## **ON Semiconductor**

## Is Now



To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

# H-Bridge in APM16 Series for LLC and Phase-shifted DC-DC Converter

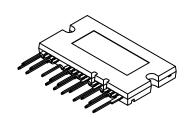
## NXV65HR51DZ1, NXV65HR51DZ2

#### **Features**

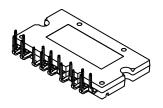
- SIP or DIP H-Bridge Power Module for On-board Charger (OBC) in EV or PHEV
- 5 kV/1 sec Electrically Isolated Substrate for Easy Assembly
- Creepage and Clearance per IEC60664-1, IEC 60950-1
- Compact Design for Low Total Module Resistance
- Module Serialization for Full Traceability
- Lead Free, RoHS and UL94V-0 Compliant
- Automotive Qualified per AEC Q101 and AQG324 Guidelines

#### **Applications**

• DC-DC Converter for On-board Charger in EV or PHEV


#### **Benefits**

- Enable Design of Small, Efficient and Reliable System for Reduced Vehicle Fuel Consumption and CO<sub>2</sub> Emission
- Simplified Assembly, Optimized Layout, High Level of Integration, and Improved Thermal Performance




#### ON Semiconductor®

www.onsemi.com



APMCA-A16 16 LEAD CASE MODGF



APMCA-B16 16 LEAD CASE MODGJ

#### **MARKING DIAGRAM**

XXXXXXXXXX ZZZ ATYWW NNNNNNN

XXXX = Specific Device Code

ZZZ = Lot ID

AT = Assembly & Test Location

Y = Year W = Work Week NNN = Serial Number

#### **ORDERING INFORMATION**

See detailed ordering, marking and shipping information on page 2 of this data sheet.

#### **ORDERING INFORMATION**

| Part Number  | Package   | Lead Forming | Snubber<br>Capacitor Inside | DBC<br>Material                | Pb-Free and<br>RoHS Compliant | Operating<br>Temperature (T <sub>A</sub> ) | Packing<br>Method |
|--------------|-----------|--------------|-----------------------------|--------------------------------|-------------------------------|--------------------------------------------|-------------------|
| NXV65HR51DZ1 | APM16-CAA | Y-Shape      | No                          | Al <sub>2</sub> O <sub>3</sub> | Yes                           | −40°C ~ 125°C                              | Tube              |
| NXV65HR51DZ2 | APM16-CAB | L-Shape      | No                          | Al <sub>2</sub> O <sub>3</sub> | Yes                           | −40°C ~ 125°C                              | Tube              |

#### **Pin Configuration and Description**

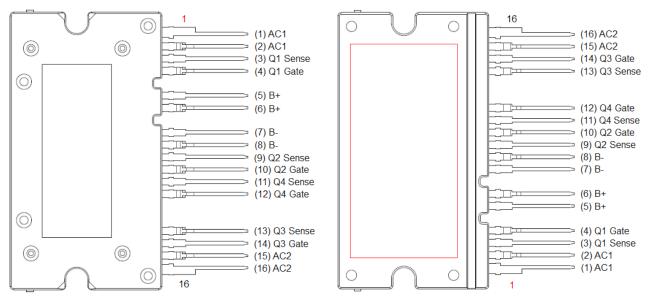



Figure 1. Pin Configuration

**Table 1. PIN DESCRIPTION** 

| Pin Number | Pin Name | Pin Description             |
|------------|----------|-----------------------------|
| 1, 2       | AC1      | Phase 1 Leg of the H-Bridge |
| 3          | Q1 Sense | Source Sense of Q1          |
| 4          | Q1 Gate  | Gate Terminal of Q1         |
| 5, 6       | B+       | Positive Battery Terminal   |
| 7, 8       | B-       | Negative Battery Terminal   |
| 9          | Q2 Sense | Source Sense of Q2          |
| 10         | Q2 Gate  | Gate Terminal of Q2         |
| 11         | Q4 Sense | Source Sense of Q4          |
| 12         | Q4 Gate  | Gate Terminal of Q4         |
| 13         | Q3 Sense | Source Sense of Q3          |
| 14         | Q3 Gate  | Gate Terminal of Q3         |
| 15, 16     | AC2      | Phase 2 Leg of the H-Bridge |

#### **Internal Equivalent Circuit**

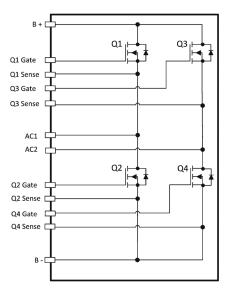



Figure 2. Internal Block Diagram

Table 2. ABSOLUTE MAXIMUM RATINGS (T<sub>J</sub> = 25°C, Unless Otherwise Specified)

| Symbol                  | Parameter                                                                                                | Max         | Unit |
|-------------------------|----------------------------------------------------------------------------------------------------------|-------------|------|
| V <sub>DS</sub> (Q1~Q4) | Drain-to-Source Voltage                                                                                  | 650         | V    |
| V <sub>GS</sub> (Q1~Q4) | Gate-to-Source Voltage                                                                                   | ±20         | V    |
| I <sub>D</sub> (Q1~Q4)  | I <sub>D</sub> (Q1~Q4) Drain Current Continuous (T <sub>C</sub> = 25°C, V <sub>GS</sub> = 10 V) (Note 1) |             | Α    |
|                         | Drain Current Continuous (T <sub>C</sub> = 100°C, V <sub>GS</sub> = 10 V) (Note 1)                       | 21          | Α    |
| E <sub>AS</sub> (Q1~Q4) | Single Pulse Avalanche Energy (Note 2)                                                                   | 623         | mJ   |
| $P_{D}$                 | Power Dissipation (Note 1)                                                                               | 135         | W    |
| T <sub>J</sub>          | Maximum Junction Temperature                                                                             | -55 to +150 | °C   |
| T <sub>C</sub>          | Maximum Case Temperature                                                                                 | -40 to +125 | °C   |
| T <sub>STG</sub>        | Storage Temperature                                                                                      | -40 to +125 | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2. Starting  $T_J = 25^{\circ}C$ ,  $I_{AS} = 6.5 \text{ A}$ ,  $R_G = 25 \Omega$ 

#### **DBC Substrate**

0.63 mm Al<sub>2</sub>O<sub>3</sub> alumina with 0.3 mm copper on both sides.

#### **Lead Frame**

OFC copper alloy, 0.50 mm thick. Plated with 8  $\mu$ m to 25.4  $\mu$ m thick Matte Tin

#### Flammability Information

All materials present in the power module meet UL flammability rating class 94V-0.

#### **Compliance to RoHS Directives**

The power module is 100% lead free and RoHS compliant 2000/53/C directive.

#### Solder

Solder used is a lead free SnAgCu alloy.

Solder presents high risk to melt at temperature beyond 210°C. Base of the leads, at the interface with the package body, should not be exposed to more than 200°C during mounting on the PCB or during welding to prevent the re-melting of the solder joints.

Maximum continuous current and power, without switching losses, to reach T<sub>J</sub> = 150°C respectively at T<sub>C</sub> = 25°C and T<sub>C</sub> = 100°C; defined by design based on MOSFET R<sub>DS(ON)</sub> and R<sub>θJC</sub> and not subject to production test

Table 3. ELECTRICAL SPECIFICATIONS (T. = 25°C, Unless Otherwise Specified)

