

TLE 4206-4G

H-Bridge Driver Headlight Beam Controller

Data Sheet

Rev. 1.0, 2010-08-05

Automotive Power

Table of Contents

Table of Contents

1	Overview
2	Block Diagram
3 3.1 3.2	Pin Configuration 5 Pin Assignment 5 Pin Definitions and Functions 5
4 4.1 4.2 4.3 4.4	General Product Characteristics6Absolute Maximum Ratings6Operating Range7Thermal Resistance7Electrical Characteristics8
5	Application Information
6	Package Outlines
7	Revision History

Headlight Beam Controller H-Bridge Driver

TLE 4206-4G

1 Overview

Features

- Ideal for manual and automatic-static headlight beam control applications with DC motor loads
- Delivers up to 0.8 A continuous
- Range low-voltage detection with hysteresis; Lower switch-off threshold @ 1.34V typ
- Low saturation voltage; typ.1.2 V total @ 25 °C; 0.4 A
- Output protected against short circuit
- Over temperature protection with hysteresis
- Over- and under voltage lockout
- Internal clamp diodes
- Thermally enhanced SO package
- Green Product (RoHS compliant)
- AEC Qualified

Description

The TLE 4206-4G is a protected H-Bridge Driver designed specifically for automotive headlight beam control applications with DC-brush motor loads. The part is built using Infineon's bipolar high voltage power technology DOPL.

The standard enhanced power PG-DSO-14-22 package meets the application requirements and saves PCB-board space and costs.

The servo-loop-parameter pos.- and neg. Hysteresis, pos.- and neg. deadband and angle-amplification are programmable with external resistors. An internal window-comparator controls the input line. In case of fault conditions, like short circuit to GND, short circuit to supply-voltage, and broken wire, the TLE 4206-4G stops the motor immediately and enters active braking (brake high). The device also incorporates integrated features like over- and under voltage-lockout, short-circuit-protection and over-temperature-protection.

The TLE 4206-4G is a derivate of the TLE 4206-2G. The Range pin not only offers short circuit protection at the reference potentiometer but also determines the potentiometer's voltage range of operation. The TLE 4206-4G considers a smaller window of operation by way of increasing the lower Range Switch off and on thresholds to serve a larger variety of reference potentiometer strokes.

Туре	Package	Marking
TLE 4206-4G	PG-DSO-14-22	TLE4206-4G

PG-DSO-14-22

Block Diagram

2 Block Diagram

Figure 1 Block Diagram

Pin Configuration

3 Pin Configuration

3.1 Pin Assignment

Figure 2 Pin Configuration

3.2 Pin Definitions and Functions

Pin	Symbol	Function
1	FB	Feedback Input
2	HYST	Hysteresis I/O
3, 4, 5, 10, 11, 12	GND	Ground
6	OUT1	Power Output 1
7	NC	Not Connected. This pin can be left open or connected to ground.
8	Vs	Power Supply Voltage
9	OUT2	Power Output 2
13	RANGE	Range Input
14	REF	Reference Input

4.1 Absolute Maximum Ratings

Absolute Maximum Ratings ¹⁾

 T_j = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Pos.	Parameter	Symbol	Lin	nit Values	Unit	Conditions
			Min.	Max.		
Voltage	S					-
4.1.1	Supply voltage	V _{S1}	-0.3	45	V	-
4.1.2	Supply voltage	V _{S2}	-1	-	V	<i>t</i> < 0.5 s; <i>I</i> _S > -2 A
4.1.3	Logic input voltages (FB, REF, RANGE, HYST)	V	-0.3	20	V	_
Current	S				I	
4.1.4	Output current (OUT1, OUT2)	I _{OUT}	_	-	А	internally limited
4.1.5	Output current (Diode)	I _{OUT_DIODE}	-1	1	А	-
4.1.6	Input current	I _{IN}	-2	2	mA	-
	(FB, REF, RANGE, HYST)		-6	6	mA	<i>t</i> < 2 ms; <i>t</i> /T < 0.1
Temper	atures			i	I	
4.1.7	Junction Temperature	$T_{\rm i}$	-40	150	°C	_
4.1.8	Storage Temperature	T _{stg}	-50	150	°C	-
ESD Su	sceptibility			I	I	
4.1.9	ESD resistivity of OUT and <i>Vs</i> pin to GND	V _{ESD}	-2	2	kV	HBM ²⁾
4.1.10	ESD Resistivity logic pins to GND	$V_{\mathrm{ESD5,7}}$	-2	2	kV	HBM ²⁾
1) Not a	ubject to production test specified by design	;				

1) Not subject to production test, specified by design.

