FAIRCHILD

SEMICONDUCTOR

GTLP2T152 2-Bit LVTTL/GTLP Transceiver

General Description

The GTLP2T152 is a 2-bit transceiver that provides LVTTLto-GTLP signal level translation. Data directional control is handled with a transmit/receive pin. High-speed backplane operation is a direct result of GTLP's reduced output swing (<1V), reduced input threshold levels and output edge rate control. The edge rate control minimizes bus-settling time. GTLP is a Fairchild Semiconductor derivative of the Gunning Transistor logic (GTL) JEDEC standard JESD8-3.

Fairchild's GTLP has internal edge-rate control and is process, voltage and temperature compensated. GTLP's I/O structure is similar to GTL and BTL but offers different output levels and receiver threshold. Typical GTLP output voltage levels are: $V_{OL} = 0.5V$, $V_{OH} = 1.5V$, and $V_{REF} = 1V$.

Features

Bidirectional interface between GTLP and LVTTL logic levels

June 2001

Revised February 2002

- Designed with edge rate control circuitry to reduce output noise on the GTLP port
- V_{REF} pin provides external supply reference voltage for receiver threshold adjustibility
- Special PVT compensation circuitry to provide consistent performance over variations of process, supply voltage and temperature
- TTL compatible driver and control inputs
- Designed using Fairchild advanced BiCMOS technology
 Bushold data inputs on A port to eliminate the need for
- external pull-up resistors for unused inputs Power up/down and power off high impedance for live
- insertion
- Open drain on GTLP to support wired-or connection
- Flow through pinout optimizes PCB layout
- A Port source/sink -24mA/+24mA
- B Port sink +50mA

Ordering Code:

Order Number	Package Number	Package Description
GTLP2T152M	M08A	8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow [TUBE]
GTLP2T152MX	M08A	8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow [TAPE and REEL]
GTLP2T152K8X	MAB08A (Preliminary)	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide [TAPE and REEL]

Pin Descriptions

Pin Names	Description		
T/R	LVTTL Direction Control (Receive Direction is Active LOW)		
V_{CC} , GND, V_{REF}	Device Supplies		
A _n	A Port LVTTL Input/Output		
B _n	B Port GTLP Input/Output		

Connection Diagrams

SOIC

Functional Description

The GTLP2T152 is a 2-bit transceiver that supports GTLP and LVTTL signal levels. Data polarity is non-inverting and the the GTLP/LVTTL outputs are controlled by the T/R pin.

Functional Table

Inputs	Outputs	Description	
T/R	Outputs	Description	
Н	Bus A _n Data to Bus B _n	B _n Output Data Enabled	
L	Bus B _n Data to Bus A _n	A _n Output Data Enabled	

Logic Diagram

Absolute	Maximum	Ratings(Note 1)
----------	---------	-----------------

Recommended Operating

GTLP2T152

Supply Voltage (V _{CC})	-0.5V to +4.6V	Conditions		
DC Input Voltage (VI)	-0.5V to +4.6V	Supply Voltage V _{CC}	3.15V to 3.45V	
DC Output Voltage (V _O)		Bus Termination Voltage (V _{TT})		
Outputs 3-STATE	-0.5V to +4.6V	GTLP	1.47V to 1.53V	
Outputs Active (Note 2)	-0.5V to +4.6V	V _{REF}	0.98V to 1.02V	
DC Output Sink Current into		Input Voltage (V _I)		
A Port I _{OL}	48 mA	on A Port and Control Pins	0.0V to V_{CC}	
DC Output Source Current from		HIGH Level Output Current (I _{OH})		
A Port I _{OH}	-48 mA	A Port	–24 mA	
DC Output Sink Current into		LOW Level Output Current (I _{OL})		
B Port in the LOW State, I _{OL}	100 mA	A Port	+24 mA	
DC Input Diode Current (I _{IK})		B Port	+50 mA	
V ₁ < 0V	–50 mA	Operating Temperature (T _A)	-40°C to +85°C	
DC Output Diode Current (I _{OK})		Note 1: Absolute Maximum Ratings are those	,	
V _O < 0V	–50 mA	safety of the device cannot be guaranteed. The device should not be ope ated at these limits. The parametric values defined in the "Electrical Cha		
ESD Rating	>2000V	acteristics" table are not guaranteed at the absol	lute maximum rating. The	
Storage Temperature (T _{STG})	-65°C to +150°C	"Recommended Operating Conditions" table will actual device operation.	define the conditions for	
		Note 2: I_O Absolute Maximum Rating must be ob	served.	

