑ | | Total Supply Current
(Dynamic Plus
Quiescent, Per Package | I _{D(AV)} | 5.0
10
15 | T _A = 25°C only (The channel component, (V _{in} – V _{out})/R _{on} , is not included.) | | Typical | (| (0.07 μΑ/kHz
(0.20 μΑ/kHz
(0.36 μΑ/kHz |) f + I _{DD} |) | | μА | | CONTROL INPUTS — INHII | BIT, A, B, | C (Volta | ages Referenced to V _{SS}) | | | | | | | | | | Low-Level Input Voltage | V _{IL} | 5.0
10
15 | R _{on} = per spec,
I _{off} = per spec | -
-
- | 1.5
3.0
4.0 | -
-
- | 2.25
4.50
6.75 | 1.5
3.0
4.0 | -
-
- | 1.5
3.0
4.0 | V | | High-Level Input Voltage | V _{IH} | 5.0
10
15 | R _{on} = per spec,
I _{off} = per spec | 3.5
7.0
11 | -
-
- | 3.5
7.0
11 | 2.75
5.50
8.25 | -
-
- | 3.5
7.0
11 | -
-
- | V | | Input Leakage Current | I _{in} | 15 | $V_{in} = 0 \text{ or } V_{DD}$ | - | ±0.1 | - | ±0.00001 | ±0.1 | - | 1.0 | μΑ | | Input Capacitance | C _{in} | - | | _ | - | _ | 5.0 | 7.5 | _ | _ | pF | | SWITCHES IN/OUT AND CO | OMMONS | OUT/II | N — X, Y, Z (Voltages Refere | nced to | V _{EE}) | | | | | | | | Recommended Peak-to-Peak Voltage Into or Out of the Switch | V _{I/O} | ı | Channel On or Off | 0 | V _{DD} | 0 | _ | V _{DD} | 0 | V _{DD} | V _{PP} | | Recommended Static or
Dynamic Voltage Across
the Switch (Note 3)
(Figure 5) | ΔV_{switch} | ı | Channel On | 0 | 600 | 0 | - | 600 | 0 | 300 | mV | | Output Offset Voltage | V _{OO} | ı | V _{in} = 0 V, No Load | - | - | - | 10 | - | - | - | μV | | ON Resistance | R _{on} | 5.0
10
15 | $\begin{array}{l} \Delta V_{\text{switch}} \leq 500 \text{ mV} \\ \text{(Note 3) } V_{\text{in}} = V_{\text{IL}} \text{ or } V_{\text{IH}} \\ \text{(Control), and } V_{\text{in}} = \\ 0 \text{ to } V_{DD} \text{(Switch)} \end{array}$ | -
-
- | 800
400
220 | -
-
- | 250
120
80 | 1050
500
280 | -
-
- | 1200
520
300 | Ω | | Δ ON Resistance Between Any Two Channels in the Same Package | ΔR_{on} | 5.0
10
15 | | -
-
- | 70
50
45 | -
-
- | 25
10
10 | 70
50
45 | -
-
- | 135
95
65 | Ω | | Off–Channel Leakage
Current (Figure 10) | l _{off} | 15 | V _{in} = V _{IL} or V _{IH}
(Control) Channel to
Channel or Any One
Channel | - | ±100 | - | ±0.05 | ±100 | - | ±1000 | nA | | Capacitance, Switch I/O | C _{I/O} | ı | Inhibit = V _{DD} | _ | _ | _ | 10 | _ | _ | _ | pF | | Capacitance, Common O/I | C _{O/I} | - | Inhibit = V _{DD}
(NLHV4051)
(NLHV4052)
(NLHV4053) | -
-
- | -
-
- | -
-
- | 60
32
17 | -
-
- | -
-
- | -
-
- | pF | | Capacitance, Feedthrough (Channel Off) | C _{I/O} | | Pins Not Adjacent
Pins Adjacent | -
- | _
_ | -
- | 0.15
0.47 | -
- | _
_ | - | pF | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. ^{2.