| Symbol                           | Parameter                         | Conditions                                                                     | Min  | Тур  | Max  | Unit |  |
|----------------------------------|-----------------------------------|--------------------------------------------------------------------------------|------|------|------|------|--|
| BV <sub>DSS</sub>                | Drain-to-Source Breakdown Voltage | I <sub>D</sub> = 1 mA, V <sub>GS</sub> = 0 V                                   | 650  | -    | _    | V    |  |
| V <sub>GS(th)</sub>              | Gate to Source Threshold Voltage  | $V_{GS} = V_{DS}$ , $I_D = 3.3 \text{ mA}$                                     | 3.0  | -    | 5.0  | V    |  |
| R <sub>DS(ON)</sub>              | Q1 – Q4 MOSFET On Resistance      | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 20 A                                  | -    | 44   | 51   | mΩ   |  |
| R <sub>DS(ON)</sub>              | Q1 – Q4 MOSFET On Resistance      | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 20 A, T <sub>J</sub> = 125°C (Note 3) | -    | 79   | -    | mΩ   |  |
| 9FS                              | Forward Transconductance          | $V_{DS} = 20 \text{ V}, I_D = 20 \text{ A (Note 3)}$                           | -    | 30   | _    | S    |  |
| I <sub>GSS</sub>                 | Gate-to-Source Leakage Current    | $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$                              | -100 | -    | +100 | nA   |  |
| I <sub>DSS</sub>                 | Drain-to-Source Leakage Current   | V <sub>DS</sub> = 650 V, V <sub>GS</sub> = 0 V                                 | -    | -    | 10   | μΑ   |  |
| DYNAMIC CHARACTERISTICS (Note 3) |                                   |                                                                                |      |      |      |      |  |
| C <sub>iss</sub>                 | Input Capacitance                 | V <sub>DS</sub> = 400 V                                                        | -    | 4864 | _    | pF   |  |
| C <sub>oss</sub>                 | Output Capacitance                | V <sub>GS</sub> = 0 V<br>f = 1 MHz                                             | -    | 109  | -    | pF   |  |

|                     |                               | V <sub>GS</sub> = 0 V                                |   |      |   |    |
|---------------------|-------------------------------|------------------------------------------------------|---|------|---|----|
| $R_g$               | Gate Resistance               | f = 1 MHz                                            | ı | 2    | - | Ω  |
| Q <sub>g(tot)</sub> | Total Gate Charge             | V <sub>DS</sub> = 380 V                              | _ | 123  | - | nC |
| Q <sub>gs</sub>     | Gate-to-Source Gate Charge    | I <sub>D</sub> = 20 A<br>V <sub>GS</sub> = 0 to 10 V | _ | 37.5 | _ | nC |
| $Q_{gd}$            | Gate-to-Drain "Miller" Charge | VGS = 0 10 10 V                                      | - | 49   | _ | пC |

 $V_{DS} = 0 \text{ to } 520 \text{ V}$ 

16

#### **SWITCHING CHARACTERISTICS**

 $C_{rss}$ 

C<sub>oss(eff)</sub>

Reverse Transfer Capacitance

Effective Output Capacitance

| t <sub>on</sub>     | Turn-on Time        | V <sub>DS</sub> = 400 V                         | _ | 87  | - | ns |
|---------------------|---------------------|-------------------------------------------------|---|-----|---|----|
| t <sub>d(on)</sub>  | Turn-on Delay Time  | I <sub>D</sub> = 20 A<br>V <sub>GS</sub> = 10 V | ı | 47  | - | ns |
| t <sub>r</sub>      | Turn-on Rise Time   | $R_G = 4.7 \Omega$                              | _ | 43  | - | ns |
| t <sub>off</sub>    | Turn-off Time       | (Note 3)                                        | _ | 148 | - | ns |
| t <sub>d(off)</sub> | Turn-off Delay Time |                                                 | ı | 118 | - | ns |
| t <sub>f</sub>      | Turn-off Fall Time  |                                                 | _ | 29  | - | ns |

#### **BODY DIODE CHARACTERISTICS**

| V <sub>SD</sub> | Source-to-Drain Diode Voltage | I <sub>SD</sub> = 20 A, V <sub>GS</sub> = 0 V      | - | 0.95 | _ | V  |
|-----------------|-------------------------------|----------------------------------------------------|---|------|---|----|
| T <sub>rr</sub> | Reverse Recovery Time         | $V_{DS} = 520 \text{ V}, I_{D} = 20 \text{ A},$    | _ | 133  | - | ns |
| Q <sub>rr</sub> | Reverse Recovery Charge       | d <sub>I</sub> /d <sub>t</sub> = 100 A/μs (Note 3) | - | 669  | - | nC |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