DC Electrical Characteristics

Over Recommended Operating Free-Air Temperature Range, V_{REF} = 1.0V (unless otherwise noted).

s	symbol	Test Cond	itions	Min	Typ (Note 3)	Max	Units
V _{IH}	B Port			V _{REF} + 0.05	V _{TT}		V
	Others			2.0			v
V _{IL}	B Port			0.0		V _{REF} - 0.05	V
	Others					0.8	v
V _{REF}	B Port			0.7V	1.0	1.3V	V
V _{TT}	B Port			V_{REF} + 50 mV	1.5	V _{CC}	V
V _{IK}		V _{CC} = 3.15V	I _I = -18 mA			-1.2	V
V _{он}	A Port	V _{CC} = Min to Max (Note 4)	I _{OH} = -100 μA	V _{CC} - 0.2			
		V _{CC} = 3.15V	I _{OH} = -8 mA	2.4			V
			I _{OH} = -24 mA	2.2			
V _{OL}	A Port	V _{CC} = Min to Max (Note 4)	I _{OL} = 100 μA			0.2	
		V _{CC} = 3.15V	I _{OL} = 8 mA			0.4	V
		V _{CC} = 3.15V	I _{OL} = 24 mA			0.5	
	B Port	V _{CC} = 3.15V	I _{OL} = 40 mA			0.4	V
			I _{OL} = 50 mA			0.55	v
I _I	Control Pins	$V_{CC} = 3.45V$	$V_{I} = 3.45V$			5	μA
			$V_I = 0V$			-5	μΑ
	A Port	V _{CC} = 3.45V	$V_{I} = 3.45V$			10	μA
			$V_I = 0V$			-10	μΑ
	B Port	V _{CC} = 3.45V	V _I = 3.45V			5	μA
			$V_I = 0$			-5	μΑ
OFF	A Port,	V _{CC} = 0	V_{I} or $V_{O} = 0$ to 3.45V			30	μA
	Control Pins						
	B Port	V _{CC} = 0	V_{I} or $V_{O} = 0$ to 3.45V			30	μA
I (HOLD)	A Port	V _{CC} = 3.15V	V ₁ = 0.8V	75			μA
			$V_{I} = 2.0V$			-75	μΑ
OZH	A Port	V _{CC} = 3.45V	V _O = 3.45V			10	μA
	B Port]	V _O = 3.45V			5	μА

GTLP2T152

DC Electrical Characteristics (Continued)

Min Тур Max Symbol **Test Conditions** Units (Note 3) A Port $V_{CC} = 3.45V$ $V_{O} = 0V$ I_{OZL} -10 μΑ $V_{O} = 0V$ B Port -5 V_{CC} = 0 to 1.5V All Ports $V_{I} = 0$ to 3.45V 30 μΑ I_{PU/PD} I_{CC} A Port $V_{CC} = 3.45V$ Outputs HIGH 11 Outputs LOW or B Port $I_0 = 0$ 11 mΑ Outputs Disabled $V_I = V_{CC}/V_{TT} \text{ or } GND$ 11 $V_{CC} = 3.45V,$ A Port and One Input at V_{CC} 2 ΔI_{CC} mA (Note 5) Control Pins A or Control Inputs at V_{CC} or GND -0.6V Ci Control Pins $V_I = V_{CC} \text{ or } 0$ 3 pF C_{I/O} A Port $V_I = V_{CC} \text{ or } 0$ 5 pF B Port 5.5 $V_I = V_{TT}$ or 0 pF

Note 3: All typical values are at V_{CC} = 3.3V and T_A = 25°C.

Note 4: For conditions shown as Min, use the appropriate value specified under recommended operating conditions.

Note 5: This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

Note: GTLP V_{REF} and V_{TT} are specified to 2% tolerance since signal integrity and noise margin can be significantly degraded if these supplies are noisy. In addition, V_{TT} and R_{TERM} can be adjusted beyond the recommended operating to accommodate backplane impedances other than 50 Ω , but must remain within the boundaries of the DC Absolute Maximum Ratings. Similarly, V_{REF} can be adjusted to optimize noise margin.

AC Electrical Characteristics

Over recommended range of supply voltage and operating free-air temperature, $V_{REF} = 1.0V$ (unless otherwise noted).

 $C_L=30\ pF$ for B Port and $C_L=50\ pF$ for A Port.

Symbol	From	То	Min	Тур	Max	Unit
	(Input)	(Output)		(Note 6)		Unit
t _{PLH}	A	В	1.2	2.9	7.3	ns
t _{PHL}			0.8	2.0	4.5	
t _{PLH}	В	A	1.4	2.5	4.4	ns
t _{PHL}			1.6	2.7	5.0	
t _{RISE}	Transition Time, B O		1.5		ns	
t _{FALL}	Transition Time, B O		1.8		ns	
t _{RISE}	Transition Time, A O		2.5		ns	
t _{FALL}	Transition Time, A O		2.2		ns	

Note 6: All typical values are at V $_{CC}$ = 3.3V, and T $_{A}$ = 25 $^{\circ}C.$

GTLP2T152