2) ESD susceptibility, HBM according to EIA/JESD 22-A114B

Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

4.2 Operating Range

Pos.	Parameter	Symbol	Lir	nit Values	Unit	Conditions
			Min.	Max.		
4.2.1	Supply voltage	V _{S_OP}	8	18	V	After $V_{\rm S}$ rising above $V_{\rm UVON}$
4.2.2	Supply voltage increasing	V _{S_INC}	-0.3	V _{UV ON}	V	Outputs in tristate
4.2.3	Supply voltage decreasing	V _{S DEC}	-0.3	V _{UV OFF}	V	Outputs in tristate
4.2.4	Output current	I _{OUT1-2}	-0.8	0.8	А	-
4.2.5	Input current (FB, REF)	I _{IN_op}	-50	500	μA	-
4.2.6	Junction temperature	T_{j}	-40	150	°C	-

Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table.

4.3 Thermal Resistance

Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to **www.jedec.org**.

Pos.	Parameter	Symbol	Limit Values			Unit	Conditions
			Min.	Тур.	Max.	1	
4.3.1	Junction to Soldering Point ¹⁾	R _{thJSP}	-	25	_	K/W	measured to pin 5
4.3.2	Junction to Ambient ¹⁾ minimal-footprint	R_{thJA} minfoot	-	130	-	K/W	2)
4.3.3	Junction to Ambient ¹⁾ additional 600 mm ² CU area	R _{thJA_600mm2}	-	65	-	K/W	3)

1) Not subject to production test, specified by design.

2) JESD 51-2, 51-3, FR4 76.2 mm \times 114.3 mm \times 1.5 mm, 70 μm Cu, minimal footprint; Ta=27°C

3) JESD 51-2, 51-3, FR4 76.2 mm \times 114.3 mm \times 1.5 mm, 70 μm Cu, 600 mm² CU cooling area connected to Pins: 3, 4, 5, 10, 11, 12; Ta=27°C

4.4 Electrical Characteristics

Electrical Characteristics

 $V_{\rm S}$ = 8 V to 18 V, $T_{\rm j}$ = -40 °C to +150 °C, $I_{\rm OUT1-2}$ = 0 A, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Pos.	Parameter	Symbol	Limit Values			Unit	Conditions	
			Min. Typ. I		Max.			
Current	t Consumption	ł	1					
4.4.1	Supply current	$I_{\rm S_no\ load}$	-	12	20	mA	no load connected	
4.4.2	Supply current	I _{S_0.4A}	-	20	30	mA	I _{OUT1} = 0.4 A; I _{OUT2} = -0.4 A	
4.4.3	Supply current	I _{S_0.8A}	-	35	50	mA	I _{OUT1} = 0.8 A; I _{OUT2} = -0.8 A	
Over- a	nd Under Voltage Lockout	ł	-		I			
4.4.4	UV Switch ON voltage	$V_{\rm UV \ ON}$	-	7.4	8	V	$V_{\rm S}$ increasing	
4.4.5	UV Switch OFF voltage	$V_{\rm UV OFF}$	6.3	6.9	_	V	$V_{\rm S}$ decreasing	
4.4.6	UV ON/OFF Hysteresis	V _{UVHY}	-	0.5	-	V	V _{UV ON} - V _{UV OFF}	
4.4.7	OV Switch OFF voltage	V _{OV OFF}	-	20.5	23	V	$V_{\rm S}$ increasing	
4.4.8	OV Switch ON voltage	V _{OV ON}	17.5	20	-	V	$V_{\rm S}$ decreasing	
4.4.9	OV ON/OFF Hysteresis	V _{OVHY}	-	0.5	_	V	V _{OV OFF} - V _{OV ON}	
Output	s OUT1-2, Saturation Voltag				1	1	-	
4.4.10	Source (upper) I_{OUT} = -0.2 A	V _{SAT U 0.2A}	-	0.85	1.15	V	<i>T</i> _j = 25 °C	
4.4.11	Source (upper) I _{OUT} = -0.4 A	V _{SAT U 0.4A}	-	0.90	1.20	V	_	
4.4.12	Sink (upper) I _{OUT} = -0.8 A	V _{SAT U 0.8A}	-	1.10	1.50	V	_	
4.4.13	Sink (lower) I _{OUT} = 0.2 A	V _{SATL0.2A}	-	0.15	0.23	V		
4.4.14	Sink (lower) I _{OUT} = 0.4 A	V _{SATL0.4A}	-	0.25	0.40	V		
4.4.15	Sink (lower) I _{OUT} = 0.8 A	V _{SATL0.8A}	-	0.45	0.75	V	_	
4.4.16	Total drop, I_{OUT} = 0.2 A	V _{SAT 0.2A}	-	1.0	1.4	V	$V_{\text{SAT}} = V_{\text{SAT U}} + V_{\text{SAT L}}$	
4.4.17	Total drop, I_{OUT} = 0.4 A	V _{SAT 0.4A}	-	1.2	1.7	V		
4.4.18	Total drop, I_{OUT} = 0.8 A	$V_{\rm SAT 0.8A}$	-	1.6	2.5	V		
Output	s OUT1-2, Clamp Diodes							
4.4.19	Forward voltage; upper	$V_{\rm FU}$	-	1	1.5	V	<i>I</i> _F = 0.4 A	
4.4.20	Upper leakage current	I _{LKU}	-	-	5	mA		
4.4.21	Forward voltage; lower	V _{FL}	-	0.9	1.4	V		
Input-Ir	nterface, Input REF							
4.4.22	Quiescent voltage	V_{REFq}	-	200	-	mV	<i>I</i> _{REF} = 0 μA	
4.4.23	Input resistance	R _{REF}	-	6	-	kΩ	0 V < V _{REF} < 0.5 V	

Electrical Characteristics (cont'd)

 $V_{\rm S}$ = 8 V to 18 V, $T_{\rm j}$ = -40 °C to +150 °C, $I_{\rm OUT1-2}$ = 0 A, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Pos.	Parameter	Symbol	Limit Values			Unit	Conditions	
			Min.	Тур.	Max.			
Input-Ir	nterface, Input FB	-				1		
4.4.24	Quiescent voltage	V_{FBq}	-	200	-	mV	I _{FB} = 0 μA	
4.4.25	Input resistance	R _{FB}	-	6	-	kΩ	0 V < V _{FB} < 0.5 V	
Input-Ir	nterface, Input/Output HYST							
4.4.26	Current Amplification $A_{\text{HYST}} = I_{\text{HYST}} / (I_{\text{REF}} - I_{\text{FB}})$	A _{HYST}	0.8	0.95	1.1	_	$\begin{array}{c} -20 \ \mu \text{A} < I_{\text{HYST}} < -10 \ \mu \text{A} \\ 10 \ \mu \text{A} < I_{\text{HYST}} < 20 \ \mu \text{A}; \\ I_{\text{REF}} = 250 \ \mu \text{A}; \\ V_{\text{HYST}} = V_{\text{S}} / 2 \end{array}$	
4.4.27	Current Offset	I _{HYSTIO}	-2	0.35	3	μA	I_{REF} = I_{FB} = 250 µA; V_{HYST} = V_{S} / 2	
4.4.28	Threshold voltage High	V _{HYH} / V _S	-	52	-	%	-	
4.4.29	Deadband voltage High	$V_{\rm DBH}$ / $V_{\rm S}$	-	50.4	-	%	-	
4.4.30	Deadband voltage Low	$V_{\rm DBL}$ / $V_{\rm S}$	-	49.6	-	%	-	
4.4.31	Threshold voltage Low	V _{HYL} / V _S	-	48	-	%	-	
4.4.32	Hysteresis Window	$V_{\rm HYW}$ / $V_{\rm S}$	3	4	5	%	(V _{HYH} - V _{HYL}) / V _S	
4.4.33	Deadband Window	$V_{\rm DBW}$ / $V_{\rm S}$	0.4	0.8	1.2	%	$(V_{\text{DBH}} - V_{\text{DBL}}) / V_{\text{S}}$	
Input-Ir	nterface, Input RANGE	-			I	1		
4.4.34	Input current	I_{RANGE}	-1	-	1	μA	$0 V < V_{RANGE} < V_{S}$	
4.4.35	Switch-OFF voltage High	V_{OFFH}	-25	0	100	mV	refer to $V_{\rm S}$	
4.4.36	Switch-OFF voltage Low	V _{OFFL}	1240	1340	1440	mV	refer to GND, V_{RANGE} decreasing	
4.4.37	Switch-ON voltage Low	V _{ONL}	1320	1424	1520	mV	refer to GND, $V_{\rm RANGE}$ increasing	
4.4.38	Low-threshold hysteresis	$V_{\rm OFFLHYS}$	-	84	-	mV	see Figure 6	
Therma	al Shutdown			·				
4.4.39	Thermal shutdown junction temperature ¹⁾	$T_{\rm jSD}$	150	175	200	°C	_	
4.4.40	Thermal switch-on junction temperature	T _{jSO}	120	-	170	°C	-	
4.4.41	Temperature hysteresis	ΔT	-	30	-	К	_	

1) Not subject to production test, specified by design.

TLE 4206-4G

Application Information

Figure 3 Application Circuit for Manual Headlight Beam Adjustment

TLE 4206-4G

Figure 4 Hysteresis, Phaselag and Deadband-Definitions

Figure 6 RANGE Hysteresis and Test Conditions

Package Outlines

6 Package Outlines

Figure 7 PG-DSO-14-22 (Plastic/Plastic Green - Dual Small Outline Package)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Revision History

7 Revision History

TLE 4206-4G

Revision History: Rev. 1.0, 2010-08-05

Previous Version(s): None							
Revision Page Subjects (major changes since last revision)							
1.0 All Final Data Sheet Release		Final Data Sheet Release					

Edition 2010-08-05

Published by Infineon Technologies AG 81726 Munich, Germany © 2010 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.