#### **Table 4. THERMAL RESISTANCE**

| Parameters                  |                                                    | Min | Тур  | Max  | Unit |
|-----------------------------|----------------------------------------------------|-----|------|------|------|
| R <sub>θJC</sub> (per chip) | Q1~Q4 Thermal Resistance Junction-to-Case (Note 4) | -   | 0.66 | 0.92 | °C/W |
| R <sub>θJS</sub> (per chip) | Q1~Q4 Thermal Resistance Junction-to-Sink (Note 5) | -   | 1.2  | -    | °C/W |

<sup>4.</sup> Test method compliant with MIL STD 883–1012.1, from case temperature under the chip to case temperature measured below the package at the chip center, Cosmetic oxidation and discoloration on the DBC surface allowed

Table 5. ISOLATION (Isolation resistance at tested voltage from the base plate to control pins or power terminals.)

| Test                                 | Test Conditions                        | Isolation Resistance | Unit |
|--------------------------------------|----------------------------------------|----------------------|------|
| Leakage @ Isolation Voltage (Hi-Pot) | $V_{AC} = 5 \text{ kV}, 60 \text{ Hz}$ | 100M <               | Ω    |

<sup>3.</sup> Defined by design, not subject to production test

<sup>5.</sup> Defined by thermal simulation assuming the module is mounted on a 5 mm Al-360 die casting material with 30 μm of 1.8 W/mK thermal interface material

## **PARAMETER DEFINITIONS**

Reference to Table 3: Parameter of Electrical Specifications

| BV <sub>DSS</sub>   | Q1 – Q4 MOSFET Drain-to-Source Breakdown Voltage The maximum drain-to-source voltage the MOSFET can endure without the avalanche breakdown of the body- drain P-N junction in off state. The measurement conditions are to be found in Table 3. The typ. Temperature behavior is described in Figure 13 |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>GS(th)</sub> | Q1 – Q4 MOSFET Gate to Source Threshold Voltage The gate–to–source voltage measurement is triggered by a threshold ID current given in conditions at Table 3. The typ. Temperature behavior can be found in Figure 12                                                                                   |
| R <sub>DS(ON)</sub> | Q1 – Q4 MOSFET On Resistance RDS(on) is the total resistance between the source and the drain during the on state. The measurement conditions are to be found in Table 3. The typ behavior can be found in Figure 10 and Figure 11 as well as Figure 17                                                 |
| 9FS                 | Q1 $-$ Q4 MOSFET Forward Transconductance Transconductance is the gain in the MOSFET, expressed in the Equation below. It describes the change in drain current by the change in the gate–source bias voltage: $g_{fs} = [\Delta I_{DS} / \Delta V_{GS}]_{VDS}$                                         |
| I <sub>GSS</sub>    | Q1 – Q4 MOSFET Gate-to-Source Leakage Current The current flowing from Gate to Source at the maximum allowed VGS The measurement conditions are described in the Table 3.                                                                                                                               |
| I <sub>DSS</sub>    | Q1 – Q4 MOSFET Drain–to–Source Leakage Current Drain – Source current is measured in off state while providing the maximum allowed drain–to-source voltage and the gate is shorted to the source. IDSS has a positive temperature coefficient.                                                          |

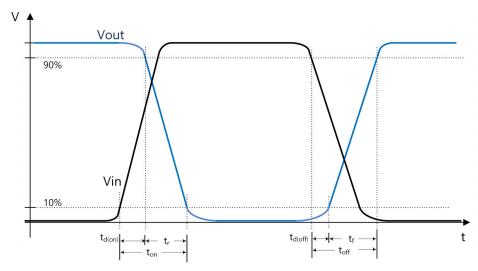



Figure 3. Timing Measurement Variable Definition

#### Table 6. PARAMETER OF SWITCHING CHARACTERISTICS

| Turn-On Delay (t <sub>d(on)</sub> )                                                                                                                                                                                                                                         | This is the time needed to charge the input capacitance, Ciss, before the load current ID starts flowing. The measurement conditions are described in the Table 3. For signal definition please check Figure 3 above.                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rise Time (t <sub>r</sub> )  The rise time is the time to discharge output capacitance, Coss.  After that time the MOSFET conducts the given load current ID.  The measurement conditions are described in the Table 3.  For signal definition please check Figure 3 above. |                                                                                                                                                                                                                                                                        |
| Turn-On Time (ton)                                                                                                                                                                                                                                                          | Is the sum of turn-on-delay and rise time                                                                                                                                                                                                                              |
| Turn-Off Delay (t <sub>d(off)</sub> )                                                                                                                                                                                                                                       | td(off) is the time to discharge Ciss after the MOSFET is turned off. During this time the load current ID is still flowing The measurement conditions are described in the Table 3. For signal definition please check Figure 3 above.                                |
| Fall Time (t <sub>f</sub> )                                                                                                                                                                                                                                                 | The fall time, tf, is the time to charge the output capacitance, Coss. During this time the load current drops down and the voltage VDS rises accordingly. The measurement conditions are described in the Table 3. For signal definition please check Figure 3 above. |
| Turn-Off Time (t <sub>off</sub> )                                                                                                                                                                                                                                           | Is the sum of turn-off-delay and fall time                                                                                                                                                                                                                             |

#### **TYPICAL CHARACTERISTICS**

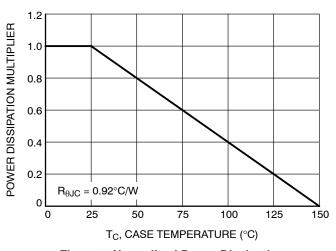



Figure 4. Normalized Power Dissipation vs. Case

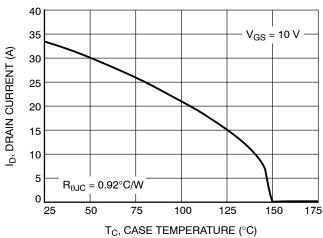



Figure 5. Maximum Continuous  $I_D$  vs. Case Temperature

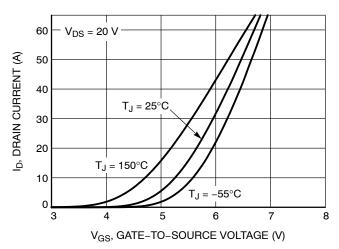



Figure 6. Transfer Characteristics

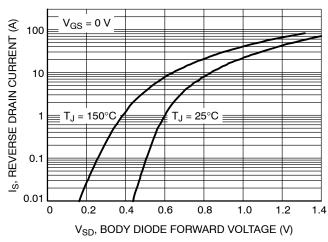



Figure 7. Forward Diode

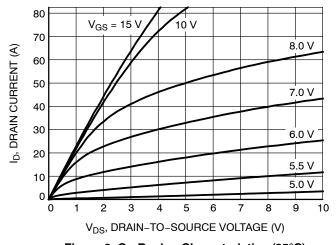



Figure 8. On Region Characteristics (25°C)

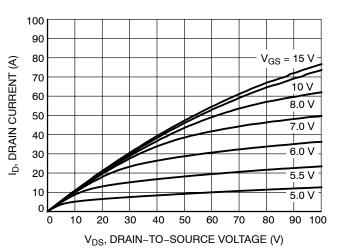
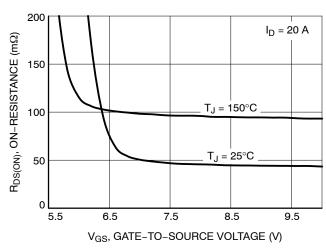
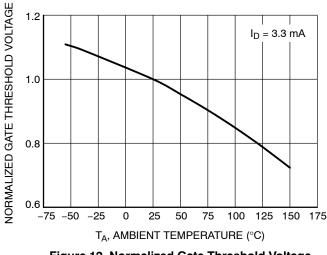