} Data labeled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance. For voltage drops across the switch (ΔV_{switch}) > 600 mV (> 300 mV at high temperature), excessive V_{DD} current may be drawn, i.e. the current out of the switch may contain both V_{DD} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. (See first page of this data sheet.) $\textbf{ELECTRICAL CHARACTERISTICS} \text{ (Note 4) } (C_L = 50 \text{ pF, } T_A = 25^{\circ}\text{C) } \text{ ($V_{EE} \leq V_{SS}$ unless otherwise indicated)}$ | Characteristic | Symbol | V _{DD} – V _{EE} | Typ (Note 5) All Types | Max | Unit | |--|--|-----------------------------------|------------------------|-------------------|------| | Propagation Delay Times (Figure 6) Switch Input to Switch Output ($R_L = 1 \text{ k}\Omega$) NLHV4051 | t _{PLH} , t _{PHL} | | | | ns | | t_{PLH} , t_{PHL} = (0.17 ns/pF) C_L + 26.5 ns t_{PLH} , t_{PHL} = (0.08 ns/pF) C_L + 11 ns t_{PLH} , t_{PHL} = (0.06 ns/pF) C_L + 9.0 ns | | 5.0
10
15 | 35
15
12 | 90
40
30 | | | NLHV4052 $t_{PLH}, t_{PHL} = (0.17 \text{ ns/pF}) \text{ C}_{L} + 21.5 \text{ ns} $ $t_{PLH}, t_{PHL} = (0.08 \text{ ns/pF}) \text{ C}_{L} + 8.0 \text{ ns} $ $t_{PLH}, t_{PHL} = (0.06 \text{ ns/pF}) \text{ C}_{L} + 7.0 \text{ ns} $ | | 5.0
10
15 | 30
12
10 | 75
30
25 | ns | | NLHV4053 $t_{PLH}, t_{PHL} = (0.17 \text{ ns/pF}) \text{ C}_{L} + 16.5 \text{ ns} \\ t_{PLH}, t_{PHL} = (0.08 \text{ ns/pF}) \text{ C}_{L} + 4.0 \text{ ns} \\ t_{PLH}, t_{PHL} = (0.06 \text{ ns/pF}) \text{ C}_{L} + 3.0 \text{ ns}$ | | 5.0
10
15 | 25
8.0
6.0 | 65
20
15 | ns | | Inhibit to Output ($R_L = 10 \text{ k}\Omega$, $V_{EE} = V_{SS}$)
Output "1" or "0" to High Impedance, or
High Impedance to "1" or "0" Level | t _{PHZ} , t _{PLZ} ,
t _{PZH} , t _{PZL} | | | | ns | | NLHV4051 | | 5.0
10
15 | 350
170
140 | 700
340
280 | | | NLHV4052 | | 5.0
10
15 | 300
155
125 | 600
310
250 | ns | | NLHV4053 | | 5.0
10
15 | 275
140
110 | 550
280
220 | ns | | Control Input to Output (R _L = 1 k Ω , V _{EE} = V _{SS})
NLHV4051 | t _{PLH} , t _{PHL} | 5.0
10
15 | 360
160
120 | 720
320
240 | ns | | NLHV4052 | | 5.0
10
15 | 325
130
90 | 650
260
180 | ns | | NLHV4053 | | 5.0
10
15 | 300
120
80 | 600
240
160 | ns | | Second Harmonic Distortion $(R_L = 10K\Omega, f = 1 \text{ kHz}) V_{in} = 5 V_{PP}$ | - | 10 | 0.07 | _ | % | | Bandwidth (Figure 7) $ (R_L = 50 \ \Omega, \ V_{in} = 1/2 \ (V_{DD} - V_{EE}) \ p-p, \ C_L = 50 pF \\ 20 \ Log \ (V_{out} / V_{in}) = -3 \ dB) $ | BW | 10 | 17 | _ | MHz | | Off Channel Feedthrough Attenuation (Figure 7) $R_L = 1K\Omega, V_{in} = 1/2 (V_{DD} - V_{EE}) p-p$ $f_{in} = 4.5 \text{ MHz} - \text{NLHV4051}$ $f_{in} = 30 \text{ MHz} - \text{NLHV4052}$ $f_{in} = 55 \text{ MHz} - \text{NLHV4053}$ | - | 10 | -50 | - | dB | | Channel Separation (Figure 8) $ (R_L = 1 \text{ k}\Omega, \text{ V}_{\text{in}} = 1/2 \text{ (V}_{\text{DD}} \text{V}_{\text{EE}}) \text{ pp}, \\ f_{\text{in}} = 3.0 \text{ MHz} $ | - | 10 | -50 | - | dB | | Crosstalk, Control Input to Common O/I (Figure 9) $(R_1 = 1 \text{ k}\Omega, \ R_L = 10 \text{ k}\Omega$ $\text{Control } t_{TLH} = t_{THL} = 20 \text{ ns, Inhibit} = V_{SS})$ | _ | 10 | 75 | _ | mV | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. ^{4.