Dual 4-Input Multiplexer

The MC74AC153/74ACT153 is a high–speed dual 4–input multiplexer with common select inputs and individual enable inputs for each section. It can select two lines of data from four sources. The two buffered outputs present data in the true (non–inverted) form. In addition to multiplexer operation, the MC74AC153/74ACT153 can act as a function generator and generate any two functions of three variables.

- Outputs Source/Sink 24 mA
- 'ACT153 Has TTL Compatible Inputs
- These are Pb–Free Devices

Figure 1. Pinout: 16–Lead Packages Conductors (Top View)

PIN ASSIGNMENT

PIN	FUNCTION				
I _{0a} –I _{3a}	Side A Data Inputs				
I _{0b} –I _{3b}	Side B Data Inputs				
S ₀ , S ₁	Common Select Inputs				
Ēa	Side A Enable Input				
Ēb	Side B Enable Input				
Za	Side A Output				
Zb	Side B Output				

TRUTH TABLE

Select Inputs			Output				
S ₀	S ₁	Ē	I ₀	I ₁	l ₂	I ₃	Z
Х	Х	Н	Х	Х	Х	Х	L
L	L	L	L	Х	Х	Х	L
L	L	L	Н	Х	Х	Х	Н
Н	L	L	Х	L	Х	Х	L
Н	L	L	х	Н	х	х	н
L	Н	L	Х	Х	L	Х	L
L	Н	L	Х	Х	Н	Х	Н
Н	Н	L	Х	Х	Х	L	L
Н	Н	L	Х	Х	Х	Н	Н

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

ON Semiconductor®

www.onsemi.com

		MARKING DIAGRAMS
16 Prestate	SOIC-16 D SUFFIX CASE 751B	16 XXX153G AWLYWW 1 UUUUUUUU 1
16- Ference	TSSOP-16 DT SUFFIX CASE 948F	
xxx	= AC or AC	
A WL or L	= Assembly = Wafer Lot	Location
Y	= Year	
	/ = Work Wee	
G or ■	= Pb–Free F	0
(Note: Microc	lot may be in	either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

Figure 2. Logic Symbol

FUNCTIONAL DESCRIPTION

The MC74AC153/74ACT153 is a dual 4–input multiplexer. It can select two bits of data from up to four sources under the control of the common Select inputs (S₀, S₁). The two 4–input multiplexer circuits have individual active–LOW Enables ($\overline{E}_{a}, \overline{E}_{b}$) which can be used to strobe the outputs independently. When the Enables ($\overline{E}_{a}, \overline{E}_{b}$) are HIGH, the corresponding outputs (Z_a, Z_b) are forced LOW. The MC74AC153/74ACT153 is the logic implementation of a 2–pole, 4–position switch, where the position of the switch is determined by the logic levels supplied to the two Select inputs. The logic equations for the outputs are shown below.

$$Z_{a} = \overline{E}_{a} \bullet (I_{0a} \bullet \overline{S}_{1} \bullet \overline{S}_{0} + I_{1a} \bullet \overline{S}_{1} \bullet S_{0} + I_{2a} \bullet S_{1} \bullet \overline{S}_{0} + I_{3a} \bullet S_{1} \bullet S_{0})$$

$$Z_{b} = \overline{E}_{b} \bullet (I_{0b} \bullet \overline{S}_{1} \bullet \overline{S}_{0} + I_{1b} \bullet \overline{S}_{1} \bullet S_{0} + I_{2b} \bullet S_{1} \bullet \overline{S}_{0} + I_{3b} \bullet S_{1} \bullet S_{0})$$

Figure 3. Logic Diagram

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
VI	DC Input Voltage		$-0.5 \leq V_{I} \leq V_{CC} + 0.5$	V
Vo	DC Output Voltage	(Note 1)	$-0.5 \leq V_O \leq V_{CC} + 0.5$	V
I _{IK}	DC Input Diode Current		±20	mA
I _{OK}	DC Output Diode Current		±50	mA
I _O	DC Output Sink/Source Current		±50	mA
I _{CC}	DC Supply Current per Output Pin		±50	mA
I _{GND}	DC Ground Current per Output Pin		±50	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead temperature, 1 mm from Case for 10 Seconds	ad temperature, 1 mm from Case for 10 Seconds 260		
TJ	Junction temperature under Bias		+ 150	°C
θ_{JA}	Thermal Resistance (Note 2)	SOIC TSSOP	69.1 103.8	°C/W
P _D	Power Dissipation in Still Air at 65°C (Note 3)	SOIC TSSOP	500 500	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating Oxyger	n Index: 30% – 35%	UL 94 V-0 @ 0.125 in	
V _{ESD}	Mac	Body Model (Note 4) hine Model (Note 5) vice Model (Note 6)	> 2000 > 200 > 1000	V
I _{Latch-Up}	Latch–Up Performance Above V _{CC} and Below G	ND at 85°C (Note 7)	±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. I_O absolute maximum rating must be observed.

2. The package thermal impedance is calculated in accordance with JESD51-7.

3. 500 mW at 65°C; derate to 300 mW by 10 mW/ from 65°C to 85°C.