Figure 9. On Region Characteristics (150°C)


#### **TYPICAL CHARACTERISTICS**



 $I_D = 20 A$ R<sub>DS(ON)</sub>, NORMALIZED DRAIN-TO-SOURCE ON-RESISTANCE V<sub>GS</sub> = 10 V 2.0 1.5 1.0 0.5 -75 -50 -25 25 50 75 100 125 150 175 T<sub>J</sub>, JUNCTION TEMPERATURE (°C)

Figure 10. On-Resistance vs. Gate-to-Source Voltage

Figure 11. R<sub>DS(norm)</sub> vs. Junction Temperature



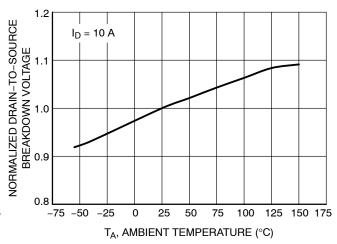
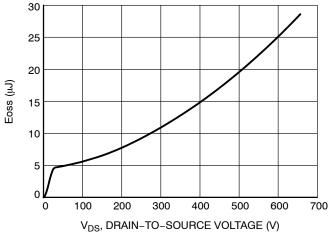




Figure 12. Normalized Gate Threshold Voltage vs. Temperature

Figure 13. Normalized Breakdown Voltage vs. Temperature



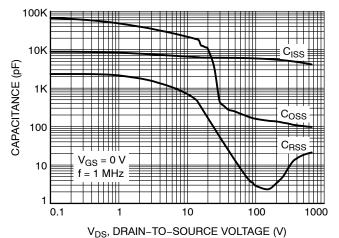



Figure 14. Eoss vs. Drain-to-Source Voltage

Figure 15. Capacitance Variation

#### **TYPICAL CHARACTERISTICS**

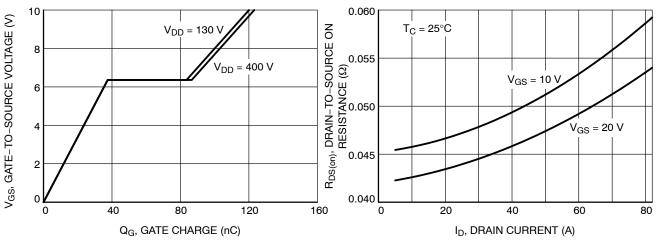



Figure 16. Gate Charge Characteristics

Figure 17. On Resistance Variation with Drain Current and Gate Voltage

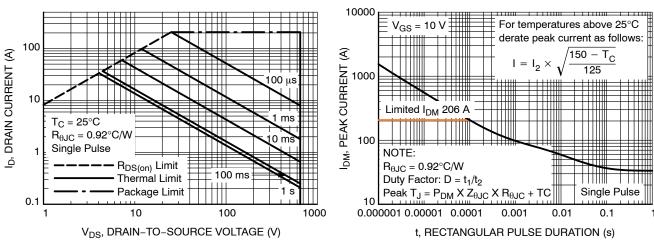



Figure 18. Safe Operating Area

Figure 19. Peak Current Capability

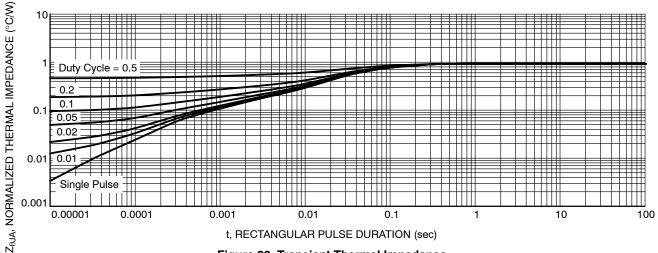
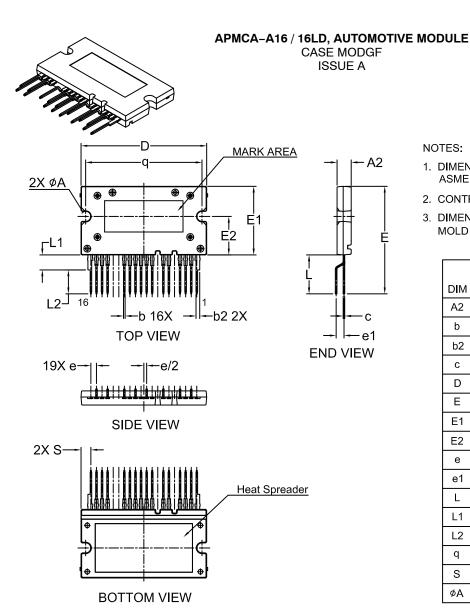