} The formulas given are for the typical characteristics only at 25°C. 5. Data labelled "Typ" is not lo be used for design purposes but In intended as an indication of the IC's potential performance. Figure 1. Switch Circuit Schematic #### **TRUTH TABLE** | Conti | rol In | puts | 3 | | | | | | | |---------|--------|------|---|----------|----------|------------|----------|------|----| | | S | elec | t | | ON S | N Switches | | | | | Inhibit | C* | В | Α | NLHV4051 | NLHV4052 | | NLHV4053 | | 53 | | 0 | 0 | 0 | 0 | X0 | Y0 | X0 | Z0 | Y0 | X0 | | 0 | 0 | 0 | 1 | X1 | Y1 | X1 | Z0 | Y0 | X1 | | 0 | 0 | 1 | 0 | X2 | Y2 | X2 | Z0 | Y1 | X0 | | 0 | 0 | 1 | 1 | Х3 | Y3 | Х3 | Z0 | Y1 | X1 | | 0 | 1 | 0 | 0 | X4 | | | Z1 | Y0 | X0 | | 0 | 1 | 0 | 1 | X5 | | | Z1 | Y0 | X1 | | 0 | 1 | 1 | 0 | X6 | | | Z1 | Y1 | X0 | | 0 | 1 | 1 | 1 | X7 | | | Z1 | Y1 | X1 | | 1 | Х | Х | Х | None | No | ne | | None | | *Not applicable for MC14052 x = Don't Care Figure 2. NLHV4051 Functional Diagram Figure 3. NLHV4052 Functional Diagram Figure 4. NLHV4053 Functional Diagram #### **TEST CIRCUITS** Figure 5. ΔV Across Switch Figure 6. Propagation Delay Times, Control and Inhibit to Output A, B, and C inputs used to turn ON or OFF the switch under test. Figure 7. Bandwidth and Off-Channel Feedthrough Attenuation Figure 8. Channel Separation (Adjacent Channels Used For Setup) Figure 9. Crosstalk, Control Input to Common O/I NOTE: See also Figures 7 and 8 in the MC14016B data sheet. Figure 10. Off Channel Leakage Figure 11. Channel Resistance (R_{ON}) Test Circuit #### TYPICAL RESISTANCE CHARACTERISTICS www.onsemi.com #### APPLICATIONS INFORMATION Figure A illustrates use of the on-chip level converter detailed in Figures 2, 3, and 4. The 0-to-5 V Digital Control signal is used to directly control a 9 V_{p-p} analog signal. The digital control logic levels are determined by V_{DD} and V_{SS}. The V_{DD} voltage is the logic high voltage; the V_{SS} voltage is logic low. For the example, $V_{DD} = +5 \text{ V} = \text{logic}$ high at the control inputs; $V_{SS} = GND = 0 \text{ V} = \text{logic low}$. The maximum analog signal level is determined by V_{DD} and V_{EE}. The V_{DD} voltage determines the maximum recommended peak above VSS. The VEE voltage determines the maximum swing below VSS. For the example, $V_{DD} - V_{SS} = 5 \text{ V}$ maximum swing above V_{SS} ; $V_{SS} - V_{EE} = 5 \text{ V}$ maximum swing below V_{SS} . The example shows a ±4.5 V signal which allows a 1/2 volt margin at each peak. If voltage transients above V_{DD} and/or below V_{EE} are anticipated on the analog channels, external diodes (Dx) are recommended as shown in Figure B. These diodes should be small signal types able to absorb the maximum anticipated current surges during clipping. The absolute maximum potential difference between V_{DD} and V_{EE} is 18.0 V. Most parameters are specified up to 15 V which is the recommended maximum difference between V_{DD} and V_{EE}. Balanced supplies are not required. However, V_{SS} must be greater than or equal to V_{EE} . For example, $V_{DD} = +10 \text{ V}$, $V_{SS} = +5$ V, and $V_{EE} - 3$ V is acceptable. See the Table Figure A. Application Example Figure B. External Germanium or Schottky Clipping Diodes #### POSSIBLE SUPPLY CONNECTIONS | V _{DD}
In Volts | V _{SS}
In Volts | V _{EE}
In Volts | Control Inputs
Logic High/Logic Low
In Volts | Maximum Analog Signal Range
In Volts | |-----------------------------|-----------------------------|-----------------------------|--|---| | +8 | 0 | -8 | +8/0 | $+8 \text{ to } -8 = 16 \text{ V}_{p-p}$ | | +5 | 0 | -12 | +5/0 | $+5 \text{ to } -12 = 17 \text{ V}_{p-p}$ | | +5 | 0 | 0 | +5/0 | $+5 \text{ to } 0 = 5 \text{ V}_{p-p}$ | | +5 | 0 | - 5 | +5/0 | $+5 \text{ to } -5 = 10 \text{ V}_{p-p}$ | | +10 | +5 | -5 | +10/ +5 | +10 to -5 = 15 V _{p-p} | #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-----------------------------------|-----------------------|-----------------------| | NLHV4051DR2G | SOIC-16
(Pb-Free) | 2500 / Tape & Reel | | NLHV4051DTR2G | TSSOP-16
(Pb-Free) | 2500 / Tape & Reel | | | | | | NLHV4052DR2G | SOIC-16
(Pb-Free) | 2500 / Tape & Reel | | NLHV4052DTR2G | TSSOP-16
(Pb-Free) | 2500 / Tape & Reel | | | | | | NLHV4053DR2G
(In Development) | SOIC-16
(Pb-Free) | 2500 / Tape & Reel | | NLHV4053DTR2G
(In Development) | TSSOP-16
(Pb-Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### **PACKAGE DIMENSIONS** #### TSSOP-16 **DT SUFFIX** CASE 948F **ISSUE B** #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER - A. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. - 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. - TERMINAL NUMBERS ARE SHOWN FOR - ETHININAL MONIBLE OF A SECTION AS SEC | | MILLIN | IETERS | INC | HES | | |-----|----------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | | В | 4.30 | 4.50 | 0.169 | 0.177 | | | С | | 1.20 | - | 0.047 | | | D | 0.05 | 0.15 | 0.002 | 0.006 | | | F | 0.50 | 0.75 | 0.020 | 0.030 | | | G | 0.65 | BSC | 0.026 BSC | | | | Н | 0.18 | 0.28 | 0.007 | 0.011 | | | J | 0.09 | 0.20 | 0.004 | 0.008 | | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | | K | 0.19 | 0.30 | 0.007 | 0.012 | | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | | L | 6.40 BSC | | 0.252 | BSC | | | М | 0° | 8° | 0° | 8° | | #### SOLDERING FOOTPRINT* *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### PACKAGE DIMENSIONS - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. - DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. - MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. - DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIN | IETERS | INC | HES | |-----|--------|--------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.054 | 0.068 | | D | 0.35 | 0.49 | 0.014 | 0.019 | | F | 0.40 | 1.25 | 0.016 | 0.049 | | G | 1.27 | BSC | 0.050 | BSC | | J | 0.19 | 0.25 | 0.008 | 0.009 | | K | 0.10 | 0.25 | 0.004 | 0.009 | | M | 0° | 7° | 0° | 7° | | P | 5.80 | 6.20 | 0.229 | 0.244 | | R | 0.25 | 0.50 | 0.010 | 0.019 | #### **SOLDERING FOOTPRINT*** **DIMENSIONS: MILLIMETERS** ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative Phone: 81–3–5817–1050 ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.