4. Tested to EIA/JESD22-A114-A.

5. Tested to EIA/JESD22-A115-A.

6. Tested to JESD22-C101-A.

7. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Unit	
		Ϋ́AC	2.0	5.0	6.0	
V _{CC}	Supply Voltage	Ϋ́ACT	4.5	5.0	5.5	V
V _{IN} , V _{OUT}	DC Input Voltage, Output Voltage (Ref. to GND)		0	-	V _{CC}	V
		V _{CC} @ 3.0 V	_	150	_	
T T/	Input Rise and Fall Time (Note 1) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V	-	40	-	ns/V
		V _{CC} @ 5.5 V	-	25	_	1
	Input Rise and Fall Time (Note 2)	V _{CC} @ 4.5 V	_	10	_	
t _r , t _f	ACT Devices except Schmitt Inputs	V _{CC} @ 5.5 V	_	8.0	_	ns/V
TJ	Junction Temperature (PDIP)	·	_	-	140	°C
T _A	Operating Ambient Temperature Range	-40	25	85	°C	
I _{OH}	Output Current – High	_	-	-24	mA	
I _{OL}	Output Current – Low	_	-	24	mA	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

1. V_{IN} from 30% to 70% V_{CC} ; see individual Data Sheets for devices that differ from the typical input rise and fall times. 2. V_{IN} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

			74	AC	74AC		
Symbol	Parameter	V _{CC} (V)	T _A = +25°C		T _A = −40°C to +85°C	Unit	Conditions
			Тур	Gua	aranteed Limits		
V _{IH}	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	V	I _{OUT} = -50 μA
		3.0 4.5 5.5	- - -	2.56 3.86 4.86	2.46 3.76 4.76	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ -12 mA I_{OH} -24 mA -24 mA
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	V	I _{OUT} = 50 μA
		3.0 4.5 5.5	- - -	0.36 0.36 0.36	0.44 0.44 0.44	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ 12 mA I_{OL} 24 mA 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	_	±0.1	±1.0	μΑ	$V_I = V_{CC}, GND$
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	_	8.0	80	μΑ	$V_{IN} = V_{CC}$ or GND

*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

NOTE: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC}.

AC CHARACTERISTICS

				74AC		74/	AC		
Symbol	Parameter		T, C	_A = +25° S _L = 50 p	C F	T _A = -40°C C _L = 5		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay S _n to Z _n	3.3 5.0	2.5 2.0	9.5 6.5	15.0 11.0	2.5 2.0	17.5 12.5	ns	3–6
t _{PHL}	Propagation Delay S _n to Z _n	3.3 5.0	3.0 2.5	8.5 6.5	14.5 11.0	2.5 2.0	16.5 12.0	ns	3–6
t _{PLH}	Propagation Delay \overline{E}_n to Z_n	3.3 5.0	2.5 1.5	8.0 5.5	13.5 9.5	2.0 1.5	16.0 11.0	ns	3–6
t _{PHL}	Propagation Delay \overline{E}_n to Z_n	3.3 5.0	2.5 2.0	7.0 5.0	11.0 8.0	2.0 1.5	12.5 9.0	ns	3–6
t _{PLH}	Propagation Delay I_n to Z_n	3.3 5.0	2.5 1.5	7.5 5.5	12.5 9.0	2.0 1.5	14.5 10.5	ns	3–5
t _{PHL}	Propagation Delay I_n to Z_n	3.3 5.0	1.5 1.5	7.0 5.0	11.5 8.5	1.5 1.5	13.0 10.0	ns	3–5

*Voltage Range 3.3 V is 3.3 V ± 0.3 V. *Voltage Range 5.0 V is 5.0 V ± 0.5 V.

DC CHARACTERISTICS

			744	СТ	74ACT		
Symbol	Parameter	V _{CC} (V)	T _A = +25°C		T _A = –40°C to +85°C	Unit	Conditions
			Тур	Gua	aranteed Limits		
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	I _{OUT} = -50 μA
		4.5 5.5		3.86 4.86	3.76 4.76	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ -24 mA V_{OH} -24 mA
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	I _{OUT} = 50 μA
		4.5 5.5		0.36 0.36	0.44 0.44	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ 24 mA V_{OL} 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	$V_I = V_{CC}, GND$
ΔI_{CCT}	Additional Max. I _{CC} /Input	5.5	0.6	-	1.5	mA	$V_{I} = V_{CC} - 2.1 V$
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min
Icc	Maximum Quiescent Supply Current	5.5	_	8.0	80	μΑ	$V_{IN} = V_{CC}$ or GND

*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS

				74ACT		74A	CT		
Symbol	Parameter	V _{CC} * (V)				T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay S _n to Z _n	5.0	3.0	7.0	11.5	2.0	13.5	ns	3–6
t _{PHL}	Propagation Delay S _n to Z _n	5.0	3.0	7.0	11.5	2.5	13.5	ns	3–6
t _{PLH}	Propagation Delay \overline{E}_n to Z_n	5.0	2.0	6.5	10.5	2.0	12.5	ns	3–6
t _{PHL}	Propagation Delay \overline{E}_n to Z_n	5.0	3.0	6.0	9.5	2.5	11.0	ns	3–6
t _{PLH}	Propagation Delay I_n to Z_n	5.0	2.5	5.5	9.5	2.0	11.0	ns	3–5
t _{PHL}	Propagation Delay I _n to Z _n	5.0	2.0	5.5	9.5	2.0	11.0	ns	3–5

*Voltage Range 5.0 V is 5.0 V ± 0.5 V.

CAPACITANCE

Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	65	pF	$V_{CC} = 5.0 V$

ORDERING INFORMATION

Device Order Number	Package	Shipping [†]
MC74AC153DG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74AC153DR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74AC153DTR2G	TSSOP-16 (Pb-Free)	2500 Tape & Reel
MC74ACT153DG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74ACT153DR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74ACT153DTR2G	TSSOP-16 (Pb-Free)	2500 Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOIC-16		PAGE 1 OF 1				
ON Semiconductor and ()) are trac ON Semiconductor reserves the right	demarks of Semiconductor Components Indu: to make changes without further notice to an	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation	and/or other countries. or guarantee regarding				

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative