

TLE4957Cx-2 E6747

Dynamic Differential Hall Effect Sensor

TLE4957C-2 E6747 TLE4957CB-2 E6747

Product Information

2013-10-16

Sense & Control

Table of Contents

Table of Contents

	Table of Contents	2
1	General	3
1.1	Target Application	3
1.2	Features	3
2	Functional Description	4
2.1	General	
2.2	Pin Configuration	4
3	Specification	5
3.1	Operating Range	5
3.2	Electrical and Magnetic Characteristics	
3.3	ESD Protection	5
3.4	Self-calibration Characteristics	5
3.5	Operating Characteristics - TLE4957CB-2 E6747	6
4	Package Information	
4.1	Package Information - TLE4957CB-2 E6747	9

General

1 General

1.1 Target Application

The TLE4957Cx-2 E6747 is a differential hall transmission sensor suited to detect the motion and position of either a magnetized pole wheel or gear tooth (back bias application). The sensor has been specially designed to be robust against noise and vibration in calibrated and un-calibrated mode. High sensitivity and accuracy combined with its wide operational temperature range makes the sensor ideally suited for the harsh automotive requirements. It comes in a three pin package for the supply voltage and an open drain output. Infineon also offers customers the possibility to order sensors with already attached back bias magnets (TLE4957CB-2 E6747).

1.2 Features

- Hall based principle
- High sensitivity
- High robustness against vibration
- Adaptive hysteresis
- Large operating airgap
- Single chip solution
- Digital output signal (voltage interface)
- Two-wire and three-wire configuration possible
- Wide operating temperature ranges
- Short-circuit and over temperature protection of output
- High resistance to Piezo effects
- South and north pole pre-induction possible
- Integrated back bias magnet as an option
- Module style package with two integrated capacitors:
 - 4.7 nF between Q and GND
 - 47 nF between $V_{\rm S}$ and GND: Needed for micro cuts in power supply

Туре	Order Code	Marking	Package
TLE4957C-2 E6747	SP000649296	57D82	PG-SSO-3-92
TLE4957CB-2 E6747	SP001056526	957D00	PG-SSOM-3-11

Functional Description

2 Functional Description

2.1 General

The TLE4957Cx-2 E6747 detects the motion and position of ferromagnetics and permanent magnet structures by measuring the differential flux density of the magnetic field. To detect ferromagnetic objects the magnetic field must be provided by a back biasing permanent magnet (south or north pole of the magnet attached to the rear unmarked side of the IC package).

2.2 Pin Configuration

Figure 2-1 Sensor assembly

Figure 2-2 Two wire configuration

Figure 2-3 Three wire configuration

Specification

3 Specification

3.1 Operating Range

Table 3-1Operating Range

Parameter	Symbol	Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.		
Supply voltage	V_{S}	3.2		18	V	Regulated voltage, continuous
Operation junction temperature	Tj	-40		165	°C	time limited

3.2 Electrical and Magnetic Characteristics

Table 3-2 Electrical and Magnetic Characteristics

Parameter	Symbol		Value	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Supply current	Is		6.8		mA	
Output rise time	t _r		12		μs	V _{Load} = 4.5 to 24 V
Output fall time	t _f		1.8		μs	V _{Load} = 5 V
Frequency range	f	0.001	-	8	kHz	Operation below 1 Hz
Minimum signal amplitude	$ \Delta B_{\rm max} $			100	mT	Additional to B ₀

3.3 ESD Protection

Table 3-3 ESD Protection

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
ESD Protection	V_{ESD}	-	-	<u>+</u> 6	kV	R = 1.5 kΩ C = 100 pF

3.4 Self-calibration Characteristics

Table 3-4 Self-calibration Characteristics

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.	_	
Signal jitter in running mode; 1 sigma value	σ1		<u><+</u> 0.11		%	ΔB_{pp} = 10mT ideal sinusoidal input signal; T_{j} < 150°C
	σ2		<u><+</u> 0.16		%	ΔB_{pp} = 10mT ideal sinusoidal signal; (150°C $\leq T_j$ < 175°C)

Specification

Figure 3-1 Rise / Fall time definition

3.5 Operating Characteristics - TLE4957CB-2 E6747

Table 3-5 Operating Characteristics

Parameter	Symbol	Values			Unit	Remarks
		min	typ	max		
Operational airgap	AG		2.9		mm	Valid in running mode, measured from sensor housing (branded side) to target tooth. Valid at 25°C & 0h. No missing output pulses.
Minimum signal amplitude	$ \Delta B_{min} $		0.8		mT	

Figure 3-2 Reference Target Wheel

Package Information

· ······										
Parameter	Symbol	Typ value	Unit	Remarks						
Outside diameter	d	150	mm							
Number of teeth	Ζ	60	-							
Pitch Ratio		50:50	%							
Material		ST37								

Table 3-6 Reference target wheel geometry

4 Package Information

Figure 4-1 Package dimensions (PG-SSO-3-92)

TLE4957Cx-2 E6747 Dynamic Differential Hall Effect Sensor

Package Information

Figure 4-2 Tape loading orientationing the PG-SSO-3-92

Pure tin covering (green lead plating) is used. Lead frame material is Wieland K62 (UNS:C18090) and contains CuSn1CrNiTi. Product is RoHS (Restriction of Hazardous Substances) compliant and marked with letter G in front of the data code marking and may contain a data matrix code on the rear side of the package (see also information note 136/03).

Package Information

4.1 Package Information - TLE4957CB-2 E6747

Figure 4-3 PG-SSOM-2-11 package outline

Figure 4-4 Back-bias field orientation

Package Information

Figure 4-5 PG-SSOM-2-11 blister tape packing information

For additional packages information, sort of packing and others, please see Infineon internet web page: http://www.infineon.com/products

Edition 2013-10-16 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

www.infineon.com

Published by Infineon Technologies AG