

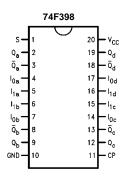
April 1988 Revised October 2000

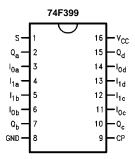
74F398 • 74F399 Quad 2-Port Register

General Description

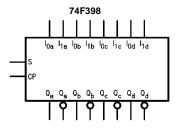
The 74F398 and 74F399 are the logical equivalents of a quad 2-input multiplexer feeding into four edge-triggered flip-flops. A common Select input determines which of the two 4-bit words is accepted. The selected data enters the flip-flops on the rising edge of the clock. The 74F399 is the 16-pin version of the 74F398, with only the Q outputs of the flip-flops available.

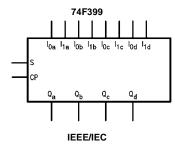
Features

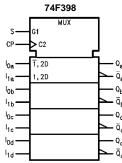

- Select inputs from two data sources
- Fully positive edge-triggered operation
- Both true and complement outputs—74F398

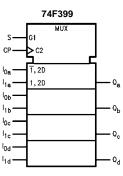

Ordering Code:

Order Number	Package Number	Package Description
74F398SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F398PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
74F399SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74F399SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F399PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide


Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.


Connection Diagrams





Logic Symbols

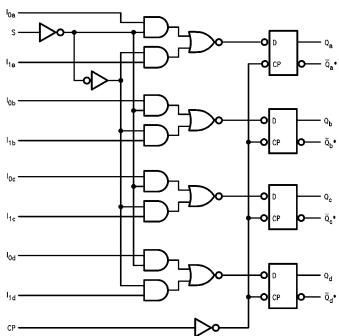
Unit Loading/Fan Out

Pin Names	Description.	U.L.	Input I _{IH} /I _{IL}	
	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
S	Common Select Input	1.0/1.0	20 μA/–0.6 mA	
СР	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 μA/–0.6 mA	
I _{0a} –I _{0d}	Data Inputs from Source 0	1.0/1.0	20 μA/–0.6 mA	
I _{1a} -I _{1d}	Data Inputs from Source 1	1.0/1.0	20 μA/–0.6 mA	
Q _a –Q _d	Register True Outputs	50/33.3	−1 mA/20 mA	
\overline{Q}_a – \overline{Q}_d	Register Complementary Outputs (74F398)	50/33.3	−1 mA/20 mA	

Functional Description

The 74F398 and 74F399 are high-speed quad 2-port registers. They select four bits of data from either of two sources (Ports) under control of a common Select input (S). The selected data is transferred to a 4-bit output register synchronous with the LOW-to-HIGH transition of the Clock input (CP). The 4-bit D-type output register is fully edgetriggered. The Data inputs $(I_{0x},\ I_{1x})$ and Select input (S) must be stable only a setup time prior to and hold time after the LOW-to-HIGH transition of the Clock input for predictable operation. The 74F398 has both Q and \overline{Q} outputs.

Function Table


Inputs			Ot	utputs
S	I ₀	I ₁	ď	Q (Note 1)
- 1	I	Х	L	Н
- 1	h	X	Н	L
h	X	1	L	Н
h	X	h	Н	L

H = HIGH Voltage Level L = LOW Voltage Level

- $h = HIGH \ Voltage \ Level \ one \ setup \ time \ prior \ to \ the \ LOW-to-HIGH$ clock transition
- I = LOW Voltage Level one setup time prior to the LOW-to-HIGH clock transition X = Immaterial

Note 1: 74F398 only

Logic Diagram

*F398 Only

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 2)

 $\begin{array}{lll} \mbox{Storage Temperature} & -65^{\circ}\mbox{C to } +150^{\circ}\mbox{C} \\ \mbox{Ambient Temperature under Bias} & -55^{\circ}\mbox{C to } +125^{\circ}\mbox{C} \\ \mbox{Junction Temperature under Bias} & -55^{\circ}\mbox{C to } +150^{\circ}\mbox{C} \\ \end{array}$

 $\begin{array}{lll} \mbox{V}_{\mbox{CC}} \mbox{ Pin Potential to Ground Pin} & -0.5 \mbox{V to } +7.0 \mbox{V} \\ \mbox{Input Voltage (Note 3)} & -0.5 \mbox{V to } +7.0 \mbox{V} \\ \mbox{Input Current (Note 3)} & -30 \mbox{ mA to } +5.0 \mbox{ mA} \\ \end{array}$

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

Standard Output $-0.5 \text{V to V}_{\text{CC}}$

3-STATE Output -0.5V to +5.5V

Current Applied to Output

in LOW State (Max) twice the rated I_{OL}(mA)

ESD Last Passing Voltage

(Min)—74F399 4000V

Free Air Ambient Temperature 0°C to +70°C Supply Voltage +4.5V to +5.5V

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation

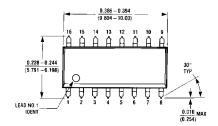
under these conditions is not implied.

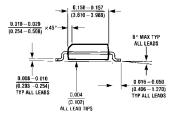
Note 3: Either voltage limit or current limit is sufficient to protect inputs.

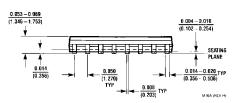
DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	V _{CC}	Conditions	
V _{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH 10% V _{CC}	2.5			V	V	Min	I _{OH} = -1 mA
	Voltage 5% V _{CC}	2.7			V	IVIIII	$I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW 10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA	
	Voltage			0.5	V	IVIIII	IOL = 20 IIIA	
I _{IH}	Input HIGH Current			5.0	μΑ	Max	V _{IN} = 2.7V	
I _{BVI}	Input HIGH Current			7.0	μА	Max	V _{IN} = 7.0V	
	Breakdown Test			7.0	μА	IVIAX	$v_{IN} = 7.0 v$	
I _{CEX}	Output HIGH			50	μА	Max	V V	
	Leakage Current			50	μА	IVIAX	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage	4.75			V	0.0	$I_{ID} = 1.9 \mu A$	
	Test	4.75			V	0.0	All Other Pins Grounded	
I _{OD}	Output Leakage			3.75	μА	0.0	V _{IOD} = 150 mV	
	Circuit Current			3.73	μΛ	0.0	All Other Pins Grounded	
I _{IL}	Input LOW Current			-0.6	mA	Max	$V_{IN} = 0.5V$	
los	Output Short-Circuit Current	-60		-150	mA	Max	$V_{OUT} = 0V$	
I _{CCH}	Power Supply Current (74F398)		25	38	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current (74F398)		25	38	mA	Max	$V_O = LOW$	
I _{CCH}	Power Supply Current (74F399)		22	34	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current (74F399)		22	34	mA	Max	$V_O = LOW$	

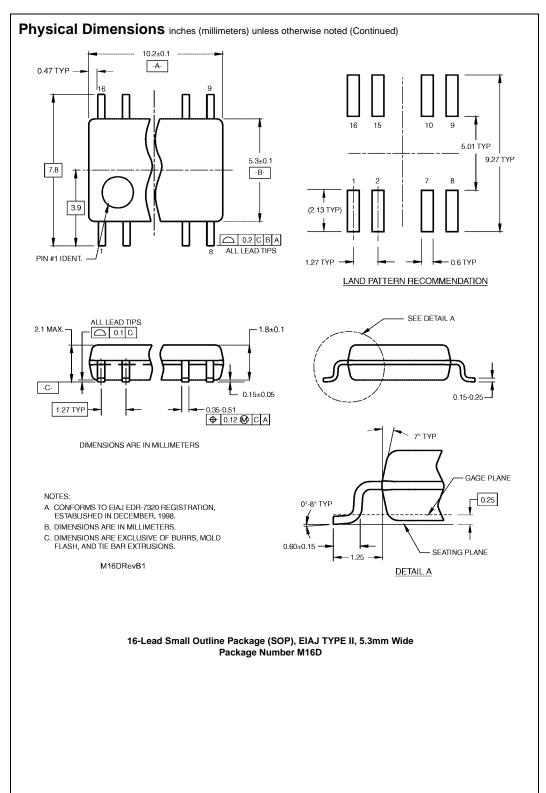
AC Electrical Characteristics

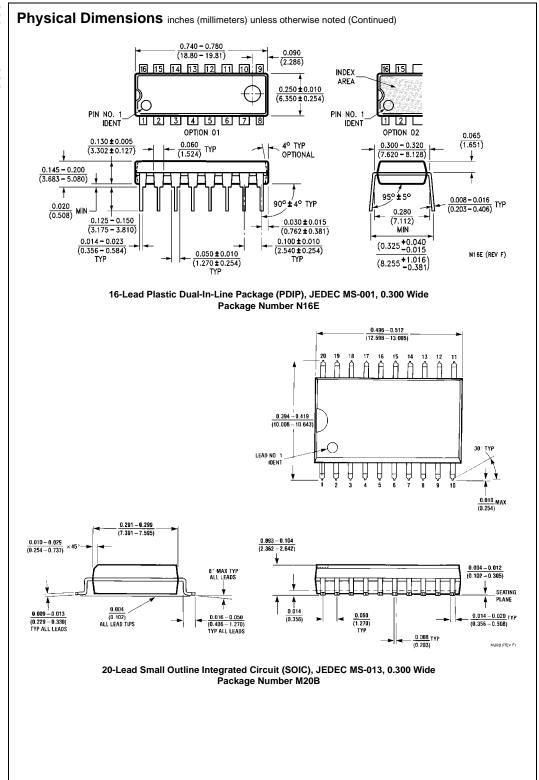

Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			$T_A = 0$ °C to $+70$ °C $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	
f _{MAX}	Input Clock Frequency	100	140		100		MHz
t _{PLH}	Propagation Delay	3.0 (Note 4)	5.7	7.5	3.0	8.5	
t _{PHL}	CP to Q or Q	3.0	6.8	9.0	3.0	10.0	ns

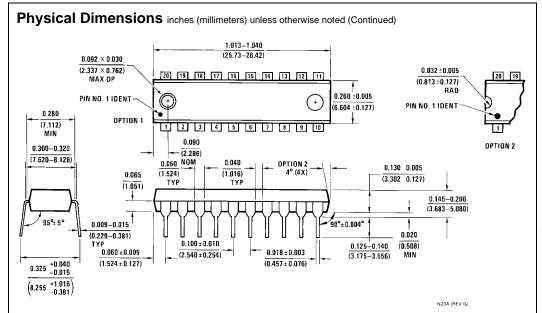

Note 4: 74F398 3.3 ns


AC Operating Requirements

	Parameter	$T_A = +25$ °C $V_{CC} = +5.0V$		$T_A = 0$ °C to +70°C $V_{CC} = +5.0V$		Units
Symbol						
		Min	Max	Min	Max	Ī
t _S (H)	Setup Time, HIGH or LOW	3.0		3.0		
t _S (L)	I _n to CP	3.0		3.0		ns
t _H (H)	Hold Time, HIGH or LOW	1.0		1.0		115
t _H (L)	I _n to CP	1.0		1.0		
t _S (H)	Setup Time, HIGH or LOW	7.5		8.5		
t _S (L)	S to CP (F398)	7.5		8.5		
t _S (H)	Setup Time, HIGH or LOW	7.5		8.5		
t _S (L)	S to CP (F399)	7.5		8.5		ns
t _H (H)	Hold Time, HIGH or LOW	0		0		
t _H (L)	S to CP	0		0		
t _W (H)	CP Pulse Width	4.0		4.0		20
t _W (L)	HIGH or LOW	5.0		5.0		ns


Physical Dimensions inches (millimeters) unless otherwise noted





16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow Package Number M16A

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com