

SiBar thyristor surge protection devices help protect sensitive telecommunication equipment from the hazards caused by lightning, power contact, and power induction. These devices have a high electrical surge capability to help protect against transient faults and a high off-state impedance, rendering them virtually transparent during normal system operation.

SiBar thyristor surge protectors assist designers to meet telecommunication and computer telephony equipment requirements and industry specifications.

- Helps provide protection for sensitive telecom electronic equipment
- · Low leakage current
- · Low power dissipation
- · Fast, reliable operation
- · No wear-out mechanisms
- Assists designers to meet worldwide telecom standards
- · Helps reduce warranty and service costs
- · Easy installation
- · Helps improve power efficiency of equipment

Features:

- · RoHS compliant
- · Bidirectional crowbar transient voltage protection
- Voltage range: 170V 270V
- · High off-state impedance
- · Low on-state voltage
- · High surge capability
- · Short-circuit failure mode
- · Surface-mount technology
- DO-214AC SMA package
- 10 x 1000 μs 50A surge rating
- Helps equipment comply with TIA-968, Telcordia GR-1089, IEC61000-4-5, ITU K.20/21/45

Applications:

Modems

- · Set top boxes
- · Fax machines
- · POS systems
- · Phones, answering machines
- Analog and digital linecards (xDSL, T1/E1...)

· PBX systems

• Other customer premise and central office network equipment requiring protection

Document: SCD 27283 Status: Released

Table SB1 - Electrical Characteristics									
Part Number	V _{DM} Max. (V)	V _{BO} Max. (V)	I _H Min. (mA)	V _T Max. (V)	C1 (Typ) 50V _{DC} Bias	C2 (Typ) 2V _{DC} Bias	Off-State Current VD2=VDM (μΑ)		
TVA170SA-L	170	265	150	4	20	39	5		
TVA200SA-L	200	320	150	4	17	33	5		
TVA270SA-L	270	365	150	4	16	31	5		

Notes: All electrical characteristics are measured at 25°C.

 V_{DM} measured per UL497B pulse requirements: at max. off-state leakage current (IDM) = 5 μ A. V_{BO} measured at 100V/ μ s.

C1 measured at 1 MHz with a 50 V_{DC} bias.

C2 measured at 1MHz with a 2V_{DC} bias.

Table SB2	2 – Surge (Current Ra	ating							
	TIA-968			Telcordia GF	R-1089*	IEC61000-4-5	ITU K.20/21/45*			
	Type A	Type B						_		
Part Number	I _{pp} (A) 5 x 320 μs	I _{pp} (A) 10 x 560 μs	_{рр} (A) 10 х 160 µs	I _{pp} (A) 10 x 1000 μs	I _{pp} (A) 2 x 10 μs	Ι _{pp} (A) 8 x 20 μs	I _{PP} (A) 5 x 310 μs (VOC: 10 x 700μs)	I _{TSM} Min. (A)		dV/dt (V/μs)
TVAxxxSA-L	90	70	100	50	150	150	90	22	500	2000

Notes: *Lightning current wave forms for applicable industry specification. I_{TSM} , peak on-state surge current is measured at 60 Hz, one cycle. di/dt: critical rate-of-rise of on-state current (pulsed power amplifier Vmax = 600V; C = 30 μ F). dV/dt: critical rate-of-rise of off-stage voltage (linear wave form, V_D = rated V_{BD} , Ti = 25°C

The voltage current (V-I) is useful in depicting the electrical characteristics of the SiBar thyristor surge protectors in relation to each other.

Document: SCD 27283 Status: Released

Figure SB2 - Dimension Figure

Table SB3 - Dimensions in Millimeters

	Α		В		С		D	
Dimension	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
TVAxxxSA-L	4.06	4.57	2.25	2.92	1.90	2.41	1.25	1.65
TVAXXXSA-L	(0.160)	(0.180)	(0.089)	(0.115)	(0.075)	(0.095)	(0.049)	(0.065)

	Н		J		K		Р	S	
Dimension	Min.	Max.	Min.	Max.	Min.	Max.	Ref	Min	Max.
TVAxxxSA-L	0.051	0.200	0.150	0.41	0.76	1.52	0.051	4.80	5.59
I VAXXXSA-L	(0.002)	(800.0)	(0.006)	(0.016)	(0.030)	(0.060)	(0.0020)	(0.189)	(0.220)

Notes: *D dimension is measured within dimension P.
TVA series devices use industry standard SMA package type.
All devices are bidirectional and may be oriented in either direction for installation

Table SB4 – Physical Characteristics and Er	vironmental Specifications
Lead material	Matte tin finish (-L devices)
Encapsulating material	Epoxy, meets UL94V-0 requirements
Solderability	per MIL-STD-750, Method 2026
Solder heat withstand	per MIL-STD-750, Method 2031
Solvent resistance	per MIL-STD-750, Method 1022
Mechanical shock	per MIL-STD-750, Method 2016
Vibration	per MIL-STD-750, Method 2056
Storage temperature (°C)	-55 to 150
Operating temperature (°C)	-40 to 125
Junction temperature (°C)	175
Maximum Lead Temperature for Soldering Purpose; for 10s (°C)	260

Test	Conditions	Duration
High temperature, reverse bias	+100°C, 50VDC bias	1000 hours
High humidity, high temperature, reverse bias	85% RH, +85°C, 50VDC bias	1000 hours
High temperature storage life	+150°C	1000 hours
Temperature cycling	-65°C to +150°C, 15 minute dwell	1000 cycles
Autoclave	100% RH, +121°C, 15 PSI	96 hours

Document: SCD 27283

Status: Released

Figures SB3-SB6 - Typical Electrical Charateristics vs. Temperature for Sibar Thyristor Surge Protectors

Document: SCD 27283 Status: Released

				Recommended Pad Layout (millimeters/inchs)					
Part Description	Tape and Reel Quantity	Standard Package	Part Marking	Dimension A (Nom.)	Dimension B (Nom.)	Dimension C (Nom.)	Agency Recognition*		
TVA170SA-L	5,000	20,000	170S	2.0 (0.079)	2.0 (0.079)	2.0 (0.079)	UL		
TVA220SA-L	5,000	20,000	200A	2.0 (0.079)	2.0 (0.079)	2.0 (0.079)	UL		
TVA275SA-L	5,000	20,000	270A	2.0 (0.079)	2.0 (0.079)	2.0 (0.079)	UL		

308 Constitution Drive, MS R21/2A Menlo Park, CA USA 94025-1164

Tel (800) 227-7040 (650) 361-6900 Fax (650) 361-2508 www.circuitproection.com www.circuitprotection.com.hk (Chinese) www.circuitprotection.jp (Japanese)

Raychem, PolySwitch, SiBar, TE Logo and Tyco Electronics are trademarks. All other trademarks and copyrights are property of their respective owners.

Document: SCD 27283 Status: Released