
– 1 –

Introduction
The SDM-USB-QS drivers allow application software to interface with
the module using calls to a DLL. The drivers take care of all of the USB
protocol and timing freeing, the user from the complicated firmware
development. The architecture of the drivers consists of a Windows WDM
driver that communicates with the device via the Windows USB Stack
and a DLL that interfaces the application software (written in C, VC++,
C++ Builder, Delphi, Visual Basic etc.) to the WDM driver. This guide
documents the interface functions and gives examples of how to use
them in the application software.

There are two groups of functions. First are the standard interface
 functions. The standard interface provides a simple and easy to use set
of functions to access the USB module. Second is the EEPROM
interface, which allows the application software to read and program the
various fields in the onboard EEPROM, including a user-defined area that
can be used for application specific purposes.

The examples of the calls will be shown in Visual Basic and C with
Appendix A showing the headers and definitions for Visual Basic and
Appendix B showing the same for C.

Standard Interface Functions
The standard interface functions are a series of calls made to a Dynamic
Link Library (DLL) that allow an application to access the module. These
functions are easier to use than WIN32 API calls and offer access to
features in the module for which there are no API calls.

A typical system would start with the FT_LISTDEVICES call. This call
returns information about all of the modules currently connected to
the bus. This allows the application software to choose which module
to communicate with. Before the module can be accessed it must be
opened with FT_OPEN or FT_OPENEX. These functions return a numeric
handle that the rest of the functions use to identify the individual modules.
Once opened, the device communications settings can be controlled.
These include functions to set the baud rate (FT_SetBaudRate); set the
data characteristics, such as word length, stop bits and parity (FT_Set-
DataCharacteristics); set hardware or software handshaking (FT_SetFlow-
Control), set modem control signals (FT_SetDTR, FT_ClrDTR, FT_Se-
tRTS, FT_ClrRTS); get modem status (FT_GetModemStatus); set special
characters such as event and error characters (FT_SetChars); and set
receive and transmit timeouts (FT_SetTimeouts). Additional functions are
available to reset the device (FT_ResetDevice), purge receive and transmit

SDM-USB-QS-S Programmer's Guide

Application Note AN-00200

Revised 8/20/12

– 2 – Application Note AN-00200

buffers (FT_Purge), get the receive queue status (FT_GetQueueStatus),
get the device status (FT_GetStatus), set and reset the break condition
(FT_SetBreakOn, FT_SetBreakOff), and set conditions for event notifi-
cation (FT_SetEventNotification). I/O is performed using FT_Read and
FT_Write. Once communications are completed, the device is closed
using FT_Close.

The rest of this section will discuss these functions in detail.

– 3 –

Table of Contents
1 Introduction
4 FT_ListDevices
6 FT_Open
7 FT_OpenEx
8 FT_Close
9 FT_Read

11 FT_Write
12 FT_SetBaudRate
13 FT_SetDataCharacteristics
14 FT_SetFlowControl
15 FT_SetDTR
16 FT_ClrDTR
17 FT_SetRTS
18 FT_ClrRTS
19 FT_GetModemStatus
21 FT_SetChars
22 FT_Purge
23 FT_SetTimeouts
24 FT_GetQueueStatus
25 FT_SetBreakOn
26 FT_SetBreakOff
27 FT_GetStatus
28 FT_SetEventNotification
30 FT_ResetDevice
31 FT_ResetPort
32 FT_StopInTask
33 FT_RestartInTask
34 FT_SetResetPipeRetryCount
35 EEPROM Interface Functions
35 FT_EE_UASize
36 FT_EE_UARead
37 FT_EE_UAWrite
38 FT_EE_Read
40 FT_EE_Program
42 FT_EraseEE
43 Appendix A—QS Series Visual Basic Header File
45 Appendix B—QS Series C Header File

Application Note AN-00200

– 4 –

FT_ListDevices (Arg1, Arg2, Flags)
This function can be used to return several kinds of information. First, it
can be used to return the number of devices currently connected to the
bus by setting Flags to LIST_NUMBER_ONLY. In this case, Arg1 holds
the number of devices connected to the bus and Arg2 is null. The
function returns OK if successful or an error code if there is a problem.

This function can also be used to return the device description or serial
number by setting Flags to LIST_BY_INDEX or with either OPEN_BY_DE-
SCRIPTION or OPEN_BY_SERIAL_NUMBER, respectively. In this case
Arg1 is an integer to hold the index of the device and Arg2 is a string to
hold the returned information. Indexes are zero-based and the error code
DEVICE_NOT_FOUND is returned for an invalid index.

Examples
The following Visual Basic code demonstrates how to get the number of
devices connected to the bus.

Visual Basic

Parameter Type Description

Arg1 long Holds the number of devices connected to the bus

Arg2 vbNullString Null String

Flags long Constant. See the appendicies for the definitions

C

Parameter Type Description

Arg1 pvoid A pointer to a dword that holds the number

Arg2 Null Null

Flags dword Constant. See the appendicies for the definitions

Visual Basic

Parameter Type Description

Arg1 integer Holds the index number of the desired device

Arg2 string String that holds the serial number or description

Flags long Constant. See the appendicies for the definitions

C

Parameter Type Description

Arg1 dword Holds the index number of the desired device

Arg2 char A pointer to a buffer to contain the appropriate string

Flags dword Constant. See the appendicies for the definitions

Dim lngStatus As Long
Dim lngNumDevices As Long

lngStatus = FT_GetNumDevices (lngNumDevices, vbNullString, LIST_NUMBER_ONLY)
If lngStatus = OK Then
 ‘The function was successful, the number of devices connected is in lngNumDevices
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

Application Note AN-00200

– 5 –

This example shows how to get the description and serial number of the
first device on the bus.

Note that incrementing index will access the next device on the bus. If
multiple devices will be connected, ListDevices can first be used to return
the number of devices, then this number used to set the exit condition of
a loop. The loop can increment the index and return the information for
each device in turn. Following is the C code to perform the same routines
as above.

Dim intIndex As Integer
Dim strDescription As String * 256
Dim strSerialNumber As String * 256

intIndex = 0
‘ Get the device description
lngStatus = FT_ListDevices (intIndex, strDescription, LIST_BY_INDEX Or OPEN_BY_DESCRIPTION)
If lngStatus = OK Then
 ‘The function was successful, the description is in strDescription
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

‘ Get the device serial number
lngStatus = FT_ListDevices (intIndex, strSerialNumber, LIST_BY_INDEX Or OPEN_BY_SERIAL_NUMBER)
If lngStatus = OK Then
 ‘The function was successful, the serial number is in strSerialNumber
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

ULONG Status;
DWORD NumDevices;

Status = FT_ListDevices (&numDevs, NULL, LIST_NUMBER_ONLY);
if (Status == OK) {
 // The function was successful, the number of devices connected is in NumDevices
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

DWORD devIndex = 0;
char Description[256];
char SerialNumber[256];

Status = FT_ListDevices ((PVOID)devIndex, Description, LIST_BY_INDEX | OPEN_BY_DESCRIPTION);
if (Status == OK) {
 // The function was successful, the description is in Description
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Status = FT_ListDevices ((PVOID)devIndex, SerialNumber, LIST_BY_INDEX | OPEN_BY_SERIAL_NUMBER);
if (Status == OK) {
 // The function was successful, the serial number is in SerialNumber
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 6 –

FT_Open (Device, Handle)
This function opens a device and returns a numeric handle that is used
by the other functions to identify the device. Device is the index number
of the device to be opened and Handle is a number that the function re-
turns to uniquely identify the device so that other functions can access it.
Since the index number of the device is used to open it, there is no ability
to open a specific named device, but FT_OPEN_EX can open a device
using the description or serial number. If the function executes success-
fully, it will return OK; otherwise, it will return an error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Dim lngHandle As Long
Dim lngStatus As Long

lngStatus = FT_Open (0, lngHandle);
If lngStatus = OK Then
 ‘The function was successful, the handle of device 0 is in lngHandle
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;

Status = FT_Open (0, &Handle);
if (Status == OK) {
 // The function was successful, the handle of device 0 is in Handle
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Visual Basic

Parameter Type Description

Device integer Index number of the device to be opened

Handle long A number that uniquely identifies the device

C

Parameter Type Description

Device integer Index number of the device to be opened

Handle pvoid A pointer to a number that uniquely identifies the device

Application Note AN-00200

– 7 –

FT_OpenEx (Arg1, Flags, Handle)
This function will open a specific device using either a serial number or
description and return a numeric handle that is used by other functions
to access the device. Arg1 will be a string that contains either the serial
number or description of the device to be opened. Flags is either
OPEN_BY_SERIAL_NUMBER or OPEN_BY_DESCRIPTION and
determines whether the serial number or description is used. Handle is
a number that the function returns to uniquely identify the device so that
other functions can access it. If the function executes successfully, it will
return OK; otherwise, it will return an error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Arg1 string String of the description or serial number

Flags integer Constant. See the appendicies for the definitions

Handle long A number that uniquely identifies the device

C

Parameter Type Description

Arg1 pvoid A pointer to a null terminated string

Flags integer Constant. See the appendicies for the definitions

Handle pvoid A pointer to a number that uniquely identifies the device

Dim lngHandle As Long
Dim lngStatus As Long

Dim strSerialNumber As String * 256
lngStatus = FT_OpenEx (strSerialNumber, OPEN_BY_SERIAL_NUMBER, lngHandle)
If lngStatus = OK Then
 ‘The function was successful, the device’s handle is in lngHandle
Else

PVOID Handle;
ULONG Status;

Status = FT_OpenEx (“LT000001”, OPEN_BY_SERIAL_NUMBER, &Handle);
if (Status == OK) {
 // The function was successful, the device with serial number LT000001 is open and the
 handle is in Handle
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 8 –

FT_Close (Handle)
This function closes communication with an open device identified by
Handle. If the function executes successfully, it will return OK;
otherwise, it will return an error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

C

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

Dim lngHandle As Long
Dim lngStatus As Long
lngStatus = FT_Close (lngHandle)
If lngStatus = OK Then
 ‘The function was successful, the device is closed
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;

Status = FT_Close (&Handle);
if (Status == OK) {
 // The function was successful, the device is closed
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 9 –

FT_Read (Handle, Buffer, BytesToRead, BytesReturned)
This function reads the data available from the device. Handle is a
number returned by FT_Open or FT_OpenEx. Buffer is a string or
character array that receives the data read from the device. BytesToRead
is the number of bytes the function should read. BytesReturned is the
actual number of bytes that were read. If the function executes
successfully, it will return OK; otherwise, it will return an error code.

This function does not return until BytesToRead bytes have been read
into the buffer. This can cause an application to hang while waiting for the
function to return. There are two ways to avoid this. The first is to get the
number of bytes in the device’s receive queue by calling FT_GetStatus or
FT_GetQueueStatus and passing this to FT_Read as BytesToRead so
that the function reads the device and returns immediately.

The second way is by specifying a timeout in a previous call to FT_Set-
Timeouts. FT_Read returns when the timer expires or when BytesToRead
bytes have been read, whichever occurs first. If the timeout occurred,
FT_Read reads the available data into the buffer and returns OK.

An application should use the function return value and BytesReturned
to check the buffer. If the return value is OK and BytesReturned is equal
to BytesToRead, then FT_Read has completed successfully. If the return
value is OK and BytesReturned is less than BytesToRead, a timeout has
occurred and the read has been only partially completed. Note that if a
timeout occurred and no data was read, the return value is still OK.

Examples
The following Visual Basic code demonstrates this function.
FT_GetStatus is called and the number of bytes available in the device is
checked. If it is greater than zero, then FT_Read is called to get the data.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

Buffer string String to hold the data read from the device

BytesToRead long The number of bytes to read from the device

BytesReturned long The number of bytes that were read from the device

C

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

Buffer lpvoid A pointer to a char array to hold the data read from the device

BytesToRead dword The number of bytes to read from the device

BytesReturned lpdword A pointer to a dword that gets the number of bytes read

Application Note AN-00200

– 10 –

Dim lngHandle As Long
Dim lngStatus As Long
Dim lngBytesRead As Long
Dim strReadBuffer As String * 256
Dim lngRXBytes As Long
Dim lngTXBytes As Long
Dim lngEvents As Long

If FT_GetStatus (lngHandle, lngRXBytes, lngTXBytes, lngEvents) = OK Then
 If lngRXBytes > 0 Then
 lngStatus = FT_Read (lngHandle, strReadBuffer, lngRXBytes, lngBytesRead)
 If (lngStatus = OK) Then
 ‘The function was successful, the data is in strReadBuffer and
 lngBytesRead has the number of bytes read
 Else
 ‘The function failed. The error code can be reviewed and
 appropriate corrective action taken
 End If
 End If
End If

The following C code demonstrates this function.

PVOID Handle;
ULONG Status;
DWORD Event;
DWORD RxBytes;
DWORD TxBytes;
DWORD BytesReceived;
char RxBuffer[256];

FT_GetStatus (ftHandle, &RxBytes, &TxBytes, &Event);
if (RxBytes > 0) {
 Status = FT_Read (Handle, RxBuffer, RxBytes, &BytesReceived);
 if (Status == OK) {
 // The function was successful, the data is in RxBuffer and BytesReceived has the
 number of bytes read
 }
 else {
 // The function failed. The error code can be reviewed and appropriate corrective
 action taken
 }
}

Application Note AN-00200

– 11 –

FT_Write (Handle, Buffer, BytesToWrite, BytesWritten)
This function writes BytesToWrite bytes of Buffer to the device described
by Handle and returns BytesWritten as the number of bytes that it
actually wrote. If the function executes successfully, it will return OK;
otherwise, it will return an error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

Buffer string String to hold the data to be written to the device

BytesToWrote long The number of bytes to write to the device

BytesWritten long The number of bytes that were written to the device

C

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

Buffer lpvoid A pointer to a char array to hold the data read from the device

BytesToWrite dword The number of bytes to read from the device

BytesWritten lpdword A pointer to a dword that gets the number of bytes read

Dim lngHandle As Long
Dim lngStatus As Long
Dim strWriteBuffer As String
Dim lngBytesWritten As Long
Dim lngBytesToWrite As Long

lngBytesToWrite = 1 ‘Sets the number of bytes to write to 1

lngStatus = FT_Write (lngHandle, strWriteBuffer, lngBytesToWrite, lngBytesWritten)
If lngStatus <> OK Then
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;
DWORD BytesToWrite;
DWORD BytesWritten;
char WriteBuffer[256];
char *Buff;

Buff = WriteBuffer;
BytesToWrite = 1; // Sets the number of bytes to write to 1

Status = FT_Write (Handle, Buff, BytesToWrite, &BytesWritten);
if (Status != OK) {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 12 –

FT_SetBaudRate (Handle, BaudRate)
This function sets the baud rate of the device described by Handle to
BaudRate. If the function executes successfully, it will return OK;
otherwise, it will return an error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

BaudRate single The baud rate in bits per second

C

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

BaudRate dword The baud rate in bits per second

Dim lngHandle As Long
Dim lngStatus As Long
Dim sngBaudRate As Single

sngBaudRate = 9600 ‘9600bps baud

lngStatus = FT_SetBaudRate (lngHandle, sngBaudRate)
If lngStatus = OK Then
 ‘The function was successful, the baud rate is set to sngBaudRate
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;
DWORD BaudRate;

BaudRate = 9600;
Status = FT_SetBaudRate (Handle, BaudRate);
if (Status == OK) {
 // The function was successful, the baud rate is set to BaudRate
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 13 –

FT_SetDataCharacteristics (Handle, WordLength,
StopBits, Parity)
This function sets the data characteristics for the device described by
Handle. It will set the stream to have WordLength number of bits in each
word, StopBits number of stop bits, and Parity parity. WordLength must
be either BITS_8 or BITS_7. StopBits must be either STOP_BITS_1 or
STOP_BITS_2. Parity can be PARITY_NONE, PARITY_ODD, PAR-
ITY_EVEN, PARITY_MARK, or PARITY_SPACE. All of these variables are
defined in the header files in the appendicies. If the function executes
successfully, it will return OK; otherwise, it will return an error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

WordLength integer A number representing the number of bits in each word

StopBits integer A number representing the number of stop bits in each word

Parity integer A number representing the type of parity used in each word

Visual Basic

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

WordLength uchar A number representing the number of bits in each word

StopBits uchar A number representing the number of stop bits in each word

Parity uchar A number representing the type of parity used in each word

Dim lngHandle As Long
Dim lngStatus As Long
Dim intStops As Integer = STOP_BITS_1
Dim intParity As Integer = PARITY_NONE
Dim intDataBits As Integer = BITS_8

lngStatus = FT_SetDataCharacteristics (lngHandle, intDataBits, intStops, intParity)
If lngStatus = OK Then
 ‘The function was successful, the data is set to intDataBits data bits, intStops stop
 bits, and intParity parity
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;
UCHAR WordLength = BITS_8;
UCHAR StopBits = STOP_BITS_1;
UCHAR Parity = PARITY_NONE;

Status = FT_SetDataCharacteristics (Handle, WordLength, StopBits, Parity);
if (Status == OK) {
 // The function was successful, the data is set to WordLength data bits, StopBits stop
 bits, and Parity parity
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 14 –

FT_SetFlowControl (Handle, FlowControl, Xon, Xoff)
This function will set the flow control for the device described by Handle.
FlowControl must be FLOW_NONE, FLOW_RTS_CTS, FLOW_DTR_
DSR, or FLOW_XON_XOFF. All of these variables are defined in the
header files in the appendicies. Xon is the character used to signal XON,
and Xoff is the character used to signal XOFF. These are only used if
FlowControl is set to FLOW_XON_XOFF, otherwise they are set to zero
or null. If the function executes successfully, it will return OK; otherwise, it
will return an error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

FlowControl single A number representing the type of flow control

Xon string A character that signals XON

Xoff string A character that signals XOFF

Visual Basic

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

FlowControl ushort A number representing the type of flow control

Xon uchar A character that signals XON

Xoff uchar A character that signals XOFF

Dim lngHandle As Long
Dim lngStatus As Long

lngStatus = FT_SetFlowControl (lngHandle, FLOW_NONE, 0, 0)
If lngStatus = OK Then
	 ‘The	function	was	successful,	the	flow	control	is	set	to	FlowControl	and	the	XON	and	XOFF	
 characters are set
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;
USHORT FlowControl = FT_FLOW_NONE;
UCHAR XonChar = 0;
UCHAR XoffChar = 0;

Status = FT_SetFlowControl (Handle, FlowControl, XonChar, XoffChar);
if (Status == OK) {
	 //	The	function	was	successful,	the	flow	control	is	set	to	FlowControl	and	the	XON	and	
 XOFF characters are set
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 15 –

FT_SetDTR (Handle)
This function sets the Data Terminal Ready control line. This can be used
for handshaking when the flow control is set to FLOW_DTR_DSR, or it
can be used to control external circuitry. If the function executes
successfully, it will return OK; otherwise, it will return an error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

C

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

Dim lngHandle As Long
Dim lngStatus As Long

lngStatus = FT_SetDTR (lngHandle)
If lngStatus = OK Then
 ‘The function was successful, the DTR line is set
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;

Status = FT_SetDTR (Handle);
if (Status == OK) {
 // The function was successful, the DTR line is set
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 16 –

FT_ClrDTR (Handle)
This function clears the Data Terminal Ready control line. This can be
used for handshaking when the flow control is set to FLOW_DTR_DSR,
or it can be used to control external circuitry. If the function executes
successfully, it will return OK; otherwise, it will return an error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

C

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

Dim lngHandle As Long
Dim lngStatus As Long

lngStatus = FT_ClrDTR (lngHandle)
If lngStatus = OK Then
 ‘The function was successful, the DTR line is cleared
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;

Status = FT_ClrDTR (Handle);
if (Status == OK) {
 // The function was successful, the DTR line is cleared
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 17 –

FT_SetRTS (Handle)
This function sets the Request To Send control line. This can be used for
handshaking when the flow control is set to FLOW_RTS_CTS, or it can
be used to control external circuitry. If the function executes successfully,
it will return OK; otherwise, it will return an error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

C

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

Dim lngHandle As Long
Dim lngStatus As Long

lngStatus = FT_SetRTS (lngHandle)
If lngStatus = OK Then
 ‘The function was successful, the RTS line is set
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;

Status = FT_SetRTS (Handle);
if (Status == OK) {
 // The function was successful, the RTS line is set
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 18 –

FT_ClrRTS (Handle)
This function clears the Request To Send control line. This can be
used for handshaking when the flow control is set to FLOW_RTS_CTS,
or it can be used to control external circuitry. If the function executes
successfully, it will return OK; otherwise, it will return an error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

C

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

Dim lngHandle As Long
Dim lngStatus As Long

lngStatus = FT_ClrRTS (lngHandle)
If lngStatus = OK Then
 ‘The function was successful, the RTS line is cleared
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;

Status = FT_ClrRTS (Handle);
if (Status == OK) {
 // The function was successful, the RTS line is cleared
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 19 –

FT_GetModemStatus (Handle, ModemStatus)
This function is used to determine the state of the input control lines,
CTS, DSR, RI, and CDC. If the function executes successfully, it will
return OK; otherwise, it will return an error code.

Examples
The following Visual Basic code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

ModemStatus long A variable that receives a number representing the modem status

C

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

ModemStatus lpdword A pointer to a dword variable that receives the modem status

Dim lngHandle As Long
Dim lngStatus As Long
Dim lngModemStatus As Long

lngStatus = FT_GetModemStatus (lngHandle, lngModemStatus)
If (lngModemStatus And MODEM_STATUS_CTS) = MODEM_STATUS_CTS Then
 ‘CTS is high
Else
 ‘CTS is low
End If
If (lngModemStatus And MODEM_STATUS_DSR) = MODEM_STATUS_DSR Then
 ‘DSR is high
Else
 ‘DSR is low
End If
If (lngModemStatus And MODEM_STATUS_DCD) = MODEM_STATUS_DCD Then
 ‘DCD is high
Else
 ‘DCD is low
End If
If (lngModemStatus And MODEM_STATUS_RI) = MODEM_STATUS_RI Then
 ‘RI is high
Else
 ‘RI is low
End If

Application Note AN-00200

– 20 –

PVOID Handle;
ULONG Status;
DWORD ModemStatus;

Status = FT_GetModemStatus (Handle, &ModemStatus);
if ((ModemStatus & MODEM_STATUS_CTS) == MODEM_STATUS_CTS) {
 // CTS is high
}
else {
 // CTS is low
}
if ((ModemStatus & MODEM_STATUS_DSR) == MODEM_STATUS_DSR) {
 // DSR is high
}
else {
 // DSR is low
}
if ((ModemStatus & MODEM_STATUS_DCD) == MODEM_STATUS_DCD) {
 // DCD is high
}
else {
 // DCD is low
}
if ((ModemStatus & MODEM_STATUS_RI) == MODEM_STATUS_RI) {
 // RI is high
}
else {
 // RI is low
}

The following C code demonstrates this function.

Application Note AN-00200

– 21 –

FT_SetChars (Handle, EventCh, EventChEn, ErrorCh,
ErrorChEn)
This function sets the special characters for the device. If the function
executes successfully, it will return OK; otherwise, it will return an error
code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

EventCh string Event character

EventChEn string 0 if the event character is disabled, non-zero otherwise

ErrorCh string Error character

ErrorChEn string 0 if the error character is disabled, non-zero otherwise

Dim lngHandle As Long
Dim lngStatus As Long
Dim strEventCh As String
Dim strEventChEn As String
Dim strErrorCh As String
Dim strErrorChEn As String

lngStatus = FT_SetChars (lngHandle, strEventCh, strEventChEn, strErrorCh, strErrorChEn)
If lngStatus = OK Then
 ‘The function was successful, the RTS line is cleared
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

C

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

EventCh uchar Event character

EventChEn uchar 0 if the event character is disabled, non-zero otherwise

ErrorCh uchar Error character

ErrorChEn uchar 0 if the error character is disabled, non-zero otherwise

PVOID Handle;
ULONG Status;
UCHAR EventCh;
UCHAR EventChEn;
UCHAR ErrorCh;
UCHAR ErrorChEn;

Status = FT_SetChars (Handle, EventCh, EventChEn, ErrorCh, ErrorChEn);
if (Status == OK) {
 // The function was successful,
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 22 –

FT_Purge (ftHandle, Mask)
This function purges receive and transmit buffers in the device. If the
function executes successfully, it will return OK; otherwise, it will return an
error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

Mask long Any combination of PURGE_RX and PURGE_TX

C

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

Mask dword Any combination of PURGE_RX and PURGE_TX

Dim lngHandle As Long
Dim lngStatus As Long
Dim lngMask As Long

lngMask = PURGE_RX Or PURGE_TX

lngStatus = FT_Purge (lngHandle, lngMask)
If lngStatus = OK Then
 ‘The function was successful, the receive and transmit buffers have been cleared
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;
DWORD Mask;

Mask = PURGE_RX | PURGE_TX;

Status = FT_Purge (Handle, Mask);
if (Status == OK) {
 // The function was successful, the receive and transmit buffers have been cleared
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 23 –

FT_SetTimeouts (Handle, ReadTimeout, WriteTimeout)
This function sets the read and write timeouts for the device. If the
function executes successfully, it will return OK; otherwise, it will return an
error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

ReadTimeout long Read timeout in milliseconds

WriteTimeout long Write timeout in milliseconds

C

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

ReadTimeout dword Read timeout in milliseconds

WriteTimeout dword Write timeout in milliseconds

Dim lngHandle As Long
Dim lngStatus As Long

lngStatus = FT_SetTimeouts (lngHandle, 5000, 1000)
If lngStatus = OK Then
 ‘The function was successful, the read timeout is set to 5 seconds and the write timeout
 is set to 1 second
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;

Status = FT_SetTimeouts (Handle, 5000, 1000);
if (Status == OK) {
 // The function was successful, the read timeout is set to 5 seconds and the write timeout
 is set to 1 second
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 24 –

FT_GetQueueStatus (Handle, AmountInRxQueue)
This function gets the number of characters currently in the receive
queue and places the value in AmountInRxQueue. This function can be
called and the value in AmountInRxQueue can be passed to FT_Read as
BytesToRead so that the Read function will read the receive buffer and
return immediately. If the function executes successfully, it will return OK;
otherwises it will return an error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

AmountInRxQueue long Receives the number of characters in the receive queue

C

Parameter Type Description

Handle long A pointer to a number that uniquely identifies the device

AmountInRxQueue lpdword A pointer to a dword that gets the number of characters available

Dim lngHandle As Long
Dim lngStatus As Long
Dim lngAmountInRxQueue as Long

lngStatus = FT_GetQueueStatus (lngHandle, lngAnountInRxQueue)
If lngStatus = OK Then
 ‘The function was successful, the number of characters in the receive queue is in
 lngAmountInRxQueue
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;
DWORD AmountInRxQueue;

Status = FT_GetQueueStatus (Handle, &AmountInRxQueue);
if (Status == OK) {
 // The function was successful, the number of characters in the receive queue is in
 AmountInRxQueue
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 25 –

FT_SetBreakOn (Handle)
This function sets the break condition for the device. If the function
 executes successfully, it will return OK; otherwise, it will return an
error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

C

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

Dim lngHandle As Long
Dim lngStatus As Long

lngStatus = FT_SetBreakOn (lngHandle)
If lngStatus = OK Then
 ‘The function was successful, the break condition is set
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;

Status = FT_SetBreakOn (Handle);
if (Status == OK) {
 // The function was successful, the break condition is set
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 26 –

FT_SetBreakOff (Handle)
This function resets the break condition for the device. If the function
executes successfully, it will return OK; otherwise, it will return an error
code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

C

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

Dim lngHandle As Long
Dim lngStatus As Long

lngStatus = FT_SetBreakOff (lngHandle)
If lngStatus = OK Then
 ‘The function was successful, the break condition is reset
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;

Status = FT_SetBreakOff (Handle);
if (Status == OK) {
 // The function was successful, the break condition is reset
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 27 –

FT_GetStatus (Handle, AmountInRxQueue,
AmountInTxQueue, EventStatus)
This function gets the status of the device. AmountInRxQueue gets the
number of characters in the receive queue, AmountInTxQueue gets the
number of characters in the transmit queue, and EventStatus gets a
combination of EVENT_RXCHAR if a character is received and
EVENT_MODEM_STATUS if the modem lines change states. If the
function executes successfully, it will return OK; otherwise, it will return an
error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

AmountInRxQueue long Gets the number of bytes in the receive queue

AmountInTxQueue long Gets the number of bytes in the transmit queue

EventStatus long Gets a value of an event or returns zero

Visual Basic

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

AmountInRxQueue lpdword A pointer to a dword that gets the amount in the receive queue

AmountInTxQueue lpdword A pointer to a dword that gets the amount in the transmit queue

EventStatus lpdword A pointer to a dword that gets the event status

Dim lngHandle As Long
Dim lngStatus As Long
Dim lngAmountInRxQueue As Long
Dim lngAmountInTxQueue As Long
Dim lngEventStatus As Long

lngStatus = FT_GetStatus (lngHandle, lngAmountInRxQueue, lngAmountInTxQueue, lngEventStatus)
If lngStatus = OK Then
 ‘The function was successful
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;
DWORD AmountInRxQueue;
DWORD AmountInTxQueue;
DWORD EventStatus;

Status = FT_GetStatus (Handle, &AmountInRxQueue, &AmountInTxQueue, &EventStatus);
if (Status == OK) {
 // The function was successful
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 28 –

FT_SetEventNotification (Handle, EventMask, Arg)
This function will set the events that the device should look for. Event-
Mask is any combination of EVENT_RXCHAR and EVENT_MODEM_STA-
TUS. EVENT_RXCHAR will cause the event to be set when a character
has been received. EVENT_MODEM_STATUS will cause the event to be
set when the modem lines change. Arg is the handle of an event that has
been created by the application. This function can be used by an ap-
plication to set up conditions that allow a thread to block until one of the
conditions is met. Typically, an application will create an event, call this
function and then block on the event. When the conditions are met, the
event is set and the application thread unblocked. If the function exe-
cutes successfully, it will return OK; otherwise, it will return an error code.

Examples
The following Visual Basic code demonstrates this function. First, an
event is created and the function is called.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

EventMask long Bit map describing the conditions that cause the event to be set

Arg long The handle of an event

Visual Basic

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

Event Mask dword Bit map describing the conditions that cause the event to be set

Arg pvoid The handle of an event

Const INFINITE As Long = 1000 ‘&HFFFFFFFF
Dim lngHandle As Long
Dim lngStatus As Long
Dim lngEventMask As Long
Dim lngEvent As Long
Dim lngModemStatus As Long

lngEvent = CreateEvent (0, False, False, “”)
lngEventMask = EVENT_RXCHAR Or EVENT_MODEM_STATUS
lngStatus	=	FT_SetEventNotification	(lngHandle,	lngEventMask,	lngEvent)

 ‘This will wait for the event to trigger and release the object
lngStatus = WaitForSingleObject (lngEvent, INFINITE)

 ‘Call FT_GetModemStatus to determine what caused the event
lngStatus = FT_GetModemStatus (lngHandle, lngModemStatus)
If (lngModemStatus And MODEM_STATUS_CTS) = MODEM_STATUS_CTS Then
 ‘CTS is high
Else
 ‘CTS is low
End If
If (lngModemStatus And MODEM_STATUS_DSR) = MODEM_STATUS_DSR Then
 ‘DSR is high
Else
 ‘DSR is low
End If

Application Note AN-00200

– 29 –

If (lngModemStatus And MODEM_STATUS_DCD) = MODEM_STATUS_DCD Then
 ‘DCD is high
Else
 ‘DCD is low
End If
If (lngModemStatus And MODEM_STATUS_RI) = MODEM_STATUS_RI Then
 ‘RI is high
Else
 ‘RI is low
End If

The following C code demonstrates this function. First, an event is created and the function is called.

#define	INFINITE	1000
PVOID Handle;
ULONG Status;
PVOID Event;
DWORD EventMask;
DWORD ModemStatus;

Event = CreateEvent (NULL, false, false, “”);
EventMask = EVENT_RXCHAR | EVENT_MODEM_STATUS;
Status	=	FT_SetEventNotification	(Handle,	EventMask,	Event);

 // This will wait for the event to trigger and release the object
WaitForSingleObject (Event, INFINITE);

 // Call FT_GetModemStatus to determine what caused the event
Status = FT_GetModemStatus (Handle, &ModemStatus);
if ((ModemStatus & MODEM_STATUS_CTS) == MODEM_STATUS_CTS) {
 // CTS is high
}
else {
 // CTS is low
}
if ((ModemStatus & MODEM_STATUS_DSR) == MODEM_STATUS_DSR) {
 // DSR is high
}
else {
 // DSR is low
}
if ((ModemStatus & MODEM_STATUS_DCD) == MODEM_STATUS_DCD) {
 // DCD is high
}
else {
 // DCD is low
}
if ((ModemStatus & MODEM_STATUS_RI) == MODEM_STATUS_RI) {
 // RI is high
}
else {
 // RI is low
}

Application Note AN-00200

– 30 –

FT_ResetDevice (Handle)
This function will reset the device described by Handle. If the function
executes successfully, it will return OK; otherwise, it will return an error
code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

C

Parameter Type Description

Handle pvoid A number that uniquely identifies the device

Dim lngHandle As Long
Dim lngStatus As Long

lngStatus = FT_ResetDevice (lngHandle)
If lngStatus = OK Then
 ‘The function was successful, the device is reset
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective
 action taken
End If

PVOID Handle;
ULONG Status;

Status = FT_ResetDevice (Handle);
if (Status == OK) {
 // The function was successful, the device is reset
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 31 –

FT_ResetPort (Handle)
This function will send a reset command to the port in an attempt to
recover the port after a failure. If the function executes successfully, it will
return OK; otherwise, it will return an error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

C

Parameter Type Description

Handle pvoid A number that uniquely identifies the device

Dim lngHandle As Long
Dim lngStatus As Long

lngStatus = FT_ResetPort (lngHandle)
If lngStatus = OK Then
 ‘The function was successful, the port is reset
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;

Status = FT_ResetPort (Handle);
if (Status == OK) {
 // The function was successful, the port is reset
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 32 –

FT_StopInTask (Handle)
This function is used to put the driver’s IN task (read) into a wait state.
It can be used in situations where data is being received continuously
so that the device can be purged without more data being received. It
is used together with FT_RestartInTask, which sets the IN task running
again. If the function executes successfully then it will return OK
otherwise it will return an error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

C

Parameter Type Description

Handle pvoid A number that uniquely identifies the device

Dim lngHandle As Long
Dim lngStatus As Long

Do
 lngStatus = FT_StopInTask (lngHandle)
Loop While lngStatus <> OK

‘Do something, for example purge the device

Do
 lngStatus = FT_RestartInTask (lngHandle)
Loop While lngStatus <> OK

PVOID Handle;
ULONG Status;

do {
 Status = FT_StopInTask (Handle);
} while (Status != OK);

// Do something, for example purge device

do {
 Status = FT_RestartInTask (Handle);
} while (Status != OK);

Application Note AN-00200

– 33 –

FT_RestartInTask (Handle)
This function is used to restart the driver’s IN task (read) after it has been
stopped by a call to FT_StopInTask. If the function executes successfully
then it will return OK otherwise it will return an error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

C

Parameter Type Description

Handle pvoid A number that uniquely identifies the device

Dim lngHandle As Long
Dim lngStatus As Long

Do
 lngStatus = FT_StopInTask (lngHandle)
Loop While lngStatus <> OK

‘Do something, for example purge device

Do
 lngStatus = FT_RestartInTask (lngHandle)
Loop While lngStatus <> OK

PVOID Handle;
ULONG Status;

do {
 Status = FT_StopInTask (Handle);
} while (Status != OK);

// Do something, for example purge device

do {
 Status = FT_RestartInTask (Handle);
} while (Status != OK);

Application Note AN-00200

– 34 –

FT_SetResetPipeRetryCount (Handle, Count)
This function is used to set the ResetPipeRetryCount. ResetPipeRetry-
Count controls the maximum number of times that the driver tries to reset
a pipe on which an error has occurred. ResetPipeRequestRetryCount
defaults to 50. It may be necessary to increase this value in noisy
environments where a lot of USB errors occur. If the function executes
successfully, it will return OK; otherwise, it will return an error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

Count long Contains the maximum number of times to try to reset the pipe

C

Parameter Type Description

Handle pvoid A number that uniquely identifies the device

Count dword Contains the maximum number of times to try to reset the pipe

Dim lngHandle As Long
Dim lngStatus As Long
Dim lngRetryCount As Long

lngRetryCount = 100
lngStatus = FT_SetResetPipeRetryCount (lngHandle, lngRetryCount)
If lngStatus = OK Then
 ‘The function was successful, ResetPipeRetryCount is set to 100
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;
DWORD RetryCount;

RetryCount = 100;
Status = FT_SetResetPipeRetryCount (Handle, RetryCount);
if (Status == OK) {
 // The function was successful, ResetPipeRetryCount is set to 100
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 35 –

EEPROM Interface Functions
The EEPROM interface functions allow the application to access the
on-board EEPROM. This can be useful in production to allow the
programming of the device description as a part of the final production
test. In addition, the application can use the free area to store a small
amount of information.

FT_EE_UASize (Handle, Size)
This function determines the size of the User Area in the EEPROM and
returns the number of bytes free in Size. This is the largest amount of
data that can be stored in the EEPROM by the application. If the function
executes successfully, it will return OK; otherwise, it will return an error
code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

Size long A variable that gets the size of the free area in bytes

C

Parameter Type Description

Handle pvoid A number that uniquely identifies the device

Size lpdword A pointer to a variable that gets the size of the free area in bytes

Dim lngHandle As Long
Dim lngStatus As Long
Dim lngSize As Long

lngStatus = FT_EE_UASize (lngHandle, lngSize)
If lngStatus = OK Then
 ‘The function was successful, Size contains the number of bytes free in the EEPROM
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;
DWORD Size;

Status = FT_EE_UASize (Handle, &Size);
if (Status == OK) {
 // The function was successful, Size contains the number of bytes free in the EEPROM
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 36 –

FT_EE_UARead (Handle, Data, DataLen, BytesRead)
This function will read the data in the User Area on the EEPROM. Data
contains the data that was read by the function. DataLen is the size of
the string or character array that receives the data. BytesRead is the
actual number of bytes that were read. If DataLen is less than the size of
the UA, then only DataLen bytes are read into the buffer. Otherwise, the
entire UA is read into the buffer. If the function executes successfully, it
will return OK; otherwise, it will return an error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

Data string A buffer that holds the data from the User Area (UA)

DataLen long A variable that holds the number of bytes to be read from the UA

BytesRead long A variable that holds the actual number of bytes read from the UA

Visual Basic

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

Data puchar A pointer to a buffer that holds the data from the User Area (UA)

DataLen dword A variable that holds the number of bytes to be read from the UA

BytesRead lpdword A pointer to a variable that receives the number of bytes read

Dim lngHandle As Long
Dim lngStatus As Long
Dim strData As String * 64
Dim lngDataLen As Long
Dim lngBytesRead As Long

lngDataLen = 64
lngStatus = FT_EE_UARead (lngHandle, strData, lngDataLen, lngBytesRead)
If lngStatus = OK Then
 ‘The function was successful, strData holds lngBytesRead bytes of data read from the UA on
 the EEPROM
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;
CHAR Data[64];
DWORD DataLen;
DWORD BytesRead;

DataLen = 64;
Status = FT_EE_UARead (Handle, Data, DataLen, &BytesRead);
if (Status == OK) {
 // The function was successful, Data holds BytesRead bytes of data read from the UA on
 the EEPROM
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 37 –

FT_EE_UAWrite (Handle, Data, DataLen)
This function will write the information contained in Data to the User Area
in the EEPROM. DataLen contains the amount of data to be written. If the
function executes successfully, it will return OK; otherwise, it will return an
error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

Data string A buffer that holds the data from the User Area (UA)

DataLen long A variable that holds the number of bytes to be read from the UA

C

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

Data puchar A pointer to a buffer that holds the data from the User Area (UA)

DataLen dword A variable that holds the number of bytes to be read from the UA

Dim lngHandle As Long
Dim lngStatus As Long
Dim strData As String * 64
Dim lngDataLen As Long

lngDataLen = 64
lngStatus = FT_EE_UAWrite (lngHandle, strData, lngDataLen)
If lngStatus = OK Then
 ‘The function was successful, the UA on the EEPROM contains strData
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;
CHAR Data[64];
DWORD DataLen;

DataLen = 64;
Status = FT_EE_UAWrite (Handle, &Data, DataLen);
if (Status == OK) {
 // The function was successful, the UA on the EEPROM contains Data
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
taken
}

Application Note AN-00200

– 38 –

FT_EE_Read (Handle, Data)
This function will read the contents of the programmed section of the
EEPROM and place the information into data structure Data. The type
definition for Data is included in the header files at the end of this docu-
ment. The function does not perform any checks on buffer sizes, so the
buffers passed in the PROGRAM_DATA structure must be big enough
to accommodate their respective strings (including null terminators). The
sizes shown in the following example are more than adequate and can be
rounded down if necessary. The restriction is that the Manufacturer string
length plus the Description string length is less than or equal to 40 char-
acters. If the function executes successfully, it will return OK; otherwise, it
will return an error code.

Examples
Using this function in Visual Basic becomes complicated because the
PROGRAM_DATA structure contains only POINTERS to bytearrays. This
means that the variables Manufacturer, ManufacturerID, Description and
SerialNumber are passed as POINTERS to the locations of bytearrays.
Each Byte in these arrays will be filled with one character of the whole
string. Visual Basic supports getting the addresses of pointers, however
the functions to do so are undocumented. For more information on how
to get pointers to variables in Visual Basic, see Microsoft Knowledge
Base Article Q199824. The function used in this example is VarPtr, which
returns the address of a variable. The following Visual Basic code
demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

Data structure A structure of type PROGRAM_DATA

C

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

Data structure A pointer to a structure of type PROGRAM_DATA

Dim lngHandle As Long
Dim lngStatus As Long
Dim EEData As PROGRAM_DATA

‘Bytearrays as “string-containers”:
Dim bManufacturer(32) As Byte
Dim bManufacturerID(16) As Byte
Dim bDescription(64) As Byte
Dim bSerialNumber(16) As Byte

‘Use an undocumented function to return a pointer
EEData.Manufacturer = VarPtr (bManufacturer(0))
EEData.ManufacturerId = VarPtr (bManufacturerID(0))
EEData.Description = VarPtr (bDescription(0))
EEData.SerialNumber = VarPtr (bSerialNumber(0))

Application Note AN-00200

– 39 –

lngStatus = FT_EE_Read (lngHandle, EEData)
If lngStatus = OK Then
 ‘The function was successful, the information in the EEPROM is in EEData
 ‘Convert the resulting bytearrays to strings (NULL-characters at the end are cut off)
 strManufacturer = StrConv (bManufacturer, vbUnicode)
 strManufacturer = Left (strManufacturer, InStr (strManufacturer, Chr(0)) - 1)
 strManufacturerID = StrConv (bManufacturerID, vbUnicode)
 strManufacturerID = Left (strManufacturerID, InStr (strManufacturerID, Chr(0)) - 1)

 strDescription = StrConv (bDescription, vbUnicode)
 strDescription = Left (strDescription, InStr (strDescription, Chr(0)) - 1)

 strSerialNumber = StrConv (bSerialNumber, vbUnicode)
 strSerialNumber = Left (strSerialNumber, InStr (strSerialNumber, Chr(0)) - 1)
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
taken
End If

The following C code demonstrates this function.

PVOID Handle;
ULONG Status;
PROGRAM_DATA EEData;
char ManufacturerBuf[32];
char ManufacturerIdBuf[16];
char DescriptionBuf[64];
char SerialNumberBuf[16];

EEData.Manufacturer = ManufacturerBuf;
EEData.ManufacturerId = ManufacturerIdBuf;
EEData.Description = DescriptionBuf;
EEData.SerialNumber = SerialNumberBuf;

Status = FT_EE_Read (Handle, &EEData);
if (Status == OK) {
 // The function was successful, the information in the EEPROM is in EEData
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
taken
}

Application Note AN-00200

– 40 –

FT_EE_Program (Handle, Data)
This function will write the contents of structure Data to the EEPROM.
The type definition for Data is included in the header files at the end of
this document. If the SerialNumber field in PROGRAM_DATA is NULL, or
SerialNumber points to a NULL string, a serial number based on the
ManufacturerId and the current date and time will be generated. If the
function executes successfully, it will return OK; otherwise, it will return an
error code.

Examples
Using this function in Visual Basic becomes complicated because the
PROGRAM_DATA structure contains only POINTERS to bytearrays. This
means that the variables Manufacturer, ManufacturerID, Description and
SerialNumber are passed as POINTERS to the locations of bytearrays.
Each Byte in these arrays will be filled with one character of the whole
string. Visual Basic supports getting the addresses of pointers, however
the functions to do so are undocumented. For more information on how
to get pointers to variables in Visual Basic, see Microsoft Knowledge
Base Article Q199824. The function used in this example is VarPtr, which
returns the address of a variable. The following Visual Basic code
demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

Data structure A structure of type PROGRAM_DATA

C

Parameter Type Description

Handle pvoid A pointer to a number that uniquely identifies the device

Data structure A pointer to a structure of type PROGRAM_DATA

Dim lngHandle As Long
Dim lngStatus As Long
Dim EEData As PROGRAM_DATA
Dim strManufacturer As String
Dim strManufacturerID As String
Dim strDescription As String
Dim strSerialNumber As String

‘Declare byte arrays as “string-containers”:
Dim bManufacturer(32) As Byte
Dim bManufacturerID(16) As Byte
Dim bDescription(64) As Byte
Dim bSerialNumber(16) As Byte

‘Load the strings
strManufacturer = “Linx Technologies”
strManufacturerID = “LT”
strDescription = “LINX SDM-USB-QS-S”
strSerialNumber = “”

‘Load the EEData structure with the default data
EEData.VendorId = 0x0403
EEData.ProductId = 0xF448
EEData.MaxPower = 100
EEData.PnP = 1
EEData.SelfPowered = 0

Application Note AN-00200

– 41 –

EEData.RemoteWakeup = 1
EEData.Rev4 = TRUE
EEData.IsoIn = TRUE
EEData.IsoOut = TRUE
EEData.PullDownEnable = TRUE
EEData.SerNumEnable = FALSE
EEData.USBVersionEnable = FALSE
EEData.USBVersion = 0

‘Use an undocumented function to return a pointer
EEData.Manufacturer = VarPtr(bManufacturer(0))
EEData.ManufacturerId = VarPtr(bManufacturerID(0))
EEData.Description = VarPtr(bDescription(0))
EEData.SerialNumber = VarPtr(bSerialNumber(0))

‘Convert the strings to byte arrays
StringToByteArray (strManufacturer, bManufacturer)
StringToByteArray (strManufacturerID, bManufacturerID)
StringToByteArray (strDescription, bDescription)
StringToByteArray (strSerialNumber, bSerialNumber)

‘Now write the complete set of EEPROM data
lngStatus = FT_EE_Program (lngHandle, EEData)
If lngStatus = OK Then
 ‘The function was successful, the information in the EEPROM is in EEData
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
taken
End If

‘This function will convert a string to a byte array
Private Sub StringToByteArray (strString, bByteArray)
Dim lngN As Long
‘Fill bByteArray with “0”:
For lngN = 0 To UBound (bByteArray)
 bByteArray (lngN) = 0
Next
For lngN = 1 To Len(strString)
 bByteArray(lngN - 1) = Asc(Mid(strString, lngN, 1))
Next
End Sub

The following C code demonstrates this function.

PVOID Handle;
ULONG Status;
PROGRAM_DATA EEData;

// Load the EEData structure with the default data
EEData = {0x0403, 0xF449, “Linx Technologies”, “LT”, “LINX SDM-USB-QS-S”, “”, 44, 1, 0, 1, TRUE,
TRUE, TRUE,
TRUE, FALSE, FALSE, 0}

Status = FT_EE_Program (Handle, &EEData);
if (Status == OK) {
 // The function was successful, the information in EEData is in the EEPROM
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
taken
}

Application Note AN-00200

– 42 –

FT_EraseEE (Handle)
This function will erase the EEPROM. If the function executes
successfully, it will return OK; otherwise, it will return an error code.

Examples
The following Visual Basic code demonstrates this function.

The following C code demonstrates this function.

Visual Basic

Parameter Type Description

Handle long A number that uniquely identifies the device

C

Parameter Type Description

Handle pvoid A number that uniquely identifies the device

Dim lngHandle As Long
Dim lngStatus As Long

lngStatus = FT_EraseEE (lngHandle)
If lngStatus = OK Then
 ‘The function was successful, the EEPROM has been erased
Else
 ‘The function failed. The error code can be reviewed and appropriate corrective action
 taken
End If

PVOID Handle;
ULONG Status;

Status = FT_EraseEE (Handle);
if (Status == OK) {
 // The function was successful, the EEPROM has been erased
}
else {
 // The function failed. The error code can be reviewed and appropriate corrective action
 taken
}

Application Note AN-00200

– 43 –

Appendix A—QS Series Visual Basic Header File
This appendix contains the Visual Basic header file that contains all of the
function and constant definitions covered in this guide. This text can be
copied and pasted into a module in the user’s Visual Basic project.

‘***
‘ Function declarations
‘***
Public Declare Function FT_ListDevices Lib “FTD2XX.DLL” (ByVal arg1 As Long, ByVal arg2 As String, ByVal dwFlags As Long) As Long_
Public Declare Function FT_Open Lib “FTD2XX.DLL” (ByVal intDeviceNumber As Integer, ByRef lngHandle As Long) As Long
Public Declare Function FT_OpenEx Lib “FTD2XX.DLL” (ByVal arg1 As String, ByVal arg2 As Long, ByRef lngHandle As Long) As Long_
Public Declare Function FT_Close Lib “FTD2XX.DLL” (ByVal lngHandle As Long) As Long
Public Declare Function FT_Read Lib “FTD2XX.DLL” (ByVal lngHandle As Long, ByVal lpszBuffer As String, ByVal lngBufferSize_
 As Long, ByRef lngBytesReturned As Long) As Long
Public Declare Function FT_Write Lib “FTD2XX.DLL” (ByVal lngHandle As Long, ByVal lpszBuffer As String, ByVal lngBufferSize_
 As Long, ByRef lngBytesWritten As Long) As Long
Public Declare Function FT_SetBaudRate Lib “FTD2XX.DLL” (ByVal lngHandle As Long, ByVal lngBaudRate As Long) As Long
Public Declare Function FT_SetDataCharacteristics Lib “FTD2XX.DLL” (ByVal lngHandle As Long, ByVal byWordLength As Byte,_
 ByVal byStopBits As Byte, ByVal byParity As Byte) As Long
Public Declare Function FT_SetFlowControl Lib “FTD2XX.DLL” (ByVal lngHandle As Long, ByVal intFlowControl As Integer,_
 ByVal byXonChar As Byte, ByVal byXoffChar As Byte) As Long
Public Declare Function FT_SetDtr Lib “FTD2XX.DLL” (ByVal lngHandle As Long) As Long
Public Declare Function FT_ClrDtr Lib “FTD2XX.DLL” (ByVal lngHandle As Long) As Long
Public Declare Function FT_SetRts Lib “FTD2XX.DLL” (ByVal lngHandle As Long) As Long
Public Declare Function FT_ClrRts Lib “FTD2XX.DLL” (ByVal lngHandle As Long) As Long
Public Declare Function FT_GetModemStatus Lib “FTD2XX.DLL” (ByVal lngHandle As Long, ByRef lngModemStatus As Long) As Long
Public Declare Function FT_SetChars Lib “FTD2XX.DLL” (ByVal lngHandle As Long, ByVal byEventChar As Byte, ByVal_
 byEventCharEnabled As Byte, ByVal byErrorChar As Byte, ByVal byErrorCharEnabled As Byte) As Long
Public Declare Function FT_Purge Lib “FTD2XX.DLL” (ByVal lngHandle As Long, ByVal lngMask As Long) As Long
Public Declare Function FT_SetTimeouts Lib “FTD2XX.DLL” (ByVal lngHandle As Long, ByVal lngReadTimeout As Long,_
 ByVal lngWriteTimeout As Long) As Long
Public Declare Function FT_GetQueueStatus Lib “FTD2XX.DLL” (ByVal lngHandle As Long, ByRef lngRXBytes As Long) As Long
Public Declare Function FT_SetBreakOn Lib “FTD2XX.DLL” (ByVal lngHandle As Long) As Long
Public Declare Function FT_SetBreakOff Lib “FTD2XX.DLL” (ByVal lngHandle As Long) As Long
Public Declare Function FT_GetStatus Lib “FTD2XX.DLL” (ByVal lngHandle As Long, ByRef lngRXBytes As Long, ByRef lngTXBytes_
 As Long, ByRef lngEventsDWord As Long) As Long
Public Declare Function FT_ResetDevice Lib “FTD2XX.DLL” (ByVal lngHandle As Long) As Long

‘ New Functions
Public	Declare	Function	FT_SetEventNotification	Lib	“FTD2XX.DLL”	(ByVal	lngHandle	As	Long,	ByVal	dwEventMask	As	Long,	ByVal	Arg_	
As Long) As Long
Public Declare Function FT_ResetPort Lib “FTD2XX.DLL” (ByVal lngHandle As Long) As Long
Public Declare Function FT_RestartInTask Lib “FTD2XX.DLL” (ByVal lngHandle As Long) As Long
Public Declare Function FT_StopInTask Lib “FTD2XX.DLL” (ByVal lngHandle As Long) As Long
Public Declare Function FT_SetResetPipeRetryCount Lib “FTD2XX.DLL” (ByVal lngHandle As Long, ByVal lngCount As Long) As Long

‘***
‘ Supporting functions for conversion from C to Visual Basic
‘***
‘ Used instead of FT_ListDevices to get the number of devices on the bus
Public Declare Function FT_GetNumDevices Lib “FTD2XX.DLL” Alias “FT_ListDevices” (ByRef arg1 As Long, ByVal arg2 As String,_
 ByVal dwFlags As Long) As Long
‘***
‘ Constant Declarations
‘***

‘ Return codes
Public Const OK = 0
Public Const INVALID_HANDLE = 1
Public Const DEVICE_NOT_FOUND = 2
Public Const DEVICE_NOT_OPENED = 3
Public Const IO_ERROR = 4
Public Const INSUFFICIENT_RESOURCES = 5
Public Const INVALID_PARAMETER = 6
Public Const INVALID_BAUD_RATE = 7
Public Const DEVICE_NOT_OPENED_FOR_ERASE = 8
Public Const DEVICE_NOT_OPENED_FOR_WRITE = 9
Public Const FAILED_TO_WRITE_DEVICE = 10
Public Const EEPROM_READ_FAILED = 11
Public Const EEPROM_WRITE_FAILED = 12
Public Const EEPROM_ERASE_FAILED = 13
Public Const EEPROM_NOT_PRESENT = 14
Public Const EEPROM_NOT_PROGRAMMED = 15
Public Const INVALID_ARGS = 16
Public Const OTHER_ERROR = 17

‘ Flow Control
Public Const FLOW_NONE = &H0
Public Const FLOW_RTS_CTS = &H100
Public Const FLOW_DTR_DSR = &H200
Public Const FLOW_XON_XOFF = &H400
‘ Purge rx and tx buffers
Public Const PURGE_RX = 1
Public Const PURGE_TX = 2

‘ Flags for FT_OpenEx

Application Note AN-00200

– 44 –

Public Const OPEN_BY_SERIAL_NUMBER = 1
Public Const OPEN_BY_DESCRIPTION = 2

‘ Flags for FT_ListDevices
Public Const LIST_BY_NUMBER_ONLY = &H80000000
Public Const LIST_BY_INDEX = &H40000000
Public Const LIST_ALL = &H20000000

‘ Modem Status
Public Const MODEM_STATUS_CTS = &H10
Public Const MODEM_STATUS_DSR = &H20
Public Const MODEM_STATUS_RI = &H40
Public Const MODEM_STATUS_DCD = &H80
‘ Event Masks
Public Const EVENT_RXCHAR = 1
Public Const EVENT_MODEM_STATUS = 2

‘ Baud Rates
Public Const BAUD_300 = 300
Public Const BAUD_600 = 600
Public Const BAUD_1200 = 1200
Public Const BAUD_2400 = 2400
Public Const BAUD_4800 = 4800
Public Const BAUD_9600 = 9600
Public Const BAUD_14400 = 14400
Public Const BAUD_19200 = 19200
Public Const BAUD_38400 = 38400
Public Const BAUD_57600 = 57600
Public Const BAUD_115200 = 115200
Public Const BAUD_230400 = 230400
Public Const BAUD_460800 = 460800
Public Const BAUD_921600 = 921600
‘ Word Lengths
Public Const BITS_8 = 8
Public Const BITS_7 = 7
Public Const BITS_6 = 6
Public Const BITS_5 = 5

‘ Stop Bits
Public Const STOP_BITS_1 = 0
Public Const STOP_BITS_1_5 = 1
Public Const STOP_BITS_2 = 2

‘ Parity
Public Const PARITY_NONE = 0
Public Const PARITY_ODD = 1
Public Const PARITY_EVEN = 2
Public Const PARITY_MARK = 3
Public Const PARITY_SPACE = 4

‘ Type declaration for EEPROM programming
 Public Type PROGRAM_DATA
 VendorId As Integer ‘0x0403
 ProductId As Integer ‘0xF448
 Manufacturer As Long ‘32 “Linx Technologies”
 ManufacturerId As Long ‘16 “LT”
 Description As Long ‘ 64 “LINX SDM-USB-QS-S”
	 SerialNumber	As	Long		 ‘16	“LT000001”	if	fixed,	or	NULL
 MaxPower As Integer ‘0 < MaxPower <= 500
 PNP As Integer ‘0 = disabled, 1 = enabled
 SelfPowered As Integer ‘0 = bus powered, 1 = self powered
 RemoteWakeup As Integer ‘0 = not capable, 1 = capable
 ‘ Rev4 extensions:
 Rev4 As Byte ‘true if Rev4 chip, false otherwise
 IsoIn As Byte ‘true if in endpoint is isochronous
 IsoOut As Byte ‘true if out endpoint is isochronous
 PullDownEnable As Byte ‘true if pull down enabled
 SerNumEnable As Byte ‘true if serial number to be used
 USBVersionEnable As Byte ‘true if chip uses USBVersion
 USBVersion As Integer ‘BCD (0x0200 => USB2)
End Type

Application Note AN-00200

– 45 –

Appendix B—QS Series C Header File
This appendix contains the C header file that contains all of the function
and constant definitions covered in this guide. This text can be copied
and pasted into a module in the user’s C project.

#ifndef FTD2XX_H
#define	FTD2XX_H
// The following ifdef block is the standard way of creating macros
//	which	make	exporting	from	a	DLL	simpler.	All	files	within	this	DLL
//	are	compiled	with	the	FTD2XX_EXPORTS	symbol	defined	on	the	command	line.
//	This	symbol	should	not	be	defined	on	any	project	that	uses	this	DLL.
//	This	way	any	other	project	whose	source	files	include	this	file	see
// FTD2XX_API functions as being imported from a DLL, whereas this DLL
//	sees	symbols	defined	with	this	macro	as	being	exported.

#ifdef FTD2XX_EXPORTS
#define	FTD2XX_API	__declspec(dllexport)
#else
#define	FTD2XX_API	__declspec(dllimport)
#endif

typedef PVOID HANDLE;
typedef ULONG STATUS;

//**
//Function declarations
//**
FTD2XX_API STATUS WINAPI FT_ListDevices (PVOID pArg1, PVOID pArg2, DWORD Flags);
FTD2XX_API STATUS WINAPI FT_Open (int deviceNumber, HANDLE *pHandle);
FTD2XX_API STATUS WINAPI FT_OpenEx (PVOID pArg1, DWORD Flags, HANDLE *pHandle);
FTD2XX_API STATUS WINAPI FT_Close (HANDLE Handle);
FTD2XX_API STATUS WINAPI FT_Read (HANDLE Handle, LPVOID lpBuffer, DWORD nBufferSize, LPDWORD lpBytesReturned);
FTD2XX_API STATUS WINAPI FT_Write (HANDLE Handle, LPVOID lpBuffer, DWORD nBufferSize, LPDWORD lpBytesWritten);
FTD2XX_API STATUS WINAPI FT_SetBaudRate (HANDLE Handle, ULONG BaudRate);
FTD2XX_API STATUS WINAPI FT_SetDataCharacteristics (HANDLE Handle, UCHAR WordLength, UCHAR StopBits, UCHAR Parity);
FTD2XX_API STATUS WINAPI FT_SetFlowControl (HANDLE Handle, USHORT FlowControl, UCHAR XonChar, UCHAR XoffChar);
FTD2XX_API STATUS WINAPI FT_SetDtr (HANDLE Handle);
FTD2XX_API STATUS WINAPI FT_ClrDtr (HANDLE Handle);
FTD2XX_API STATUS WINAPI FT_SetRts (HANDLE Handle);
FTD2XX_API STATUS WINAPI FT_ClrRts (HANDLE Handle);
FTD2XX_API STATUS WINAPI FT_GetModemStatus (HANDLE Handle, ULONG *pModemStatus);
FTD2XX_API STATUS WINAPI FT_SetChars (HANDLE Handle, UCHAR EventChar, UCHAR EventCharEnabled, UCHAR ErrorChar, UCHAR
 ErrorCharEnabled);
FTD2XX_API STATUS WINAPI FT_Purge (HANDLE Handle, ULONG Mask);
FTD2XX_API STATUS WINAPI FT_SetTimeouts (HANDLE Handle, ULONG ReadTimeout, ULONG WriteTimeout);
FTD2XX_API STATUS WINAPI FT_GetQueueStatus (HANDLE Handle, DWORD *dwRxBytes);
FTD2XX_API STATUS WINAPI FT_SetBreakOn (HANDLE Handle);
FTD2XX_API STATUS WINAPI FT_SetBreakOff (HANDLE Handle);
FTD2XX_API STATUS WINAPI FT_GetStatus (HANDLE Handle, DWORD *dwRxBytes, DWORD *dwTxBytes, DWORD *dwEventDWord);
FTD2XX_API STATUS WINAPI FT_ResetDevice (HANDLE Handle);

FTD2XX_API	STATUS	WINAPI	FT_SetEventNotification	(HANDLE	Handle,	DWORD	Mask,	PVOID	Param);
FTD2XX_API STATUS WINAPI FT_ResetPort (HANDLE Handle);
FTD2XX_API STATUS WINAPI FT_RestartInTask (HANDLE Handle);
FTD2XX_API STATUS WINAPI FT_StopInTask (HANDLE Handle);
FTD2XX_API STATUS WINAPI FT_SetResetPipeRetryCount (HANDLE Handle, DWORD dwCount);

//**
//EEPROM function declarations
//**
FTD2XX_API STATUS WINAPI FT_EE_Program (HANDLE Handle, PPROGRAM_DATA pData);
FTD2XX_API STATUS WINAPI FT_EE_Read (HANDLE Handle, PPROGRAM_DATA pData);
FTD2XX_API STATUS WINAPI FT_EE_UARead (HANDLE Handle, PUCHAR pucData, DWORD dwDataLen, LPDWORD lpdwBytesRead);
FTD2XX_API STATUS WINAPI FT_EE_UAWrite (HANDLE Handle, PUCHAR pucData, DWORD dwDataLen);
FTD2XX_API STATUS WINAPI FT_EE_UASize (HANDLE Handle, LPDWORD lpdwSize);
FTD2XX_API STATUS WINAPI FT_EraseEE (HANDLE Handle);

//**
//Constant Declarations
//**
‘//Return codes
enum {
 OK,
 INVALID_HANDLE,
 DEVICE_NOT_FOUND,
 DEVICE_NOT_OPENED,
 IO_ERROR,
 INSUFFICIENT_RESOURCES,
 INVALID_PARAMETER,
 INVALID_BAUD_RATE,

 DEVICE_NOT_OPENED_FOR_ERASE,
 DEVICE_NOT_OPENED_FOR_WRITE,
 FAILED_TO_WRITE_DEVICE,
 EEPROM_READ_FAILED,
 EEPROM_WRITE_FAILED,
EEPROM_ERASE_FAILED,
EEPROM_NOT_PRESENT,
EEPROM_NOT_PROGRAMMED,
INVALID_ARGS,

Application Note AN-00200

– 46 –

OTHER_ERROR
};

// Flow Control
#define	FLOW_NONE		 	 0x0000
#define	FLOW_RTS_CTS		 0x0100
#define	FLOW_DTR_DSR		 0x0200
#define	FLOW_XON_XOFF		 0x0400

// Purge rx and tx buffers
#define	PURGE_RX		 	 1
#define	PURGE_TX		 	 2

// FT_OpenEx Flags
#define	OPEN_BY_SERIAL_NUMBER		1
#define	OPEN_BY_DESCRIPTION		 2

// FT_ListDevices Flags (used in conjunction with FT_OpenEx Flags)
#define	LIST_NUMBER_ONLY		 0x80000000
#define	LIST_BY_INDEX		 0x40000000
#define	LIST_ALL		 	 0x20000000
#define	LIST_MASK	(LIST_NUMBER_ONLY	|	LIST_BY_INDEX	|	LIST_ALL)

// Modem Status
#define	MODEM_STATUS_CTS		 &H10
#define	MODEM_STATUS_DSR		 &H20
#define	MODEM_STATUS_RI		 &H40
#define	MODEM_STATUS_DCD		 &H80

// Event Masks
#define	EVENT_RXCHAR		 1
#define	EVENT_MODEM_STATUS		 2

// Baud Rates
#define	BAUD_300		 	 300
#define	BAUD_600		 	 600
#define	BAUD_1200		 	 1200
#define	BAUD_2400		 	 2400
#define	BAUD_4800		 	 4800
#define	BAUD_9600		 	 9600
#define	BAUD_14400		 	 14400
#define	BAUD_19200		 	 19200
#define	BAUD_38400		 	 38400
#define	BAUD_57600		 	 57600
#define	BAUD_115200			 115200
#define	BAUD_230400			 230400
#define	BAUD_460800			 460800
#define	BAUD_921600			 921600

// Word Lengths
#define	BITS_8		 	 (UCHAR)	8
#define	BITS_7		 	 (UCHAR)	7
#define	BITS_6		 	 (UCHAR)	6
#define	BITS_5		 	 (UCHAR)	5

// Stop Bits
#define	STOP_BITS_1			 (UCHAR)	0
#define	STOP_BITS_1_5		 (UCHAR)	1
#define	STOP_BITS_2			 (UCHAR)	2

// Parity
#define	PARITY_NONE			 (UCHAR)	0
#define	PARITY_ODD		 	 (UCHAR)	1
#define	PARITY_EVEN			 (UCHAR)	2
#define	PARITY_MARK			 (UCHAR)	3
#define	PARITY_SPACE		 (UCHAR)	4

// Type declaration for EEPROM programming
typedef struct PROGRAM_DATA {
 WORD VendorId; // 0x0403
 WORD ProductId; // 0xF448
 char *Manufacturer; // 32, “Linx Technologies”
 char *ManufacturerId; // 16, “LT”
 char *Description; // 64 “LINX SDM-USB-QS-S”
	 char	*SerialNumber;		 //	16	“LT000001”	if	fixed,	or	NULL
 WORD MaxPower; // 0 < MaxPower <= 500
 WORD PnP; // 0 = disabled, 1 = enabled
 WORD SelfPowered; // 0 = bus powered, 1 = self powered
 WORD RemoteWakeup; // 0 = not capable, 1 = capable
 // Rev4 extensions
 UCHAR Rev4; // true if Rev4 chip, false otherwise
 UCHAR IsoIn; // true if in endpoint is isochronous
 UCHAR IsoOut; // true if out endpoint is isochronous
 UCHAR PullDownEnable; // true if pull down enabled
 UCHAR SerNumEnable; // true if serial number to be used
 UCHAR USBVersionEnable; // true if chip uses USBVersion
 WORD USBVersion; // BCD (0x0200 => USB2)
} PROGRAM_DATA, *PPROGRAM_DATA;

Application Note AN-00200

Copyright © 2012 Linx Technologies

159 Ort Lane, Merlin, OR, US 97532
Phone: +1 541 471 6256
Fax: +1 541 471 6251
www.linxtechnologies.com

