Octal Counter The MC14022B is a four-stage Johnson octal counter with built-in code converter. High-speed operation and spike-free outputs are obtained by use of a Johnson octal counter design. The eight decoded outputs are normally low, and go high only at their appropriate octal time period. The output changes occur on the positive-going edge of the clock pulse. This part can be used in frequency division applications as well as octal counter or octal decode display applications. #### **Features** - Fully Static Operation - DC Clock Input Circuit Allows Slow Rise Times - Carry Out Output for Cascading - Supply Voltage Range = 3.0 Vdc to 18 Vdc - Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range - Pin-for-Pin Replacement for CD4022B - Triple Diode Protection on All Inputs - NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable - This Device is Pb-Free and is RoHS Compliant #### MAXIMUM RATINGS (Voltages Referenced to V_{SS}) | Symbol | Parameter | Value | Unit | |------------------------------------|---|-------------------------------|------| | V_{DD} | DC Supply Voltage Range | -0.5 to +18.0 | V | | V _{in} , V _{out} | Input or Output Voltage Range (DC or Transient) | -0.5 to V _{DD} + 0.5 | V | | I _{in} , I _{out} | Input or Output Current (DC or Transient) per Pin | ±10 | mA | | P _D | Power Dissipation, per Package (Note 1) | 500 | mW | | T _A | Ambient Temperature Range | -55 to +125 | °C | | T _{stg} | Storage Temperature Range | -65 to +150 | °C | | TL | Lead Temperature
(8–Second Soldering) | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Temperature Derating: "D/DW" Packages: -7.0 mW/°C From 65°C To 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$ Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open. #### ON Semiconductor® http://onsemi.com SOIC-16 D SUFFIX CASE 751B #### **PIN ASSIGNMENT** | | | | _ | |-------------------|-----|----|------------------| | Q1 [| 1 ● | 16 | | | Q0 [| 2 | 15 |] R | | Q2 [| 3 | 14 |] C | | Q5 [| 4 | 13 | CE | | Q6 [| 5 | 12 | C _{out} | | NC [| 6 | 11 | Q4 | | Q3 [| 7 | 10 | Q7 | | V _{SS} [| 8 | 9 | NC | NC = NO CONNECTION #### **MARKING DIAGRAM** A = Assembly Location WL = Wafer Lot YY, Y = Year WW = Work Week G = Pb-Free Indicator #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. #### **BLOCK DIAGRAM** NC = PIN 6, 9 # FUNCTIONAL TRUTH TABLE (Positive Logic) | Clock | Clock
Enable | Reset | Output=n | |-------|-----------------|-------|----------| | 0 | Х | 0 | n | | X | 1 | 0 | n | | | 0 | 0 | n+1 | | | Х | 0 | n | | 1 | ~ | 0 | n+1 | | Х | | 0 | n | | X | Х | 1 | Q0 | X = Don't Care. If n < 4 Carry = 1, Otherwise = 0. #### **LOGIC DIAGRAM** #### **ELECTRICAL CHARACTERISTICS** (Voltages Referenced to V_{SS}) | | | | | -5 | 5°C | | 25°C | | 125 | s∘ C | | |--|-----------|-----------------|------------------------|-------------------------------|----------------------|-------------------------------|--|----------------------|-------------------------------|----------------------|------| | Characteristic | | Symbol | V _{DD}
Vdc | Min | Max | Min | Typ
(Note 2) | Max | Min | Max | Unit | | Output Voltage
V _{in} = V _{DD} or 0 | "0" Level | V _{OL} | 5.0
10
15 | -
-
- | 0.05
0.05
0.05 | -
-
- | 0
0
0 | 0.05
0.05
0.05 | -
-
- | 0.05
0.05
0.05 | Vdc | | V _{in} = 0 or V _{DD} | "1" Level | V _{OH} | 5.0
10
15 | 4.95
9.95
14.95 | -
-
- | 4.95
9.95
14.95 | 5.0
10
15 | -
-
- | 4.95
9.95
14.95 | -
-
- | Vdc | | Input Voltage $(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$ $(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$ $(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$ | "0" Level | V _{IL} | 5.0
10
15 | -
-
- | 1.5
3.0
4.0 | -
-
- | 2.25
4.50
6.75 | 1.5
3.0
4.0 | -
-
- | 1.5
3.0
4.0 | Vdc | | $(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$
$(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$
$(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$ | "1" Level | V _{IH} | 5.0
10
15 | 3.5
7.0
11 | -
-
- | 3.5
7.0
11 | 2.75
5.50
8.25 | -
-
- | 3.5
7.0
11 | -
-
- | Vdc | | Output Drive Current $ \begin{aligned} (V_{OH} &= 2.5 \text{ Vdc}) \\ (V_{OH} &= 4.6 \text{ Vdc}) \\ (V_{OH} &= 9.5 \text{ Vdc}) \\ (V_{OH} &= 13.5 \text{ Vdc}) \end{aligned} $ | Source | ОН | 5.0
5.0
10
15 | -3.0
-0.64
-1.6
-4.2 | -
-
- | -2.4
-0.51
-1.3
-3.4 | -4.2
-0.88
-2.25
-8.8 | -
-
- | -1.7
-0.36
-0.9
-2.4 | | mAdc | | $(V_{OL} = 0.4 \text{ Vdc})$
$(V_{OL} = 0.5 \text{ Vdc})$
$(V_{OL} = 1.5 \text{ Vdc})$ | Sink | I _{OL} | 5.0
10
15 | 0.64
1.6
4.2 | -
-
- | 0.51
1.3
3.4 | 0.88
2.25
8.8 | -
-
- | 0.36
0.9
2.4 | -
-
- | mAdc | | Input Current | | I _{in} | 15 | _ | ±0.1 | _ | ±0.00001 | ±0.1 | _ | ±1.0 | μAdc | | Input Capacitance
(V _{in} = 0) | | C _{in} | - | - | - | _ | 5.0 | 7.5 | - | _ | pF | | Quiescent Current
(Per Package) | | I _{DD} | 5.0
10
15 | -
-
- | 5.0
10
20 | -
-
- | 0.005
0.010
0.015 | 5.0
10
20 | -
-
- | 150
300
600 | μAdc | | Total Supply Current (Note (Dynamic plus Quiesce Per Package) (C _L = 50 pF on all output buffers switching) | nt, | I _T | 5.0
10
15 | | | $I_{T} = (0$ | .28 μΑ/kHz)f
.56 μΑ/kHz)f
.85 μΑ/kHz)f | + I _{DD} | | • | μAdc | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics for the listed test conditions, unless otherwise in performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. 3. The formulas given are for the typical characteristics only at 25°C. 4. To calculate total supply current at loads other than 50 pF: $$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$ where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.00125. ## **SWITCHING CHARACTERISTICS** (Note 5) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}C$) | Characteristic | Symbol | V _{DD}
Vdc | Min | Typ
(Note 6) | Max | Unit | |--|--|------------------------|-------------------|-------------------|--------------------|------| | Output Rise and Fall Time $t_{TLH}, t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns} $ $t_{TLH}, t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns} $ $t_{TLH}, t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns} $ | t _{TLH} ,
t _{THL} | 5.0
10
15 | -
-
- | 100
50
40 | 200
100
80 | ns | | Propagation Delay Time Reset to Decode Output $t_{PLH},t_{PHL}=(1.7\text{ ns/pF})C_L+415\text{ ns}$ $t_{PLH},t_{PHL}=(0.66\text{ ns/pF})C_L+197\text{ ns}$ $t_{PLH},t_{PHL}=(0.5\text{ ns/pF})C_L+150\text{ ns}$ | t _{PLH} ,
t _{PHL} | 5.0
10
15 | -
-
- | 500
230
175 | 1000
460
350 | ns | | Propagation Delay Time Clock to C_{out} $t_{PLH}, t_{PHL} = (1.7 \text{ ns/pF}) C_L + 315 \text{ ns}$ $t_{PLH}, t_{PHL} = (0.66 \text{ ns/pF}) C_L + 142 \text{ ns}$ $t_{PLH}, t_{PHL} = (0.5 \text{ ns/pF}) C_L + 100 \text{ ns}$ | t _{PLH} ,
