

RoHS EARTH FRIEND v00.1108

### SMT GaAs pHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 550 - 1200 MHz

### Typical Applications

The HMC817LP4E is ideal for:

- Cellular/3G and LTE/WiMAX/4G
- BTS & Infrastructure
- Repeaters and Femtocells
- Multi-Channel Applications
- Access Points

### Functional Diagram



### Features

Noise Figure: 0.5 dB Gain: 16 dB Output IP3: +37 dBm Single Supply: +3V to +5V 50 Ohm Matched Input/Output 24 Lead 4x4mm QFN Package: 16 mm<sup>2</sup>

#### **General Description**

The HMC817LP4E is a GaAs pHEMT Dual Channel Low Noise Amplifier that is ideal for Cellular/3G and LTE/WiMAX/4G basestation front-end receivers operating between 550 and 1200 MHz. The amplifier has been optimized to provide 0.5 dB noise figure, 24 dB gain and +37 dBm output IP3 from a single supply of +5V. Input and output return losses are excellent with minimal external matching and bias decoupling components. The HMC817LP4E shares the same package and pinout with the HMC816LP4E and HMC818LP4E LNAs. The HMC817LP4E can be biased with +3V to +5V and features an externally adjustable supply current which allows the designer to tailor the linearity performance of each channel of the LNA for each application.

#### Electrical Specifications, $T_A = +25^{\circ}$ C, Rbias 1, 2 = 10k Ohms\* Vdd = Vdd1 = Vdd2 = +5V, Idd = Idd1 = Idd2

|                                             | Vdd = +3 V |           |      |      | Vdd = +5 V |      |      |           |      |      |          |      |        |
|---------------------------------------------|------------|-----------|------|------|------------|------|------|-----------|------|------|----------|------|--------|
| Parameter                                   | Min.       | Тур.      | Max. | Min. | Тур.       | Max. | Min. | Тур.      | Max. | Min. | Тур.     | Max. | Units  |
| Frequency Range                             |            | 698 - 960 | )    | 5    | 550 - 120  | 0    |      | 698 - 960 | )    | 5    | 50 - 120 | 0    | MHz    |
| Gain                                        | 13         | 16        |      | 11   | 15         |      | 13.5 | 16        |      | 11.5 | 16       |      | dB     |
| Gain Variation Over Temperature             |            | 0.003     |      |      | 0.003      |      |      | 0.005     |      |      | 0.005    |      | dB/ °C |
| Noise Figure                                |            | 0.5       | 0.8  |      | 0.5        | 1.1  |      | 0.55      | 0.85 |      | 0.6      | 1.1  | dB     |
| Input Return Loss                           |            | 28        |      |      | 22         |      |      | 22        |      |      | 17       |      | dB     |
| Output Return Loss                          |            | 12        |      |      | 14         |      |      | 12        |      |      | 15       |      | dB     |
| Output Power for 1 dB<br>Compression (P1dB) | 14         | 16        |      | 12.5 | 16.5       |      | 18.5 | 20.5      |      | 16.5 | 21       |      | dBm    |
| Saturated Output Power (Psat)               |            | 17        |      |      | 17.5       |      |      | 21        |      |      | 21.5     |      | dBm    |
| Output Third Order Intercept (IP3)          |            | 31        |      |      | 30         |      |      | 37        |      |      | 37       |      | dBm    |
| Supply Current (Idd)                        | 24         | 34        | 44   | 24   | 34         | 44   | 65   | 95        | 124  | 65   | 95       | 124  | mA     |

\* Rbias resistor sets current, see application circuit herein

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v00.1108



### SMT GaAs pHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 550 - 1200 MHz

#### **Broadband Gain & Return Loss** 25 S21 15 (qB) 5 Vdd= 5V Vdd= 3V RESPONSE -5 S22 -15 -25 S11 -35 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 FREQUENCY (GHz)

Gain vs. Temperature [2]



Output Return Loss vs. Temperature [1]



[1] Vdd = 5V [2] Vdd = 3V

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Gain vs. Temperature [1]



Input Return Loss vs. Temperature [1]



Reverse Isolation vs. Temperature [1]



AMPLIFIERS - LOW NOISE - SMT



v00.1108

SMT GaAs pHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 550 - 1200 MHz



#### Noise Figure vs. Temperature [1] 1.2 Vdd= 5V Vdd= 3V 1 **VOISE FIGURE (dB)** 0.8 850 0.6 0.4 400 0.2 0 0.6 0.7 1.2 0.5 0.8 0.9 1.1 1.3 1 FREQUENCY (GHz)

Psat vs. Temperature



**Output IP3 and Supply Current vs.** Supply Voltage @ 700 MHz



#### [1] Measurement reference plane shown on evaluation PCB drawing.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no Information initiation of Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

#### P1dB vs. Temperature



#### **Output IP3 vs. Temperature**



**Output IP3 and Supply Current vs.** Supply Voltage @ 900 MHz



For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

AMPLIFIERS - LOW NOISE - SMT



v00.1108



### SMT GaAs pHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 550 - 1200 MHz

Power Compression @ 700 MHz [1]



Power Compression @ 700 MHz [2]



Gain, Power & Noise Figure vs. Supply Voltage @ 700 MHz



[1] Vdd = 5V [2] Vdd = 3V

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Power Compression @ 900 MHz [1]



Power Compression @ 900 MHz [2]



Gain, Power & Noise Figure vs. Supply Voltage @ 900 MHz





v00.1108

### SMT GaAs pHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 550 - 1200 MHz



#### Cross Channel Isolation [1]



#### Phase Balance [1]



#### Typical Supply Current vs. Vdd (Rbias = $10k\Omega$ )

| Vdd (V) | ldd (mA) |
|---------|----------|
| 2.7     | 24       |
| 3.0     | 34       |
| 3.3     | 44       |
| 4.5     | 82       |
| 5.0     | 95       |
| 5.5     | 105      |

Note: Amplifier will operate over full voltage ranges shown above.

#### Magnitude Balance [1]



#### Absolute Maximum Ratings

|   | Drain Bias Voltage (Vdd)                                        | +6V            |
|---|-----------------------------------------------------------------|----------------|
|   | RF Input Power (RFIN)<br>(Vdd = +5 Vdc)                         | +10 dBm        |
| Ν | Channel Temperature                                             | 150 °C         |
|   | Continuous Pdiss (T= 85 °C)<br>(derate 16.67 mW/°C above 85 °C) | 1.08 W         |
|   | Thermal Resistance<br>(channel to ground paddle)                | 60 °C/W        |
|   | Storage Temperature                                             | -65 to +150 °C |
|   | Operating Temperature                                           | -40 to +85 °C  |

#### Absolute Bias Register for Idd Range & Recommended Bias Resistor

|         |                     | Idd (mA)        |     |    |
|---------|---------------------|-----------------|-----|----|
| Vdd (V) | Min Max Recommended |                 |     |    |
| 3V      | 10k                 | Open<br>circuit | 10k | 34 |
|         |                     |                 | 820 | 58 |
| 5V      | 0                   | Open<br>circuit | 2k  | 78 |
|         |                     | SSuit           | 10k | 95 |

With Vdd = 3V Rbias <10k is not recommended and may result in LNA becoming conditionally unstable.

#### [1] Vdd = 5V [2] Vdd = 3V



Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v00.1108

### SMT GaAs pHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 550 - 1200 MHz

### **Outline Drawing**



7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

#### **Package Information**

| Part Number            | Package Body Material                              | Lead Finish   | MSL Rating | Package Marking <sup>[1]</sup> |
|------------------------|----------------------------------------------------|---------------|------------|--------------------------------|
| HMC817LP4E             | RoHS-compliant Low Stress Injection Molded Plastic | 100% matte Sn | MSL1 [2]   | <u>H817</u><br>XXXX            |
| [1] 4-Digit lot number | xxxx                                               |               |            |                                |

[2] Max peak reflow temperature of 260 °C

#### **Pin Descriptions**

| Pin Number                     | Function     | Description                                                                                           | Interface Schematic |
|--------------------------------|--------------|-------------------------------------------------------------------------------------------------------|---------------------|
| 1, 6                           | RFIN1, RFIN2 | These pins are matched to 50 Ohms.                                                                    | RF1, O              |
| 2, 5, 7, 12,<br>14, 17, 19, 24 | GND          | These pins and package bottom must be<br>connected to RF/DC Ground.                                   |                     |
| 3, 4, 8 - 10,<br>21 - 23       | N/C          | No connection required. These pins may be connected<br>to RF/DC ground without affecting performance. |                     |

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.





SMT GaAs pHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 550 - 1200 MHz

#### Pin Descriptions (Continued)

| Pin Number | Function          | Description                                                                                                            | Interface Schematic  |
|------------|-------------------|------------------------------------------------------------------------------------------------------------------------|----------------------|
| 11, 20     | Vdd1,<br>Vdd2     | Power supply voltages for each amplifier. Choke inductor and bypass capacitors are required. See application circuit.  | Vdd1,<br>Vdd2<br>ESD |
| 13, 18     | RFOUT1,<br>RFOUT2 | These pins are matched to 50 Ohms.                                                                                     | RFOUT1,<br>RFOUT2    |
| 15, 16     | RES1,<br>RES2     | These pins are used to set the DC current of each amplifier<br>via external biasing resistor. See application circuit. | ESD<br>ESD           |

v00.1108

#### **Application Circuit**



Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v00.1108



### SMT GaAs pHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 550 - 1200 MHz

#### **Evaluation PCB**



### List of Materials for Evaluation PCB 123193 [1]

| Item                | Description                        |  |  |
|---------------------|------------------------------------|--|--|
| J1 - J4             | PCB Mount SMA RF Connector         |  |  |
| J5, J6              | 2mm Vertical Molex 8 pos Connector |  |  |
| C5, C6              | 1000 pF Capacitor, 0603 Pkg.       |  |  |
| C9, C10             | 0.47 µF Capacitor, 0603 Pkg        |  |  |
| C11, C12            | 10 kpF Capacitor, 0402 Pkg.        |  |  |
| R1 - R4             | 0 Ohm Resistor, 0402 Pkg.          |  |  |
| R5, R6 (Rbias 1, 2) | 10K Resistor, 0402 Pkg.            |  |  |
| L1, L2              | 15 nH Inductor, 0402 Pkg.          |  |  |
| L5, L6              | 18 nH Inductor, 0603 Pkg.          |  |  |
| U1                  | HMC817LP4E Amplifier               |  |  |
| PCB [2]             | 122725 Evaluation PCB              |  |  |

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350 or Arlon 25FR

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request. AMPLIFIERS - LOW NOISE - SMT 🖌