Figure 20. Transient Thermal Impedance

#### **PACKAGE DIMENSIONS**



#### NOTES:

1. DIMENSIONING AND TOLERANCING PER. ASME Y14.5M, 2009.

**DATE 02 MAY 2019** 

- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS.

|     | MILLIMETERS |          |       |  |  |
|-----|-------------|----------|-------|--|--|
| DIM | MIN.        | NOM.     | MAX.  |  |  |
| A2  | 4.30        | 4.50     | 4.70  |  |  |
| b   | 0.45        | 0.50     | 0.60  |  |  |
| b2  | 1.15        | 1.20     | 1.30  |  |  |
| С   | 0.45        | 0.50     | 0.60  |  |  |
| D   | 39.90       | 40.10    | 40.30 |  |  |
| Е   | 33.80       | 34.30    | 34.80 |  |  |
| E1  | 21.70       | 21.90    | 22.10 |  |  |
| E2  | 12.10       | 12.30    | 12.50 |  |  |
| Φ   | 1.478       | 1.778    | 2.078 |  |  |
| e1  | 2.20        | 2.50     | 2.80  |  |  |
| J   | 12.10       | 12.40    | 12.70 |  |  |
| L1  |             | 4.80 REF |       |  |  |
| L2  | 7.30        | 7.60     | 7.90  |  |  |
| q   | 36.85       | 37.10    | 37.35 |  |  |
| s   | 3.159 REF   |          |       |  |  |
| ØΑ  | 2.95        | 3.20     | 3.45  |  |  |

#### PACKAGE DIMENSIONS

## APMCA-B16 / 16LD, AUTOMOTIVE MODULE CASE MODGJ ISSUE A MARK AREA - A2 2X ØA F2 TOP VIEW -b2 2X b 16X-**END VIEW** 19X e-SIDE VIEW 2X S-Heat Spreader

#### NOTES:

1. DIMENSIONING AND TOLERANCING PER. ASME Y14.5M, 2009.

**DATE 02 MAY 2019** 

- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS ARE EXCLUSIVE OF BURRS. MOLD FLASH AND TIE BAR EXTRUSIONS.

|     | MILLIMETERS |       |       |
|-----|-------------|-------|-------|
| DIM | MIN.        | NOM.  | MAX.  |
| A2  | 4.30        | 4.50  | 4.70  |
| b   | 0.45        | 0.50  | 0.60  |
| b2  | 1.15        | 1.20  | 1.30  |
| С   | 0.45        | 0.50  | 0.60  |
| D   | 39.90       | 40.10 | 40.30 |
| Е   | 26.20       | 26.70 | 27.20 |
| E1  | 21.70       | 21.90 | 22.10 |
| E2  | 12.10       | 12.30 | 12.50 |
| е   | 1.478       | 1.778 | 2.078 |
| e1  | 2.20        | 2.50  | 2.80  |
| L   | 9.20        | 9.55  | 9.90  |
| L1  | 5.05 REF    |       |       |
| q   | 36.85       | 37.10 | 37.35 |
| S   | 3.159 REF   |       |       |
| ΦA  | 2.95        | 3.20  | 3.45  |

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### **PUBLICATION ORDERING INFORMATION**

**BOTTOM VIEW** 

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative