ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Octal Bus Buffer

Inverting

The MC74LVX540 is an advanced high speed CMOS inverting octal bus buffer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The MC74LVX540 features inputs and outputs on opposite sides of the package and two AND–ed active–low output enables. When either $\overline{OE1}$ or $\overline{OE2}$ are high, the terminal outputs are in the high impedance state.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7.0 V, allowing the interface of 5.0 V systems to 3.0 V systems.

Features

- High Speed: $t_{PD} = 5.0$ ns (Typ) at $V_{CC} = 3.3$ V
- Low Power Dissipation: $I_{CC} = 4 \ \mu A$ (Max) at $T_A = 25^{\circ}C$
- High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Designed for 2.0 V to 3.6 V Operating Range
- Low Noise: $V_{OLP} = 1.2 V (Max)$
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- Chip Complexity: 124 FETs or 31 Equivalent Gates
- ESD Performance:

Human Body Model > 2000 V; Machine Model > 200 V

• Pb–Free Packages are Available*

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

OE1	1●	20] V _{CC}
A1 [2	19] <u>0E2</u>
A2 [3	18] <u>71</u>
A3 [4	17] <u>72</u>
A4 [5	16] <u>73</u>
A5 [6	15] <u>74</u>
A6 [7	14] <u>Y5</u>
A7 [8	13] <u>Y6</u>
A8 [9	12] <u>77</u>
GND [10	11] <u>78</u>

Figure 2. PIN ASSIGNMENT

Figure 3. IEC LOGIC DIAGRAM

FUNCTION TABLE

	Inputs		Output Y	
OE1	OE2	Α	Output	
L	L	L	н	
L L	L	н	L	
н	Х	Х	Z	
X	Н	Х	Z	

MAXIMUM RATINGS

Symbol	Paramete	r	Value	Unit
V _{CC}	DC Supply Voltage		- 0.5 to + 7.0	V
V _{in}	DC Input Voltage		- 0.5 to + 7.0	V
V _{out}	DC Output Voltage		-0.5 to V _{CC} + 0.5	V
I _{IK}	Input Diode Current		-20	mA
I _{ОК}	Output Diode Current		±20	mA
I _{out}	DC Output Current, per Pin		±25	mA
I _{CC}	DC Supply Current, V_{CC} and G	ND Pins	±75	mA
PD	Power Dissipation in Still Air,	SOIC Packages† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature		– 65 to + 150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

†Derating — SOIC Packages: - 7 mW/°C from 65° to 125°C

TSSOP Package: - 6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage	2.0	3.6	V
V _{in}	DC Input Voltage	0	5.5	V
V _{out}	DC Output Voltage	0	V _{CC}	V
T _A	Operating Temperature, All Package Types	-40	+85	°C
t _r , t _f	Input Rise and Fall Time V _{CC} = 3.3 V \pm 0.3 V (See Figure 4)	0	100	ns/V

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74LVX540M	SOEIAJ-20	50 Units / Rail
MC74LVX540MG	SOEIAJ-20 (Pb-Free)	50 Units / Rail
MC74LVX540MEL	SOEIAJ-20	2000 Tape & Reel
MC74LVX540MELG	SOEIAJ-20 (Pb-Free)	2000 Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC}. Unused inputs must always be

This device contains protection

tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

DC ELECTRICAL CHARACTERISTICS

			v _{cc}	T _A = 25°C		$T_A = -40$	D to 85°C		
Symbol	Parameter	Test Conditions	V	Min	Тур	Max	Min	Max	Unit
V _{IH}	Minimum High-Level Input Voltage		2.0 3.0 3.6	1.50 2.0 2.4			1.50 2.0 2.4		V
V _{IL}	Maximum Low-Level Input Voltage		2.0 3.0 3.6			0.50 0.80 0.80		0.50 0.80 0.80	V
V _{OH}		$I_{OH} = -50 \ \mu A$ $I_{OH} = -50 \ \mu A$ $I_{OH} = -4 \ m A$	2.0 3.0 3.0	1.9 2.9 2.58	2.0 3.0		1.9 2.9 2.48		V
V _{OL}	Maximum Low–Level Output Voltage $V_{in} = V_{IH}$ or V_{IL}	$I_{OL} = 50 \ \mu A$ $I_{OL} = 50 \ \mu A$ $I_{OL} = 4 \ m A$	2.0 3.0 3.0		0.0 0.0	0.1 0.1 0.36		0.1 0.1 0.44	V
l _{in}	Maximum Input Leakage Current	V _{in} = 5.5 V or GND	0 to 3.6			±0. 1		± 1.0	μΑ
l _{oz}	Maximum 3–State Leakage Current	$V_{in} = V_{IL} \text{ or } V_{IH}$ $V_{out} = V_{CC} \text{ or } GND$	3.6			±0. 25		±2.5	μΑ
I _{CC}	Maximum Quiescent Supply Current	$V_{in} = V_{CC} \text{ or } GND$	3.6			4.0		40.0	μΑ

AC ELECTRICAL CHARACTERISTICS (Input t_r = t_f = 3.0 ns)

				T _A = 25°C		$T_A = -40$) to 85°C		
Symbol	Parameter	Test Cond	litions	Min	Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, A to \overline{Y}	V _{CC} = 2.7 V	C _L = 15 pF C _L = 50 pF		6.2 8.5	11.3 14.9	1.0 1.0	13.5 17.0	ns
	(Figures 4 and 6)	$V_{CC} = 3.3 \pm 0.3 V$	C _L = 15 pF C _L = 50 pF		5.0 6.8	7.0 10.5	1.0 1.0	8.5 12.0	
t _{PZL} , t _{PZH}	t _{PZH} OEn to Y	$V_{CC} = 2.7 V$ $R_L = 1 k\Omega$	C _L = 15 pF C _L = 50 pF		9.5 11.2	13.8 17.3	1.0 1.0	16.5 20.0	ns
(Figures 5 and 7)	$\begin{array}{l} V_{CC} = 3.3 \pm 0.3 \; V \\ R_{L} = 1k \; \Omega \end{array}$	C _L = 15 pF C _L = 50 pF		7.0 8.8	10.5 14.0	1.0 1.0	12.5 16.0		
t _{PLZ} , t _{PHZ}	Output Disable Time, OEn to Y	$V_{CC} = 2.7 V$ R _L = 1 k Ω	C _L = 50 pF		9.8	17.9	1.0	20.0	ns
	(Figures 5 and 7)	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $R_{L} = 1 \text{ k}\Omega$	C _L = 50 pF		8.7	15.4	1.0	17.5	
t _{OSLH} , t _{OSHL}	Output to Output Skew	V _{CC} = 2.7 V (Note 1)	C _L = 50 pF			1.5		1.5	ns
		$V_{CC} = 3.3 \pm 0.3 V$ (Note 1)	C _L = 50 pF			1.5		1.5	ns
C _{in}	Maximum Input Capacitance				4	10		10	pF
C _{out}	Maximum Three–State Output Capacitance (Output in High Impedance State)				6				pF

		Typical @ 25°C, V_{CC} = 5.0 V	
C _{PD} Power Di	ssipation Capacitance (Note 2)	17	pF

Parameter guaranteed by design. t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|.
 C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}/8 (per bit). C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

NOISE CHARACTERISTICS (Input $t_f = t_f = 3.0 \text{ ns}$, $C_L = 50 \text{ pF}$, $V_{CC} = 3.3 \text{ V}$)

		T _A = 25°C		
Symbol	Parameter	Тур	Max	Unit
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	0.5	0.8	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-0.5	-0.8	V
V _{IHD}	Minimum High Level Dynamic Input Voltage		2.0	V
V _{ILD}	Maximum Low Level Dynamic Input Voltage		0.8	V

SWITCHING WAVEFORMS

Figure 4.

TEST CIRCUITS

Figure 7.

Figure 8. INPUT EQUIVALENT CIRCUIT

PACKAGE DIMENSIONS

SOIC-20 **DW SUFFIX** CASE 751D-05 **ISSUE G**

NOTES:

- 1. 2.
- DIMENSIONS ARE IN MILLIMETERS. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD 3. PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B 5. DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.35	2.65		
A1	0.10	0.25		
В	0.35	0.49		
С	0.23	0.32		
D	12.65	12.95		
E	7.40	7.60		
е	1.27	BSC		
Н	10.05	10.55		
h	0.25	0.75		
L	0.50	0.90		
θ	0 °	7 °		

TSSOP-20 DT SUFFIX CASE 948E-02 ISSUE B

NOTES:

DITES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS. SHALL NOT EXCEED 0.15 (0.006) PER SUDE

SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER

SIDE. 5. DIMENSION K DOES NOT INCLUDE 5. DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K
 DIMENSION AT MAXIMUM MATERIAL
 CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN

FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. 7

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	6.40	6.60	0.252	0.260	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.27	0.37	0.011	0.015	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40	BSC	0.252	BSC	
Μ	0°	8°	0 °	8°	

PACKAGE DIMENSIONS

SOEIAJ-20 **M SUFFIX** CASE 967-01 ISSUE O

<u>|</u>| <u>|</u> 10

Α

ф 20

Ш

D

Z

е

 \oplus

DETAIL P

- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SUDE
- PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
 THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
C	0.18	0.27	0.007	0.011
D	12.35	12.80	0.486	0.504
Е	5.10	5.45	0.201	0.215
е	1.27	BSC	0.050	BSC
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
М	0 °	10 °	0 °	10 °
Q ₁	0.70	0.90	0.028	0.035
Z		0.81		0.032

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product cult create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agooccide with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent feedesign or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

MC74LVX540/D

MC74LVX540