

GaN on Silicon General Purpose Amplifier DC - 2.2 GHz, 48 V, 100 W

Rev. V3

Features

- GaN on Si HEMT D-Mode Amplifier
- Suitable for Linear & Saturated Applications
- Tunable from DC 2.2 GHz
- 48 V Operation
- 15 dB Gain @ 2.15 GHz
- 61% Drain Efficiency @ 2.15 GHz
- 100% RF Tested
- Industry Standard Metal-Ceramic Package
- RoHS* Compliant

Description

The NPT2010 is a GaN HEMT general purpose amplifier optimized for DC - 2.2 GHz operation. This device supports CW, pulsed, and linear operation with output power levels to 100 W (50 dBm) in an industry standard metal-ceramic package with bolt down flange.

The NPT2010 is ideally suited for defense communications, land mobile radio, avionics, wireless infrastructure, ISM applications and VHF/ UHF/L/S-band radar.

Ordering Information

Part Number	Package
NPT2010	bulk quantity
NPT2010-SMBPPR	sample

Functional Schematic

Pin Configuration

Pin #	Pin Name	Function
1	RF_IN / V_G	RF Input / Gate
2	RF _{OUT} / V _D	RF Output / Drain
3	Flange ¹	Ground / Source

1. The Flange must be connected to RF and DC ground. This path must also provide a low thermal resistance heat path.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

GaN on Silicon General Purpose Amplifier DC - 2.2 GHz, 48 V, 100 W

Rev. V3

RF Electrical Specifications: $T_c = +25^{\circ}C$, $V_{DS} = 48 V$, $I_{DQ} = 600 mA$

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Small Signal Gain	CW, 2.15 GHz	G _{SS}	-	17	-	dB
Saturated Output Power	CW, 2.15 GHz	P _{SAT}	-	50.5	-	dBm
Drain Efficiency at Saturation	CW, 2.15 GHz	η _{sat}	-	64	-	%
Power Gain	2.15 GHz, P _{OUT} = 95 W	G _P	13.5	15	-	dB
Drain Efficiency	2.15 GHz, P _{OUT} = 95 W	η	52.5	61	-	%
Ruggedness: Output Mismatch All phase angles		Ψ	VSWR	= 10:1, No	Device D	amage

DC Electrical Characteristics: T_c = +25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 160 V	I _{DLK}	-	-	24	mA
Gate-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 0 V	I _{GLK}	-	-	12	mA
Gate Threshold Voltage	V _{DS} = 48 V, I _D = 24 mA	V _T	-2.5	-1.5	-0.5	V
Gate Quiescent Voltage	V _{DS} = 48 V, I _D = 600 mA	V_{GSQ}	-2.1	-1.2	-0.3	V
On Resistance	V _{DS} = 2 V, I _D = 180 mA	R _{on}	-	0.2	-	Ω
Maximum Drain Current	V_{DS} = 7 V pulsed, pulse width 300 µs	I _{D,MAX}	-	14	-	А

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

GaN on Silicon General Purpose Amplifier DC - 2.2 GHz, 48 V, 100 W

Rev. V3

Absolute Maximum Ratings^{2,3,4}

Parameter	Absolute Maximum		
Drain Source Voltage, V_{DS}	160 V		
Gate Source Voltage, V _{GS}	-10 to 3 V		
Gate Current, I _G	48 mA		
Junction Temperature, T _J	+200°C		
Operating Temperature	-40°C to +85°C		
Storage Temperature	-65°C to +150°C		

2. Exceeding any one or combination of these limits may cause permanent damage to this device.

3. MACOM does not recommend sustained operation near these survivability limits.

4. Operating at nominal conditions with $T_J \le 200^{\circ}$ C will ensure MTTF > 1 x 10⁶ hours.

Thermal Characteristics⁵

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance	V_{DS} = 48 V, T_{J} = 200°C	$R_{ ext{ heta}JC}$	1.75	°C/W

 Junction temperature (T_J) measured using IR Microscopy. Case temperature measured using thermocouple embedded in heat-sink.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

GaN on Silicon General Purpose Amplifier DC - 2.2 GHz, 48 V, 100 W

Rev. V3

Load-Pull Performance: V_{DS} = 48 V, I_{DQ} = 600 mA, T_{C} = 25°C Reference Plane at Device Leads, CW Drain Efficiency and Output Power Tradeoff Impedance

Frequency (MHz)	Z _S (Ω)	Z _L (Ω)	P _{SAT} (W)	G _{ss} (dB)	Drain Efficiency @ P _{SAT} (%)
500	1.1 + j1.4	5.9 + j2.5	140	25.9	70
900	1.3 - j0.7	5.7 + j4.2	130	21.5	69
2200	1.9 - j4.1	2.7 - j0.4	115	16.1	64

Impedance Reference

 Z_s and Z_L vs. Frequency

Drain Efficiency vs. Output Power

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V3

GaN on Silicon General Purpose Amplifier DC - 2.2 GHz, 48 V, 100 W

Evaluation Board and Recommended Tuning Solution

2.15 GHz Narrowband Circuit

Description

Parts measured on evaluation board (20-mil thick RO4350). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing Turning the device ON

- 1. Set V_{GS} to the pinch-off (V_P), typically -5 V.
- 2. Turn on V_{DS} to nominal voltage (48 V).
- 3. Increase V_{GS} until the I_{DS} current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

- 1. Turn the RF power off.
- 2. Decrease V_{GS} down to $V_{P.}$
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS} .

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V3

GaN on Silicon General Purpose Amplifier DC - 2.2 GHz, 48 V, 100 W

Evaluation Board and Recommended Tuning Solution

2.15 GHz Narrowband Circuit

Parts list

Reference	Value	Tolerance	Manufacturer	Part Number	
C1, C5	1.0 µF	10%	AVX	12101C105KAT2A	
C2, C6	0.1 µF	10%	Kemet	C1206C104K1RACTU	
C3, C7	0.01 µF	10%	AVX	1206C103KAT2A	
C4, C8	1000 pF	10%	Kemet	C0805C102K1RACTU	
C9	240 pF	0.1 pF	ATC	ATC600F241B	
C10	10 pF	0.1 pF	ATC	ATC800B100B	
C11	1.0 pF	0.1 pF	ATC	ATC800B1R0B	
C12	0.8 pF	0.1 pF	ATC	ATC600F0R8B	
C13	0.9 pF	0.1 pF	ATC	ATC600F0R9B	
C14	10 pF	0.1 pF	ATC	ATC600F100B	
C15	1.5 pF	0.1 pF	ATC	ATC800B1R5B	
C16	15 pF	0.1 pF	ATC	ATC800B150B	
L1	12.5 nH	5%	CoilCraft	A04TJL	
L2	19.4 nH	5%	CoilCraft	0806SQ-19NJL	
L3	8.0 nH	5%	CoilCraft	A03TJL	
R1	15 Ω	1%	Panasonic	ERJ-2RKF15R0X	
РСВ		Rogers RO4350, ε_r = 3.5, 20 mil			

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

GaN on Silicon General Purpose Amplifier DC - 2.2 GHz, 48 V, 100 W

Rev. V3

Typical Performance as measured in the 2.15 GHz evaluation board: CW, V_{DS} = 48 V, I_{DQ} = 600 mA (unless noted)

Quiescent V_{GS} vs. Temperature

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

GaN on Silicon General Purpose Amplifier DC - 2.2 GHz, 48 V, 100 W

Rev. V3

Typical 2-Tone Performance as measured in the 2.15 GHz evaluation board: 1 MHz Tone Spacing, V_{DS} = 48 V, I_{DQ} = 600 mA, T_{C} = 25°C (unless noted)

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V3

GaN on Silicon General Purpose Amplifier DC - 2.2 GHz, 48 V, 100 W

Evaluation Board and Recommended Tuning Solution

100 - 700 MHz Broadband Circuit

Parts List

Reference	Value	Tolerance	Manufacturer	Part Number	
C1	150 µF	20%	Nichicon	UPW1C151MED	
C2, C7	1.0 µF	10%	AVX	12101C105KAT2A	
C3, C6	0.1 µF	10%	Kemet	C1206C104K1RACTU	
C4, C5	0.01 µF	10%	AVX	12061C103KAT2A	
C8	270 µF	20%	United Chemi-Con	ELXY 630ELL271MK25S	
C9	18 pF	1%	ATC	ATC100B180FT	
C10, C19	2.4 pF	0.1 pF	ATC	ATC100B2R4BT	
C11	5.6 pF	0.1 pF	ATC	ATC100B5R6BT	
C12	15 pF	1%	ATC	ATC600F150FT	
C13	220 pF	1%	ATC	ATC600F221FT	
C14	12 pF	1%	ATC	ATC600F120FT	
C15, C16	82 pF	1%	ATC	ATC100B820FT	
C17	4.7 pF	0.1 pF	ATC	ATC100B4R7BT	
C18	2.0 pF	0.1 pF	ATC	ATC100B2R0BT	
R1	49.9 Ω	1%	Panasonic	ERJ-6ENF49R9V	
R2	0.33 Ω	1%	Panasonic	ERJ-6RQFR33V	
R3, R4	24.9 Ω	1%	Panasonic	ERJ-1TNF24R9U	
F1	Material 73	-	Fair-Rite	2673000801	
F2, F3	4:1 Transformer	-	Anaren	XMT031B5012	
L1	12.5 nH	5%	Coilcraft	A04TJL	
L2	~50 nH	-	16 AWG Cu Wire	5 turn, 0.2"ID	
L3	5.0 nH	5%	Coilcraft	A02TJL	
L4, L5	8.0 nH	5%	Coilcraft	A03TJL	
PCB		Rogers RO4350, e _r =3.5, 20mil			

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V3

GaN on Silicon General Purpose Amplifier DC - 2.2 GHz, 48 V, 100 W

Evaluation Board and Recommended Tuning Solution

100 - 700 MHz Broadband Circuit

Performance vs. Frequency at Pour = 49 dBm

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: <u>https://www.macom.com/support</u>

¹⁰

GaN on Silicon General Purpose Amplifier DC - 2.2 GHz, 48 V, 100 W

Rev. V3

AC360B-2 Metal-Ceramic Package

[†] Plating is Ni / Au.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

GaN on Silicon General Purpose Amplifier DC - 2.2 GHz, 48 V, 100 W

Rev. V3

MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

¹²

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.