

APT5010B2FLL APT5010LFLL

500V 46A 0.100Ω

ER MOS 7[®]

Power MOS 7[®] is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETS. Both conduction and switching losses are addressed with Power MOS 7° by significantly lowering $R_{\text{DS(ON)}}$ and Q_{g} . Power MOS 7° combines lower conduction and switching losses along with exceptionally fast switching speeds inherent with APT's patented metal gate structure.

Increased Power Dissipation

• Lower Miller Capacitance

Easier To Drive

Lower Gate Charge, Qg

• Popular T-MAX™ or TO-264 Package

• FAST RECOVERY BODY DIODE

MAXIMUM RATINGS

All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	APT5010B2FLL_LFLL	UNIT
V _{DSS}	Drain-Source Voltage	500	Volts
I _D	Continuous Drain Current @ T _C = 25°C	46	Amps
I _{DM}	Pulsed Drain Current (1)	184	Allips
V _{GS}	Gate-Source Voltage Continuous	±30	Volts
V _{GSM}	Gate-Source Voltage Transient	±40	VOIG
P_{D}	Total Power Dissipation @ T _C = 25°C	520	Watts
. D	Linear Derating Factor	4.0	W/°C
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C
T_L	Lead Temperature: 0.063" from Case for 10 Sec.	300	
I _{AR}	Avalanche Current (1) (Repetitive and Non-Repetitive)	50	Amps
E _{AR}	Repetitive Avalanche Energy 1	50	mJ
E _{AS}	Single Pulse Avalanche Energy ⁴	1600	1110

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage $(V_{GS} = 0V, I_D = 250\mu\text{A})$	500			Volts
R _{DS(on)}	Drain-Source On-State Resistance $②$ ($V_{GS} = 10V$, $I_D = 23A$)			0.100	Ohms
I _{DSS}	Zero Gate Voltage Drain Current (V _{DS} = 500V, V _{GS} = 0V)			250	μА
	Zero Gate Voltage Drain Current ($V_{DS} = 400V$, $V_{GS} = 0V$, $T_{C} = 125$ °C)			1000	
I _{GSS}	Gate-Source Leakage Current $(V_{GS} = \pm 30V, V_{DS} = 0V)$			±100	nA
V _{GS(th)}	Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 2.5 \text{mA})$	3		5	Volts

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

DYNAMIC CHARACTERISTICS

APT5010B2FI	LL I	_FLL
-------------	------	------

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		4360		
C _{oss}	Output Capacitance	V _{DS} = 25V		895		pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		60		
Q_g	Total Gate Charge ^③	V _{GS} = 10V		95		
Q_gs	Gate-Source Charge	V _{DD} = 250V		24		nC
Q_{gd}	Gate-Drain ("Miller") Charge	I _D = 46A @ 25°C		50		
t _{d(on)}	Turn-on Delay Time	RESISTIVE SWITCHING		11		
t _r	Rise Time	V _{GS} = 15V V _{DD} = 250V		15		ns
t _{d(off)}	Turn-off Delay Time	I _D = 46A@ 25°C		25		
t _f	Fall Time	$R_G = 0.6\Omega$		3		
E _{on}	Turn-on Switching Energy [©]	INDUCTIVE SWITCHING @ 25°C V _{DD} = 333V, V _{GS} = 15V		545		
E _{off}	Turn-off Switching Energy	$I_D = 46A, R_G = 5\Omega$		510		μJ
E _{on}	Turn-on Switching Energy ^⑥	INDUCTIVE SWITCHING @ 125°C V _{DD} = 333V V _{GS} = 15V		845		μο
E _{off}	Turn-off Switching Energy	$I_D = 46A, R_G = 5\Omega$		595		

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Symbol	Characteristic / Test Conditions		MIN	TYP	MAX	UNIT
I _S	Continuous Source Current (Body Diode)				46	Amno
I _{SM}	Pulsed Source Current (1) (Body Diode)	Ised Source Current ① (Body Diode)			184	Amps
V _{SD}	Diode Forward Voltage ② (V _{GS} = 0V, I _S = -46A)				1.3	Volts
dv/ _{dt}	Peak Diode Recovery ^{dv} / _{dt} ^⑤				15	V/ns
t _{rr}	Reverse Recovery Time	T _j = 25°C			280	
	$(I_S = -46A, di/dt = 100A/\mu s)$	T _j = 125°C			600	ns
Q _{rr}	Reverse Recovery Charge	T _j = 25°C		2.28		
	$(I_S = -46A, \frac{di}{dt} = 100A/\mu s)$	T _j = 125°C		6.41		μC
I _{RRM}	_	T _j = 25°C		15.7		1.
		T _i = 125°C		23.6		Amps

THERMAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{ hetaJC}$	Junction to Case			0.25	00044
$R_{\theta JA}$	Junction to Ambient			40	°C/W

- ① Repetitive Rating: Pulse width limited by maximum junction temperature
- 2 Pulse Test: Pulse width < 380 $\mu s,$ Duty Cycle < 2%
- ③ See MIL-STD-750 Method 3471

- 4 Starting T_j = +25°C, L = 1.51mH, R_G = 25 Ω , Peak I_L = 46A
- $\mbox{\Large \textcircled{5}}\mbox{\Large dv/}_{\mbox{\Large dt}}$ numbers reflect the limitations of the test circuit rather than the device itself. $I_S \le -I_D 46A$ $di/_{dt} \le 700A/\mu s$ $V_R \le 500V$ $T_J \le 150^{\circ}C$
- 6 Eon includes diode reverse recovery. See figures 18, 20.

 ${\bf APT\,Reserves\,the\,right\,to\,change, without\,notice, the\,specifications\,and\,inforation\,contained\,herein.}$

FIGURE 2, TRANSIENT THERMAL IMPEDANCE MODEL

Figure 18, Turn-on Switching Waveforms and Definitions

Figure 19, Turn-off Switching Waveforms and Definitions

Figure 20, Inductive Switching Test Circuit

T-MAX™ (B2) Package Outline TO-264 (L) Package Outline 4.69 (.185) 5.31 (.209) 4.60 (.181) 5.21 (.205) 15.49 (.610) 16.26 (.640) 1.49 (.059)^[] 2.49 (.098) 1.80 (.071)0 2.01 (.079) 3.10 (.122) 3.48 (.137) 5.38 (.212) 6.20 (.244) 5.79 (.228 6.20 (.244 Drain. 20.80 (.819)^[] 21.46 (.845) Drain 25.48 (1.003) 26.49 (1.043) 4.50 (.177) Max. 2.29 (.090) 2.69 (.106) 2.29 (.090)0 2.69 (.106) 2.13 (.084) 0.40 (.016)^[] 0.79 (.031) 19.81 (.780)0 20.32 (.800) 19.81 (.780)^[] 21.39 (.842) Gate Gate Drain Drain Source Source 0.76 (.030)0 1.30 (.051) 2.79 (.110)0 3.18 (.125) 2.21 (.087) 2.59 (.102) 5.45 (.215) BSC 2-Plcs 5.45 (.215) BSC These dimensions are equal to the TO-247 without the mounting hole. Dimensions in Millimeters and (Inches)

Dimensions in Millimeters and (Inches)