RClamp3654PA RailClamp® Low Capacitance TVS Array ## PROTECTION PRODUCTS - RailClamp® #### Description RailClamp® TVS arrays are ultra low capacitance ESD protection devices designed to protect high speed data interfaces. This series has been specifically designed to protect sensitive components which are connected to high-speed data and transmission lines from overvoltage caused by **ESD** (electrostatic discharge), **CDE** (Cable Discharge Events), and **EFT** (electrical fast transients). The RClamp®3654PA is specifically designed to protect portable devices that utilize the USB port for battery charging. The unique design of this device features low capacitance TVS diodes for protection of the USB data (DP, DM) and USB ID (accessory detect) pins operating up to 5 volts. Loading capacitance on these lines is <1pF for maximum signal integrity. An integrated 28 volt TVS diode is used for protection of the USB voltage bus. This ensures the device will remain in a high-impedance state during normal USB operation or when the battery is being charged. Leakage current of the VBus protection is <100nA when operating at 28 volts. The RClamp3654PA is in a 6-pin SLP1616P6 package. It measures 1.6 x 1.6 x 0.60mm. The leads are spaced at a pitch of 0.5mm and are finished with lead-free NiPdAu. They may be used to meet the ESD immunity requirements of IEC 61000-4-2, Level 4 (15kV air, 8kV contact discharge). #### Features - ◆ Transient protection for high-speed data lines to IEC 61000-4-2 (ESD) ±15kV (air), ±8kV (contact) IEC 61000-4-4 (EFT) 40A (5/50ns) - Array of surge rated diodes with internal TVS Diode - Small package (1.6 x 1.6mm) saves board space - Protects USB DP, DM, and ID Pin operating up to 5.5V - Protects USB VBus operating up to 28V - ◆ Low capacitance (<1pF) on DP, DM, and ID Pins - ◆ No insertion loss to 2.0GHz - ◆ Low leakage current - Low clamping voltage - ◆ Large ground pad for increased ESD performance - ◆ Solid-state silicon-avalanche technology #### **Mechanical Characteristics** - SLP1616P6 6L package - ◆ Pb-Free, Halogen Free, RoHS/WEEE Compliant - ♦ Nominal Dimensions: 1.6 x 1.6 x 0.60 mm - Lead Finish: NiPdAu - ◆ Molding compound flammability rating: UL 94V-0 - ◆ Marking : Marking code + two character date code - Packaging : Tape and Reel #### **Applications** - ◆ USB 2.0 - USB OTG ## Circuit Diagram ## **PIN Configuration** ## Absolute Maximum Rating | Rating | Symbol | Value | Units | |--|------------------|-------------|-------| | DP, DM, USB ID (Pins 1, 2, 3) | • | | • | | Peak Pulse Power (tp = 8/20µs) | P_{pk} | 100 | Watts | | Peak Pulse Current (tp = 8/20µs) | I _{PP} | 3 | А | | ESD per IEC 61000-4-2 (Air)
ESD per IEC 61000-4-2 (Contact) | V_{ESD} | ±15
±8 | kV | | Operating Temperature | T, | -55 to +125 | °C | | Storage Temperature | T _{STG} | -55 to +150 | °C | | VBus (Pin 6) | • | | • | | Peak Pulse Power (tp = 8/20µs) | P _{pk} | 350 | Watts | | Peak Pulse Current (tp = 8/20µs) | I _{PP} | 4 | А | | ESD per IEC 61000-4-2 (Air)
ESD per IEC 61000-4-2 (Contact) | V _{ESD} | ±15
±8 | kV | | Operating Temperature | T, | -55 to +125 | °C | | Storage Temperature | T _{STG} | -55 to +150 | °C | 15 30 0.95 0.5 8.0 ٧ V рF pF ## PROTECTION PRODUCTS Clamping Voltage Clamping Voltage Junction Capacitance ## Electrical Characteristics (T = 25°C) #### DM, DP, USB ID TVS (Pins 1, 2, 3) **Parameter** Symbol **Conditions** Minimum **Typical** Maximum Units Reverse Stand-Off Voltage $V_{\scriptscriptstyle RWM}$ Pin 1, 2, or 3 to GND 5.5 ٧ $I_{.} = 1mA$ 6.5 8 10 V Reverse Breakdown Voltage Pin 1, 2, or 3 to GND $V_{RWM} = 5.5V,$ Pin 1, 2, or 3 to GND Reverse Leakage Current I_R 0.100 1 μΑ 0.6 1.2 ٧ Forward Voltage $V_{\scriptscriptstyle F}$ $I_r = 15 \text{mA}$ GND to Pin 1, 2, or 3 $I_{pp} = 1A$, tp = 8/20 μ s Pin 1, 2, or 3 to GND $I_{pp} = 3A$, tp = 8/20 μ s Pin 1, 2, or 3 to GND $V_R = OV, f = 1MHz,$ Pin 1, 2, or 3 to GND $V_{R} = OV, f = 1MHz,$ Between I/O pins V_{c} C_{i} # Electrical Characteristics (T = 25°C) | VBus TVS (Pin 6) | | | | | | | | | | |---------------------------|------------------|---|---------|---------|---------|-------|--|--|--| | Parameter | Symbol | Conditions | Minimum | Typical | Maximum | Units | | | | | Reverse Stand-Off Voltage | V _{RWM} | Pin 6 to GND | | | 28 | V | | | | | Reverse Breakdown Voltage | V _{BR} | I _t = 1mA,
Pin 6 to GND | 32 | 36 | 40 | V | | | | | Reverse Leakage Current | I _R | V _{RWM} = 28V
Pin 6 to GND | | | 0.250 | μΑ | | | | | Forward Voltage | V _F | I _s = 10mA
GND to Pin 6 | 0.6 | | 1.0 | V | | | | | Forward Clamping Voltage | V _{FC} | I _{pp} = 10A, tp = 8/20μs
Ground to Pin 6 | | | 3 | V | | | | | Clamping Voltage | V _c | I _{pp} = 1A, tp = 8/20μs
Pin 6 to Ground | | | 48 | V | | | | | Junction Capacitance | C _j | V _R = 0V, f = 1MHz
Pin 6 to GND | | | 100 | pF | | | | ## Typical Characteristics #### Non-Repetitive Peak Pulse Power vs. Pulse Time #### **Pulse Waveform** # Clamping Voltage vs. Peak Pulse Current (Pin 6 to GND) #### **Power Derating Curve** #### Clamping Voltage vs. Peak Pulse Current (Pin 1, 2, or 3 to GND) # Reverse Clamping Voltage vs. Peak Pulse Current (Pin GND to Pin 6) ## Typical Characteristics # Normalized Capacitance vs. Reverse Voltage (Pin 1, 2, or 3 to Gnd) #### **Analog Crosstalk** #### Insertion Loss S21 (Pin 1, 2, or 3 to Gnd) ## **Applications Information** # **Device Connection Options for Protecting One USB Port** USB Data and ID lines are connected at pins 1, 2, and 3. These inputs are referenced to an internal 5 volt TVS protection device. When the voltage on these lines exceed 5 volts, the TVS will conduct. Pin 6 is connected to the USB voltage bus (VBus). This device will conduct when the voltage on the bus exceeds 28 volts. The center tab is connected to ground. The path length should also be kept as short as possible to minimize parasitic inductance. For best results, multiple micro-vias are recommended to the ground plane. #### **Protecting USB Interfaces** The RClamp3654PA is optimized for use on systems that utilize the USB interface for battery charging. Low capacitance protection is provided for the USB data (DM, DP) and USB ID pins. The maximum capacitance on these lines is <1pF for maximum signal integrity. All three lines are referenced to an internal 5 volt TVS device. A separate 28 volt TVS device is used for protection of the USB voltage bus. This allows battery charging without signal clipping. A typical example is shown in Figure 2. Figure 1- Pin Configuration & Circuit Diagram Figure 2 - USB Protection ## Outline Drawing - SLP1616P6 | DIMENSIONS | | | | | | | | | |------------|-----------|--------|------|-------------|--------|------|--|--| | | 11 | NCHE | S | MILLIMETERS | | | | | | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | | | Α | .020 | .023 | .026 | 0.50 | 0.58 | 0.65 | | | | A1 | 0.00 | .001 | .002 | 0.00 | 0.03 | 0.05 | | | | A2 | | (.005) | | | (0.13) | | | | | b | .008 | .010 | .012 | 0.20 | 0.25 | 0.30 | | | | D | .059 .063 | | .067 | 1.50 | 1.60 | 1.70 | | | | D1 | .041 | .047 | .051 | 1.05 | 1.20 | 1.30 | | | | Е | .059 | .063 | .067 | 1.50 | 1.60 | 1.70 | | | | E1 | .010 | .016 | .020 | 0.25 | 0.40 | 0.50 | | | | е | .0 | 20 BS | C | 0.50 BSC | | | | | | L | .010 .013 | | .016 | 0.25 0.33 | | 0.40 | | | | N | 6 | | | 6 | | | | | | aaa | .003 | | | 0.08 | | | | | | bbb | .004 | | | 0.10 | | | | | #### NOTES: - 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES). - 2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. ## Land Pattern - SLP1616P6 | | DIMENSIONS | | | | | | | |-----|------------|-------------|--|--|--|--|--| | DIM | INCHES | MILLIMETERS | | | | | | | С | .060 | 1.52 | | | | | | | G | .035 | 0.89 | | | | | | | Н | .018 | 0.45 | | | | | | | K | .051 | 1.30 | | | | | | | Р | .020 | 0.50 | | | | | | | X | .012 | 0.30 | | | | | | | Υ | .025 | 0.63 | | | | | | | Z | .085 | 2.15 | | | | | | #### NOTES: - 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES). - 2. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET. - THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD SHALL BE CONNECTED TO A SYSTEM GROUND PLANE. FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR FUNCTIONAL PERFORMANCE OF THE DEVICE. ## Marking #### YW = Two character Date Code # Ordering Information | Part Number | Lead
Finish | Qty per
Reel | Reel Size | |-----------------|----------------|-----------------|-----------| | RClamp3654PATCT | Pb Free | 3,000 | 7 Inch | RailClamp and RClamp are marks of Semtech Corporation ## Tape and Reel Specification | AO | В0 | КО | | | |-----------------|-----------------|-----------------|--|--| | 1.78 +/-0.10 mm | 1.78 +/-0.10 mm | 0.69 +/-0.10 mm | | | | Tape
Width | B, (Max) | D | D1 | E | F | K
(MAX) | Р | PO | P2 | T(MAX) | W | |---------------|----------|----------------------------|-----------------|-----------------|----------------|------------|---------------|---------------|----------------|--------|--------------------------------| | 8 mm | 4.2 mm | 1.5 + 0.1 mm
- 0.0 mm) | 0.5 mm
±0.05 | 1.750±.10
mm | 3.5±0.05
mm | 2.4 mm | 4.0±0.1
mm | 4.0±0.1
mm | 2.0±0.05
mm | 0.4 mm | 8.0 mm
+ 0.3 mm
- 0.1 mm | ## **Contact Information** Semtech Corporation Protection Products Division 200 Flynn Rd., Camarillo, CA 93012 Phone: (805)498-2111 FAX (805)498-3804