t _{PHL} | 5.0
10
15 | -
-
- | 400
175
125 | 800
350
250 | ns | | Propagation Delay Time Clock to Decode Output $t_{PLH}, t_{PHL} = (1.7 \text{ ns/pF}) C_L + 415 \text{ ns}$ $t_{PLH}, t_{PHL} = (0.66 \text{ ns/pF}) C_L + 197 \text{ ns}$ $t_{PLH}, t_{PHL} = (0.5 \text{ ns/pF}) C_L + 150 \text{ ns}$ | t _{PLH} ,
t _{PHL} | 5.0
10
15 | -
-
- | 275
125
95 | 1000
460
350 | ns | | Turn–Off Delay Time Reset to C_{out} $t_{PLH} = (1.7 \text{ ns/pF}) C_L + 315 \text{ ns}$ $t_{PLH} = (0.66 \text{ ns/pF}) C_L + 142 \text{ ns}$ $t_{PLH} = (0.5 \text{ ns/pF}) C_L + 100 \text{ ns}$ | t _{PLH} | 5.0
10
15 | -
-
- | 400
175
125 | 800
350
250 | ns | | Clock Pulse Width | t _{WH} | 5.0
10
15 | 250
100
75 | 125
50
35 | -
-
- | ns | | Clock Frequency | f _{cl} | 5.0
10
15 | -
-
- | 5.0
12
16 | 2.0
5.0
6.7 | MHz | | Reset Pulse Width | t _{WH} | 5.0
10
15 | 500
250
190 | 250
125
95 | -
-
- | ns | | Reset Removal Time | t _{rem} | 5.0
10
15 | 750
275
210 | 375
135
105 | -
-
- | ns | | Clock Input Rise and Fall Time | t _{TLH} , t _{THL} | 5.0
10
15 | | No Limit | | _ | | Clock Enable Setup Time | t _{su} | 5.0
10
15 | 350
150
115 | 175
75
52 | -
-
- | ns | | Clock Enable Removal Time | t _{rem} | 5.0
10
15 | 420
200
140 | 260
100
70 | -
-
- | ns | ^{5.} The formulas given are for the typical characteristics only at 25°C.6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. | | Output
Sink Drive | Output
Source Drive | |-------------------|-------------------------------------|---| | Outputs | (S1 to A) | Clock to desired
Output
(S1 to B) | | Carry | Clock to Q5
thru Q7
(S1 to B) | S1 to A | | V _{GS} = | V_{DD} | – V _{DD} | | V _{DS} = | V _{out} | V _{out} – V _{DD} | Figure 1. Typical Output Source and Output Sink Characteristics Test Circuit **Figure 2. Typical Power Dissipation Test Circuit** #### **APPLICATIONS INFORMATION** Figure 3 shows a technique for extending the number of decoded output states for the MC14022B. Decoded outputs are sequential within each stage and from stage to stage, with no dead time (except propagation delay). Figure 3. Counter Expansion Figure 4. AC Measurement Definition and Functional Waveforms #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|----------------------|--------------------------| | MC14022BDG | SOIC-16
(Pb-Free) | 48 Units / Rail | | MC14022BDR2G | SOIC-16
(Pb-Free) | 2500 Units / Tape & Reel | | NLV14022BDR2G* | SOIC-16
(Pb-Free) | 2500 Units / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. # **MECHANICAL CASE OUTLINE** **DATE 29 DEC 2006** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI - THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. - PHOI HUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIN | IETERS | INC | HES | | |-----|---------|--------|-------|-------|--| | DIM | MIN MAX | | MIN | MAX | | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | | В | 3.80 | 4.00 | 0.150 | 0.157 | | | C | 1.35 | 1.75 | 0.054 | 0.068 | | | D | 0.35 | 0.49 | 0.014 | 0.019 | | | F | 0.40 | 1.25 | 0.016 | 0.049 | | | G | 1.27 | BSC | 0.050 | BSC | | | J | 0.19 | 0.25 | 0.008 | 0.009 | | | K | 0.10 | 0.25 | 0.004 | 0.009 | | | M | 0° | 7° | 0° | 7° | | | Р | 5.80 | 6.20 | 0.229 | 0.244 | | | R | 0.25 | 0.50 | 0.010 | 0.019 | | | 2.
3. | COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE COLLECTOR COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE EMITTER BASE EMITTER BASE | 2.
3.
4.
5.
6.
7.
8.
9.
10. | CATHODE
ANODE | 2.
3.
4.
5.
6.
7.
8.
9.
10. | COLLECTOR, DYE #1 BASE, #1 EMITTER, #1 COLLECTOR, #1 COLLECTOR, #2 BASE, #2 EMITTER, #2 COLLECTOR, #2 COLLECTOR, #2 COLLECTOR, #3 | STYLE 4: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. | COLLECTOR, DYN
COLLECTOR, #1
COLLECTOR, #2
COLLECTOR, #3
COLLECTOR, #3
COLLECTOR, #4
COLLECTOR, #4
BASE, #4
EMITTER, #4
BASE, #3
EMITTER, #3
BASE, #2 | | | |----------|---|---|--------------------|---|---|---|--|--------------|-------------------------| | 14. | COLLECTOR | | NO CONNECTION | 14. | | 14. | | SOLDERING | FOOTPRINT | | 15. | EMITTER | | ANODE | 15. | | 15. | BASE, #1 | 8 | X | | 16. | COLLECTOR | 16. | CATHODE | 16. | COLLECTOR, #4 | 16. | EMITTER, #1 | | ^
40 | | | | | | | , | | , | | 6X 1.12 | | STYLE 5: | DDAIN DVE #4 | STYLE 6: | OATHODE | STYLE 7: | COURCE N OU | | | ' | 0.1.12 | | PIN 1. | DRAIN, DYE #1 | PIN 1. | | PIN 1. | SOURCE N-CH | Τ\ | | <u></u> | 16 | | 2. | DRAIN, #1 | 2.
3. | CATHODE
CATHODE | 2. | COMMON DRAIN (OUTPU | | | ↓ └── | 10 | | 3.
4. | DRAIN, #2
DRAIN, #2 | 3.
4. | CATHODE | 3.
4. | COMMON DRAIN (OUTPU'
GATE P-CH | 1) | | <u>*</u> | | | 4.
5. | DRAIN, #2
DRAIN, #3 | 4.
5. | CATHODE | 4.
5. | COMMON DRAIN (OUTPU | Τ\ | | | | | 5.
6. | DRAIN, #3 | 5.
6. | CATHODE | 6. | COMMON DRAIN (OUTPU | | 1 | .58 ∱ | | | 7. | DRAIN, #4 | 7. | | 7. | COMMON DRAIN (OUTPU | | U. | .58 | | | 8. | DRAIN, #4 | 8. | CATHODE | 8. | SOURCE P-CH | ., | | | | | 9. | GATE, #4 | 9. | ANODE | 9. | SOURCE P-CH | | | | | | 10. | SOURCE, #4 | 10. | ANODE | 10. | COMMON DRAIN (OUTPU | T) | | | | | 11. | , | 11. | | 11. | COMMON DRAIN (OUTPU | | | | | | 12. | SOURCE, #3 | 12. | ANODE | 12. | COMMON DRAIN (OUTPU | T) | | | | | 13. | GATE, #2 | 13. | ANODE | 13. | GATE N-CH | | | | | | 14. | SOURCE, #2 | 14. | ANODE | 14. | COMMON DRAIN (OUTPU | T) | | | —— ↓ PITCH | | 15. | GATE, #1 | 15. | ANODE | 15. | COMMON DRAIN (OUTPU | T) | | | <u>+-+</u> - | | 16. | SOURCE, #1 | 16. | ANODE | 16. | SOURCE N-CH | | | | | | | | | | | | | | 8 | 9 ++ 7 | | | | | | | | | | , | DIMENSIONS: MILLIMETERS | | DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Reposito
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-------------|--|-------------|--|--| | DESCRIPTION: | SOIC-16 | | PAGE 1 OF 1 | | | ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative