FlexRay[®] Transceiver, Clamp 30 NCV7381B is a single-channel FlexRay transceiver compliant with the FlexRay Electrical Physical Layer Specification Rev. 3.0.1, capable of communicating at speeds of up to 10 Mbit/s. It provides differential transmit and receive capability between a wired FlexRay communication medium on one side and a protocol controller and a host on the other side. NCV7381B mode control functionality is optimized for nodes permanently connected to car battery. It offers excellent EMC and ESD performance. #### **KEY FEATURES** #### General - Compliant with FlexRay Electrical Physical Layer Specification Rev 3.0.1 - FlexRay Transmitter and Receiver in Normal-power Modes for Communication up to 10 Mbit/s - Support of 60 ns Bit Time - FlexRay Low-power Mode Receiver for Remote Wakeup Detection - Excellent Electromagnetic Susceptibility (EMS) Level over Full Frequency Range. Very Low Electromagnetic Emissions (EME) - Bus Pins Protected against >10 kV System ESD Pulses - Safe Behavior under Missing Supply or No Supply Conditions - Interface Pins for a Protocol Controller and a Host (TxD, RxD, TxEN, RxEN, STBN, BGE, EN, ERRN) - INH Output for Control of External Regulators - Local Wakeup Pin WAKE - TxEN Timeout - BGE Feedback - Supply Pins V_{BAT}, V_{CC}, V_{IO} with Independent Voltage Ramp Up: - ◆ V_{BAT} Supply Parametrical Range from 5.5 V to 50 V - V_{CC} Supply Parametrical Range from 4.75 V to 5.25 V - ◆ V_{IO} Supply Parametrical Range from 2.3 V to 5.25 V - Compatible with 14 V and 28 V Systems - Operating Ambient Temperature –40°C to +125°C (T_{AMB Class1}) - Junction Temperature Monitoring with Two Levels - SSOP-16 Package - This Device is Pb-Free, Halogen Free/BFR Free and are RoHS Compliant # FlexRay Functional Classes - Bus Driver Voltage Regulator Control - Bus Driver Bus Guardian Interface - Bus Driver Logic Level Adaptation - Bus Driver Remote Wakeup ## ON Semiconductor® www.onsemi.com SSOP-16 CASE 565AE #### **MARKING DIAGRAM** A = Assembly Location WL = Wafer Lot YYWW = Year / Work Week Pb-Free Package #### **PIN CONNECTIONS** #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 24 of this data sheet. ## Quality NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable Figure 1. Block Diagram ## **PIN FUNCTION DESCRIPTION** | Pin
Number | Pin
Name | Pin Type | Pin Function | |---------------|------------------|----------------------------------|---| | 1 | INH | high-voltage analog output | External regulator control output | | 2 | EN | digital input | Mode control input; internal pull-down resistor | | 3 | V _{IO} | supply | Supply voltage for digital pins level adaptation | | 4 | TxD | digital input | Data to be transmitted; internal pull-down resistor | | 5 | TxEN | digital input | Transmitter enable input; when High transmitter disabled; internal pull-up resistor | | 6 | RxD | digital output | Receive data output | | 7 | BGE | digital input | Bus guardian enable input; when Low transmitter disabled; internal pull-down resistor | | 8 | STBN | digital input | Mode control input; internal pull-down resistor | | 9 | RxEN | digital output | Bus activity detection output; when Low bus activity detected | | 10 | ERRN | digital output | Error diagnosis and status output | | 11 | V _{BAT} | supply | Battery supply voltage | | 12 | WAKE | high-voltage analog input | Local wake up input; internal pull up or pull down (depends on voltage at pin WAKE) | | 13 | GND | ground | Ground connection | | 14 | ВМ | high-voltage analog input/output | Bus line minus | | 15 | BP | high-voltage analog input/output | Bus line plus | | 16 | V _{CC} | supply | Bus driver core supply voltage; 5 V nominal | ## **APPLICATION INFORMATION** Figure 2. Application Diagram ## RECOMMENDED EXTERNAL COMPONENTS FOR THE APPLICATION DIAGRAM | Component | Function | | Тур | Max | Unit | |--------------------|--|--|------|-----|------| | C _{VBAT} | Decoupling capacitor on battery line, ceramic | | 100 | | nF | | C _{VCC} | Decoupling capacitor on V _{CC} supply line, ceramic | | 100 | | nF | | C _{VIO} | Decoupling capacitor on V _{IO} supply line, ceramic | | 100 | | nF | | R _{WAKE1} | Pull-up resistor on WAKE pin | | 33 | | kΩ | | R _{WAKE2} | Serial protection resistor on WAKE pin | | 3.3 | | kΩ | | R _{BUS1} | Bus termination resistor (Note 1) | | 47.5 | | Ω | | R _{BUS2} | Bus termination resistor (Note 1) | | 47.5 | | Ω | | C _{BUS} | Common-mode stabilizing capacitor, ceramic (Note 2) | | 4.7 | | nF | | CMC | Common-mode choke | | 100 | | μН | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 1. Tolerance ±1%, type 0805 2. Tolerance ±20%, type 0805 ## **MAXIMUM RATINGS** | Symbol | Parameter | | Min | Max | Units | |---------------------------|--|---------------------------|------|-----------------------|-------| | uV _{BAT-MAX} | Battery voltage power supply | | -0.3 | 50 | V | | uV _{CC-MAX} | 5 V Supply voltage | | -0.3 | 5.5 | V | | uV _{IO-MAX} | Supply voltage for V _{IO} voltage level adaptation | | -0.3 | 5.5 | V | | uDigIn _{MAX} | DC voltage at digital inputs (BGE, EN, STBN, TxD, Tx | EN) | -0.3 | 5.5 | V | | uDigOut _{MAX} | DC voltage at digital outputs (ERRN, RxD, RxEN) | | -0.3 | V _{IO} +0.3 | V | | iDigOut _{IN-MAX} | Digital output pins input current (V _{IO} = 0 V) | | -10 | +10 | mA | | uBM _{MAX} | DC voltage at pin BM | | -50 | 50 | V | | uBP _{MAX} | DC voltage at pin BP | | -50 | 50 | V | | uINH _{MAX} | DC voltage at pin INH | | -0.3 | V _{BAT} +0.3 | V | | iINH _{MAX} | INH pin maximum load current | | -10 | - | mA | | uWAKE _{MAX} | DC voltage at WAKE pin | | -0.3 | V _{BAT} +0.3 | V | | T _{J_MAX} | Junction temperature | | -40 | 175 | °C | | T _{STG} | Storage Temperature Range | | -55 | 150 | °C | | MSL | Moisture Sensitivity Level | | | 3 | _ | | uESD _{IEC} | System HBM on pins BP and BM (as per IEC 61000-4- | -2; 150 pF / 330 Ω) | -10 | +10 | kV | | uESD _{EXT} | Component HBM on pins BP, BM, V_{BAT} and WAKE (as per EIA–JESD22–A114–B; 100 pF / 1500 Ω) | | -6 | +6 | kV | | uESD _{INT} | Component HBM on all other pins (as per EIA–JESD22–A114–B; 100 pF / 1500 Ω) | | -4 | +4 | kV | | uV _{TRAN} | Voltage transients, pins BP, BM, V _{BAT} and WAKE. | test pulses 1 | -100 | - | V | | | According to ISO7637–2, Class C (Note 3) | test pulses 2a | - | +75 | V | | | | test pulses 3a | -150 | - | V | | | | test pulses 3b | - | +100 | V | | | Voltage transients, pin V _{BAT} .
According to ISO7637–2 | test pulse 5
Load Dump | - | 50 | V | | | Overvoltage, pin V _{BAT} , according to ISO16750-2 | Jump Start | 1 | 50 | V | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. ## **RECOMMENDED OPERATING RANGES** | Symbol | Parameter | Min | Max | Units | |----------------------|--|------|-----------------|-------| | uV_BAT-OP | Battery voltage power supply (Note 4) | 5.5 | 50 | V | | uV _{CC-OP} | Supply voltage 5 V | 4.75 | 5.25 | V | | uV_IO-OP | Supply voltage for V _{IO} voltage level adaptation | 2.3 | 5.25 | V | | uWAKE _{OP} | DC voltage at WAKE pin | 0 | V_{BAT} | V | | uDiglO _{OP} | DC voltage at digital pins (EN, TxD, TxEN, RxD, RxEN, BGE, STBN, ERRN) | 0 | V _{IO} | V | | uBM _{OP} | DC voltage at pin BM | -50 | 50 | V | | uBP _{OP} | DC voltage at pin BP | -50 | 50 | V | | uINH _{OP} | DC voltage at pin INH | 0 | V_{BAT} | V | | T_{AMB} | Ambient temperature (Note 5) | -40 | 125 | °C | | T _{J OP} | Junction temperature | -40 | 150 | °C | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 4. Full functionality is guaranteed from 5.1 V. See also parameter uBDUVV_{BAT}. - The specified range corresponds to T_{AMB_Class1} ^{3.} Test is carried out according to setup in FlexRay Physical Layer EMC Measurement Specification, Version 3.0. This specification is referring to ISO7637. ## THERMAL CHARACTERISTICS | Symbol | Rating | Value | Unit | |--------------------|--|-------|------| | $R_{\theta JA_1}$ | Thermal Resistance Junction-to-Air, JEDEC 1S0P PCB | 78 | °C/W | | $R_{\theta JA_2}$ | Thermal Resistance Junction-to-Air, JEDEC 2S2P PCB | 69 | °C/W | # **ELECTRICAL CHARACTERISTICS** $V_{BAT} = 5.5 \text{ V}$ to 50 V, $V_{CC} = 4.75 \text{ V}$ to 5.25 V, $V_{IO} = 2.3 \text{ V}$ to 5.25 V, $C_{VBAT} = 100 \text{ nF}$, $C_{VCC} = 100 \text{ nF}$, $C_{VIO} = 100 \text{ nF}$, for typical values $T_A = 25^{\circ}\text{C}$, for min/max values $T_J = -40^{\circ}\text{C}$ to 150°C; unless otherwise noted. All voltages are referenced to GND (pin 13). Positive currents flow into the respective pin. (Note 6) | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-------------------------------|---|--|-----|------|------|------| | CURRENT CONSUM | PTION | | | | | | | iV _{BAT-NORM} | Current consumption from V _{BAT} | Normal-power modes | - | 0.65 | 1.25 | mA | | iV _{BAT-LP} |
 Low-power modes;
T _{AMB} = 125°C | - | - | 75 | μΑ | | | | Sleep mode, $V_{IO} = V_{CC} = 0 V$;
$T_{AMB} = 125$ °C | - | - | 80 | μΑ | | | | Low-power modes, V _{IO} = V _{CC}
= 0 V,
V _{BAT} = 12 V, T _J < 85°C
(Note 7) | - | _ | 55 | μΑ | | iV _{CC-NORM-IDLE} | Current consumption from V _{CC} | Normal mode – bus signals Idle | - | - | 15 | mA | | iV _{CC} -NORM-ACTIVE | | Normal mode – bus signals Data_0/1 $R_{BUS} = 40$ to 55 Ω | - | - | 37 | mA | | iV _{CC-REC} | | Receive-only mode | - | - | 15 | mA | | iV _{CC-LP} | | Low-power modes, T _J < 85°C (Note 7) | - | - | 8.0 | μΑ | | iV _{IO-NORM} | Current consumption from V _{IO} | Normal-power modes | - | - | 1.0 | mA | | iV _{IO-LP} | | Low-power modes, T _J < 85°C (Note 7) | - | - | 6.0 | μΑ | | iTot_LP | Total current consumption – Sum from all supply pins | Low-power modes;
T _{AMB} = 125°C | - | - | 95 | μΑ | | | | Sleep mode, V_{IO} = V_{CC} = 5.0 V,
V_{BAT} = 12 V, T_{J} < 85°C
(Note 7) | - | - | 65 | μΑ | | | | Sleep mode, $V_{IO} = V_{CC} = 5.0 \text{ V}$, $V_{BAT} = 12 \text{ V}$, $T_{J} < 25^{\circ}\text{C}$ (Note 7) | - | - | 55 | μΑ | | TRANSMISSION PAR | RAMETERS | | | - | - | - | | uBDTx _{active} | Differential voltage uBP – uBM
when sending symbol "Data_0" or
"Data_1" | R_{BUS} = 40 to 55 Ω;
C_{BUS} = 100 pF
Parameters defined in Figure 3 | 600 | - | 2000 | mV | | uBDTx _{Idle} | Differential voltage uBP – uBM
when driving signal "Idle" | | 0 | - | 30 | mV | # **ELECTRICAL CHARACTERISTICS** V_{BAT} = 5.5 V to 50 V, V_{CC} = 4.75 V to 5.25 V, V_{IO} = 2.3 V to 5.25 V, C_{VBAT} = 100 nF, C_{VCC} = 100 nF, C_{VIO} = 100 nF, for typical values T_A = 25°C, for min/max values T_J = -40°C to 150°C; unless otherwise noted. All voltages are referenced to GND (pin 13). Positive currents flow into the respective pin. (Note 6) | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |--|---|--|-----|-----|-------|------| | TRANSMISSION PAR | RAMETERS | | - | | | • | | dBDTx10 | Transmitter delay, negative edge | Test setup as per Figure 17 | _ | - | 75 | ns | | dBDTx01 | Transmitter delay, positive edge | with $R_{BUS} = 40 \Omega$; $C_{BUS} = 100 pF$ | _ | - | 75 | ns | | dBDTxAsym | Transmitter delay mismatch,
 dBDTx10 - dBDTx01 (Note 8) | Sum of TxD signal rise and fall time (20% to 80% V _{IO}) | _ | - | 4.0 | ns | | dBusTx10 | Fall time of the differential bus voltage from 80% to 20% | of up to 9 ns Parameters defined in Figure 3 | 6.0 | - | 18.75 | ns | | dBusTx01 | Rise time of the differential bus voltage from 20% to 80% | j | 6.0 | - | 18.75 | ns | | dBusTxDif | Differential bus voltage fall and rise
time mismatch
 dBusTx10 - dBusTx01 | | - | - | 3.0 | ns | | dBDTxia | Transmitter delay idle -> active | Test setup as per Figure 17 | - | - | 75 | ns | | dBDTxai | Transmitter delay active -> idle | with $R_{BUS} = 40 \Omega$; $C_{BUS} = 100 pF$ | - | - | 75 | ns | | dBDTxDM | Idle-active transmitter delay
mismatch
 dBDTxia - dBDTxai | Parameters defined in | - | - | 50 | ns | | dBusTxia | Transition time idle ->active | | _ | - | 30 | ns | | dBusTxai | Transition time active -> idle | | _ | - | 30 | ns | | dTxEN _{LOW} | Time span of bus activity | | 550 | - | 650 | ns | | dBDTxActiveMax | Maximum length of transmitter activation | | 650 | - | 2600 | μs | | iBP _{BMShortMax}
iBM _{BPShortMax} | Absolute maximum output current when BP shorted to BM – no time limit | R _{ShortCircuit} ≤ 1 Ω | - | - | 60 | mA | | iBP _{GNDShortMax}
iBM _{GNDShortMax} | Absolute maximum output current when shorted to GND – no time limit | R _{ShortCircuit} ≤ 1 Ω | - | - | 60 | mA | | iBP _{-5VShortMax}
iBM _{-5VShortMax} | Absolute maximum output current when shorted to V _{BAT} = -5 V - no time limit | R _{ShortCircuit} ≤ 1 Ω | - | - | 60 | mA | | iBP _{BAT27} ShortMax
iBM _{BAT27} ShortMax | Absolute maximum output current when shorted to V _{BAT} = 27 V – no time limit | R _{ShortCircuit} ≤ 1 Ω | - | - | 60 | mA | | iBP _{BAT48ShortMax}
iBM _{BAT48ShortMax} | Absolute maximum output current when shorted to V _{BAT} = 48 V – no time limit | $R_{ShortCircuit} \le 1 \Omega$ | - | - | 72 | mA | | R _{BDTransmitter} | Bus interface equivalent output impedance (Bus driver simulation model parameter) | | 31 | 105 | 500 | Ω | #### **ELECTRICAL CHARACTERISTICS** $V_{BAT} = 5.5 \text{ V}$ to 50 V, $V_{CC} = 4.75 \text{ V}$ to 5.25 V, $V_{IO} = 2.3 \text{ V}$ to 5.25 V, $C_{VBAT} = 100 \text{ nF}$, $C_{VCC} = 100 \text{ nF}$, $C_{VIO} = 100 \text{ nF}$, for typical values $T_A = 25^{\circ}\text{C}$, for min/max values $T_J = -40^{\circ}\text{C}$ to 150°C; unless otherwise noted. All voltages are referenced to GND (pin 13). Positive currents flow into the respective pin. (Note 6) NOTE: TxD signal is constant for 100..4400 ns before the first edge. All parameters values are valid even if the test is performed with opposite polarity. Figure 3. Transmission Parameters (TxEN is Low and BGE is High) Figure 4. Transmission Parameters for Transitions between Idle and Active (TxD is Low) # **ELECTRICAL CHARACTERISTICS** V_{BAT} = 5.5 V to 50 V, V_{CC} = 4.75 V to 5.25 V, V_{IO} = 2.3 V to 5.25 V, C_{VBAT} = 100 nF, C_{VCC} = 100 nF, C_{VIO} = 100 nF, for typical values T_A = 25°C, for min/max values T_J = -40°C to 150°C; unless otherwise noted. All voltages are referenced to GND (pin 13). Positive currents flow into the respective pin. (Note 6) | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | | | | |--|--|--|------|------|------|------|--|--|--| | RECEPTION PARAMETERS | | | | | | | | | | | uData0 | Receiver threshold for detecting Data_0 | Activity detected previously
 uBP – uBM ≤ 3.0 V | -300 | - | -150 | mV | | | | | uData1 | Receiver threshold for detecting Data_1 | | 150 | - | 300 | mV | | | | | uData1 - uData0 | Mismatch of receiver thresholds | (uBP + uBM) / 2 = 2.5 V | -30 | - | 30 | mV | | | | | uData0_LP | Low-power receiver threshold for detecting Data_0 | uV _{BAT} ≥ 7.0 V | -400 | - | -100 | mV | | | | | uCM | Common mode voltage range (with respect to GND) that does not disturb the receiver function and reception level parameters | uCM = (uBP + uBM) / 2
(Note 9) | -10 | - | 15 | V | | | | | uBias | Bus bias voltage during bus state Idle in normal-power modes | R_{BUS} = 40 to 55 Ω;
C_{BUS} = 100 pF
(Note 10) | 1800 | 2500 | 3200 | mV | | | | | | Bus bias voltage during bus state Idle in low-power modes | | -200 | 0 | 200 | mV | | | | | R _{CM1} , R _{CM2} | Receiver common mode resistance | (Note 10) | 10 | _ | 40 | kΩ | | | | | C_BP, C_BM | Input capacitance on BP and BM pin (Note 7) | f = 5.0 MHz | - | _ | 20 | pF | | | | | C_Bus _{DIF} | Bus differential input capacitance (Note 7) | f = 5.0 MHz | - | - | 5.0 | pF | | | | | iBP _{LEAK}
iBM _{LEAK} | Absolute leakage current when driver is off | uBP = uBM = 5.0 V
All other pins = 0 V | - | - | 25 | μΑ | | | | | iBP _{LEAKGND}
iBM _{LEAKGND} | Absolute leakage current, in case of loss of GND | uBP = uBM = 0 V
All other pins = 16 V | - | - | 1600 | μΑ | | | | # **ELECTRICAL CHARACTERISTICS** V_{BAT} = 5.5 V to 50 V, V_{CC} = 4.75 V to 5.25 V, V_{IO} = 2.3 V to 5.25 V, C_{VBAT} = 100 nF, C_{VCC} = 100 nF, C_{VIO} = 100 nF, for typical values T_A = 25°C, for min/max values T_J = -40°C to 150°C; unless otherwise noted. All voltages are referenced to GND (pin 13). Positive currents flow into the respective pin. (Note 6) | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |---|--|-------------------------------------|------|-----|------|------| | RECEPTION PARAMET | TERS | | | | | | | uBusRx _{Data} | Test signal parameters for | Test signal and parameters | 400 | - | 3000 | mV | | dBusRx0 _{BD} | reception of Data_0 and Data_1 symbols | defined in Figure 5 and
Figure 6 | 60 | - | 4330 | ns | | dBusRx1 _{BD} | | | 60 | - | 4330 | ns | | dBusRx10 | | RxD pin loaded with 25 pF capacitor | _ | - | 22.5 | ns | | dBusRx01 | | | - | - | 22.5 | ns | | dBDRx10 | Receiver delay, negative edge (Note 8) | | - | _ | 75 | ns | | dBDRx01 | Receiver delay, positive edge (Note 8) | | - | - | 75 | ns | | dBDRxAsym | Receiver delay mismatch
 dBDRx10 - dBDRx01 (Note 8) | | - | - | 5.0 | ns | | uBusRx | Test signal parameters for bus | | 400 | - | 3000 | mV | | dBusActive | activity detection | | 590 | - | 610 | ns | | dBusIdle | | | 590 | - | 610 | ns | | dBusRxia | | | 18 | - | 22 | ns | | dBusRxai | | | 18 | - | 22 | ns | | dBDIdleDetection | Bus driver filter–time for idle detection | | 50 | - | 200 | ns | | dBDActivityDetection | Bus driver filter–time for activity detection | | 100 | - | 250 | ns | | dBDRxai | Bus driver idle reaction time | | 50 | - | 275 | ns | | dBDRxia | Bus driver activity reaction time | | 100 | - | 325 | ns | | dBDTxRxai | Idle-Loopdelay | | - | - | 325 | ns | | REMOTE WAKEUP DE | TECTION PARAMETERS | | • | | | | | dWU _{0Detect} | Detection time for Wakeup
Data_0 symbol | | 1.0 | _ | 4.0 | μs | | dWU _{IdleDetect} | Detection time for Wakeup Idle/
Data_1 symbol | | 1.0 | - | 4.0 | μs | | dWU _{Timeout} | Maximum accepted Wakeup pattern duration | | 48 | - | 140 | μs | | dWU _{Interrupt} | Acceptance timeout for interruptions | (Note 11) | 0.13 | - | 1.0 | μs | | uV _{BAT} ŪRWU | Minimum supply voltage V _{BAT} for remote wakeup events detection | | - | - |
5.5 | ٧ | | DBDWakeup
Reaction _{remote} | Reaction time after remote wakeup event | | 7.0 | - | 35 | μs | | TEMPERATURE MONI | TORING PARAMETERS | | - | | | | | T_JW | Thermal warning level | | 125 | 140 | 150 | °C | | T _{JSD} | Thermal shutdown level | | 155 | 165 | 185 | °C | ## **ELECTRICAL CHARACTERISTICS** $V_{BAT} = 5.5 \text{ V}$ to 50 V, $V_{CC} = 4.75 \text{ V}$ to 5.25 V, $V_{IO} = 2.3 \text{ V}$ to 5.25 V, $C_{VBAT} = 100 \text{ nF}$, $C_{VCC} = 100 \text{ nF}$, $C_{VIO} = 100 \text{ nF}$, for typical values $T_A = 25^{\circ}\text{C}$, for min/max values $T_J = -40^{\circ}\text{C}$ to 150°C; unless otherwise noted. All voltages are referenced to GND (pin 13). Positive currents flow into the respective pin. (Note 6) Figure 5. Reception Parameters Figure 6. Parameters of Bus Activity Detection # **ELECTRICAL CHARACTERISTICS** V_{BAT} = 5.5 V to 50 V, V_{CC} = 4.75 V to 5.25 V, V_{IO} = 2.3 V to 5.25 V, C_{VBAT} = 100 nF, C_{VCC} = 100 nF, C_{VIO} = 100 nF, for typical values T_A = 25°C, for min/max values T_J = -40°C to 150°C; unless otherwise noted. All voltages are referenced to GND (pin 13). Positive currents flow into the respective pin. (Note 6) | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |--|---|--|----------------------------|-----------------------------|----------------------------|------| | WAKE PIN PARAMETE | ERS | | | | | | | uV _{BAT-WAKE} | Minimum supply voltage V _{BAT} for local wakeup events detection | | - | _ | 7.0 | V | | uWAKE _{TH} | Threshold of WAKE comparator | | - | V _{BAT} / | _ | V | | dBDWakePulseFilter | WAKE pulse filter time (spike rejection) | | 1.0 | - | 500 | μs | | dBDWakeup
Reaction _{local} | Reaction time after local wakeup event | | 14 | - | 50 | μS | | iWAKE _{PD} | Internal pull-down current | uWAKE = 0 V for longer than dWakePulseFilter | 3.0 | _ | 11 | μΑ | | iWAKE _{PU} | Internal pull-up current | uWAKE = V _{BAT} for longer than
dWakePulseFilter | -11 | - | -3.0 | μΑ | | INH PIN PARAMETERS | 3 | | • | • | • | | | uINH1 _{Not_Sleep} | Voltage on INH pin when signaling Not_Sleep | iINH = -5.0 mA
uV _{BAT} > 5.5 V | uV _{BAT}
– 0.6 | uV _{BAT}
- 0.27 | uV _{BAT}
– 0.1 | V | | ilNH1 _{LEAK} | Leakage current while signaling
Sleep | | -5.0 | - | 5.0 | μΑ | | POWER SUPPLY MON | ITORING PARAMETERS | | • | | • | | | uBDUVV _{BAT} | V _{BAT} undervoltage threshold | | 4.0 | - | 5.1 | V | | uBDUVV _{CC} | V _{CC} undervoltage threshold | | 4.0 | - | 4.5 | ٧ | | uUV _{IO} | V _{IO} undervoltage threshold | | 2.0 | - | 2.3 | ٧ | | uBDUVV _{BAT} -WAKE | V _{BAT} undervoltage threshold for correct detection of the local wakeup | | 5.0 | _ | 7.0 | V | | uUV_HYST | Hysteresis of the undervoltage detectors | | 20 | 100 | 200 | mV | | dBDUVV _{CC} | V _{CC} undervoltage detection time | | 150 | 350 | 750 | ms | | dBDUVV _{IO} | V _{IO} undervoltage detection time | | 150 | 350 | 750 | ms | | dBDUVV _{BAT} | V _{BAT} undervoltage detection time | | 350 | 750 | 1500 | μs | | dBDRV _{CC} | V _{CC} undervoltage recovery time | | 1.5 | - | 4.5 | ms | | dBDRV _{IO} | V _{IO} undervoltage recovery time | | - | - | 1.0 | ms | | dBDRV _{BAT} | V _{BAT} undervoltage recovery time | | - | - | 1.0 | ms | | HOST INTERFACE PAI | RAMETERS | | - | - | - | - | | dBDModeChange | EN and STBN level filtering time for operating mode transition | | 21 | _ | 65 | μs | | dGo-to-Sleep | Go-to-Sleep mode timeout | | 14 | - | 33 | μs | | dReactionTime _{ERRN} | Reaction time on ERRN pin | Error detected | - | - | 33 | μs | | | | Wakeup detected or Mode changed | - | - | 1.0 | μs | # **ELECTRICAL CHARACTERISTICS** V_{BAT} = 5.5 V to 50 V, V_{CC} = 4.75 V to 5.25 V, V_{IO} = 2.3 V to 5.25 V, C_{VBAT} = 100 nF, C_{VCC} = 100 nF, C_{VIO} = 100 nF, for typical values T_A = 25°C, for min/max values T_J = -40°C to 150°C; unless otherwise noted. All voltages are referenced to GND (pin 13). Positive currents flow into the respective pin. (Note 6) | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |--|---|---------------------------------------|--------------------------|-----|--------------------------|------| | DIGITAL INPUT SIG | NALS VOLTAGE THRESHOLDS (Pins | EN, STBN, BGE, TxEN) | • | • | | | | uV _{DIG-IN-LOW} | Low level input voltage | $uV_{DIG} = uV_{IO}$ | -0.3 | - | 0.3 ×
V _{IO} | ٧ | | uV _{DIG-IN-HIGH} | High level input voltage |] | 0.7 ×
V _{IO} | - | 5.5 | ٧ | | EN PIN PARAMETE | RS | • | | | | | | R _{PD} _EN | Pull-down resistance | | 50 | 110 | 200 | kΩ | | iEN _{IL} | Low level input current | uEN = 0 V | -1.0 | 0 | 1.0 | μΑ | | dEN _{STAT} | EN toggling period for status register read-out | | 2.0 | _ | 20 | μs | | dEN _{STAT_L}
dEN _{STAT_H} | Duration of EN Low and High level for status register read-out | | 1.0 | - | - | μs | | dEN_ERRN | Delay from EN falling edge to
ERRN showing valid signal
during status register read-out | | - | - | 1.0 | μs | | STBN PIN PARAME | TERS | • | | | | | | R _{PD} _STBN | Pull-down resistance | | 50 | 110 | 200 | kΩ | | iSTBN _{IL} | Low level input current | uSTBN = 0 V | -1.0 | 0 | 1.0 | μΑ | | BGE PIN PARAMET | ERS | | | | | | | R _{PD} BGE | Pull-down resistance | | 200 | 320 | 450 | kΩ | | R _{PD} BGE | Pull-down resistance | | 200 | 320 | 450 | kΩ | | iBGE _{IL} | Low level input current | uBGE = 0 V | -1.0 | 0 | 1.0 | μΑ | | iBGE _{IL} | Low level input current | uBGE = 0 V | -1.0 | 0 | 1.0 | μΑ | | TxD PIN PARAMET | ERS | | | | | | | uBDLogic_0 | Low level input voltage | | -0.3 | _ | 0.4 ×
V _{IO} | ٧ | | uBDLogic_1 | High level input voltage | | 0.6 ×
V _{IO} | - | 5.5 | ٧ | | R _{PD} _TxD | Pull-down resistance | | 5.0 | 11 | 20 | kΩ | | C_BDTxD | Input capacitance on TxD pin (Note 7) | f = 5.0 MHz | - | _ | 10 | pF | | iTxD _{Ll} | Low level input current | uTxD = 0 V | -1.0 | 0 | 1.0 | μΑ | | TXEN PIN PARAME | TERS | | | | | | | R _{PU} _TxEN | Pull-up resistance | | 50 | 110 | 200 | kΩ | | iTxEN _{IH} | High level input current | uTxEN = V _{IO} | -1.0 | 0 | 1.0 | μΑ | | iTxEN _{LEAK} | Input leakage current | uTxEN = 5.25 V, V _{IO} = 0 V | -1.0 | 0 | 1.0 | μΑ | #### **ELECTRICAL CHARACTERISTICS** $V_{BAT} = 5.5 \text{ V}$ to 50 V, $V_{CC} = 4.75 \text{ V}$ to 5.25 V, $V_{IO} = 2.3 \text{ V}$ to 5.25 V, $C_{VBAT} = 100 \text{ nF}$, $C_{VCC} = 100 \text{ nF}$, $C_{VIO} = 100 \text{ nF}$, for typical values $T_A = 25^{\circ}\text{C}$, for min/max values $T_J = -40^{\circ}\text{C}$ to 150°C; unless otherwise noted. All voltages are referenced to GND (pin 13). Positive currents flow into the respective pin. (Note 6) | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | | | | | |---|--|--|--------------------------|-----|--------------------------|------|--|--|--|--| | DIGITAL OUTPUT SIGNALS VOLTAGE LIMITS (Pins RXD, RxEN and ERRN) | | | | | | | | | | | | uV _{DIG-OUT-LOW} | Low level output voltage | $iRxD_{OL} = 6.0 \text{ mA}$
$iRxEN_{OL} = 5.0 \text{ mA}$
$iERRN_{OL} = 0.7 \text{ mA}$
(Note 12) | 0 | - | 0.2 ×
V _{IO} | V | | | | | | uV _{DIG-OUT-HIGH} | High level output voltage | $iRxD_{OH} = -6.0 \text{ mA}$
$iRxEN_{OH} = -5.0 \text{ mA}$
$iERRN_{OH} = -0.7 \text{ mA}$
(Note 12) | 0.8 ×
V _{IO} | - | V _{IO} | ٧ | | | | | | uV _{DIG-OUT-UV} | Output voltage on a digital output when V _{IO} in undervoltage | R_{LOAD} = 100 kΩ to GND,
Either V _{CC} or V _{BAT} supplied | - | _ | 500 | mV | | | | | | uV _{DIG-OUT-OFF} | Output voltage on a digital output when unsupplied | R_{LOAD} = 100 kΩ to GND | - | - | 500 | mV | | | | | | RxD PIN PARAMETE | RS | | • | • | | | | | | | | dBDRxD _{R15} | RxD signal rise time
(20%–80% V _{IO}) | RxD pin loaded with 15 pF capacitor (Note 7) | - | - | 6.5 | ns | | | | | | dBDRxD _{F15} | RxD signal fall time
(20%-80% V _{IO}) | | - | - | 6.5 | ns | | | | | | dBDRxD _{R15}
+ dBDRxD _{F15} | Sum of rise and fall time
(20%–80% V _{IO}) | | - | - | 13 | ns | | | | | | dBDRxD _{R15}
- dBDRxD _{F15} | Difference of rise and fall time | | _ | - | 5.0 | ns | | | | | | dBDRxD _{R25} | RxD signal rise time
(20%–80% V _{IO}) | RxD pin loaded with 25 pF capacitor | - | - | 8.5 | ns | | | | | | dBDRxD _{F25} | RxD signal fall time
(20%–80% V _{IO}) | | - | - | 8.5 | ns | | | | | | dBDRxD _{R25}
+ dBDRxD _{F25} | Sum of rise and fall time (20%–80% V _{IO}) | | - | - | 16.5 | ns | | | | | | dBDRxD _{R25}
- dBDRxD _{F25} | Difference of rise and fall time | | - | - | 5.0 | ns | | | | | | dBDRxD _{R25_10}
+ dBDRxD _{F25_10} | RxD signal sum of rise and fall time at TP4_CC (20%–80% V _{IO}) | RxD pin loaded with 25 pF capacitor plus 10 pF at the end | - | _ | 16.5 | ns | | | | | | dBDRxD _{R25_10}
- dBDRxD _{F25_10} | RxD signal difference of rise and fall time at TP4_CC (20%–80% V _{IO}) | of a 50 Ω, 1 ns microstripline
(Note 13) | _ | _ | 5.0 | ns | | | | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. - Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible. - 7.
Values based on design and characterization, not tested in production. - 8. Guaranteed for ± 300 mV and ± 150 mV level of uBus. - 9. Tested on a receiving bus driver. Sending bus driver has a ground offset voltage in the range of [-12.5 V to +12.5 V] and sends a 50/50 pattern. - 10. Bus driver is connected to GND and uV_{CC} = 5 V and $uV_{BAT} \ge 7$ V. - 11. The minimum value is only guaranteed, when the phase that is interrupted was continuously present for at least 870 ns. - 12. $uV_{DIG} = uV_{IO}$. No undervoltage on V_{IO} and either V_{CC} or V_{BAT} supplied. - 13. Simulation results. Simulation performed within T_{J_OP} range, according to FlexRay Electrical Physical Layer Specification, Version 3.0.1. #### **FUNCTIONAL DESCRIPTION** ## **Operating Modes** NCV7381B can switch between several operating modes depicted in Figure 7. In Normal and Receive-only modes, the chip interconnects a FlexRay communication controller with the bus medium for full-speed communication. These two modes are also referred to as normal-power modes. In Standby and Sleep modes, the communication is suspended and the power consumption is substantially reduced. A wakeup on the bus or through a locally monitored signal on pin WAKE can be detected and signaled to the host. Go-to-sleep mode is a temporary mode ensuring correct transition between any mode and the Sleep mode. All three modes – Standby, Sleep and Go–to–sleep – are referred to as low–power modes. The operating mode selected is a function of the host signals STBN and EN, the state of the supply voltages and the wakeup detection. As long as all three supplies (V_{BAT} , V_{CC} , V_{IO}) remain above their respective undervoltage detection levels, the logical control by EN and STBN pins shown in Figure 7 applies. Influence of the power supplies and of the wakeup detection on the operating modes is described in subsequent paragraphs. Figure 7. Operating Modes and their Control by the STBN and EN Pins Figure 8. Timing Diagram of Operating Modes Control by the STBN and EN Pins # **Power Supplies and Power Supply Monitoring** NCV7381B is supplied by three pins. V_{BAT} is the main supply both for NCV7381B and the full electronic module. V_{BAT} will be typically connected to the automobile battery through a reverse–polarity protection. V_{CC} is a 5 V low–voltage supply primarily powering the FlexRay bus driver core in a normal–power mode. V_{IO} supply serves to adapt the logical levels of NCV7381B to the host and/or the FlexRay communication controller digital signal levels. All supplies should be properly decoupled by filtering capacitors – refer to Figure 2 and Recommended External Components for the Application Diagram. All three supplies are monitored by undervoltage detectors with individual thresholds and filtering times both for undervoltage detection and recovery – see Table Electrical Characteristics – Power Supply Monitoring Parameters. #### **Logic Level Adaptation** Level shift input V_{IO} is used to apply a reference voltage uV_{DIG} = uV_{IO} to all digital inputs and outputs in order to adapt the logical levels of NCV7381B to the host and/or the FlexRay communication controller digital signal levels # **Internal Flags** The NCV7381B control logic uses a number of internal flags (i.e. one-bit memories) reflecting important conditions or events. Table 1 summarizes the individual flags and the conditions that lead to a set or reset of the flags. # Table 1. INTERNAL FLAGS | Flag | Set Condition | Reset Condition | Comment | |----------------------------------|---|--|---| | Local
Wakeup | Low level detected on WAKE pin in a low-power mode | Low-power mode is entered | | | Remote
Wakeup | Remote wakeup detected on the bus in a low-power mode | Low-power mode is entered | | | Wakeup | Local Wakeup flag changes to set or Remote Wakeup flag changes to set | Normal mode is entered or Low-power mode is entered or Any undervoltage flag becomes set | | | Power-on | Internal power supply of the chip becomes sufficient for the operation of the control logic | Normal mode is entered | | | Thermal
Warning | Junction temperature is higher than <i>Tjw</i> (typ. 140°C) in a normal–power mode and V _{BAT} is not in undervoltage | (Junction temperature is below <i>Tjw</i> in a normal–power mode or the status register is read in a low–power mode) and V _{BAT} is not in undervoltage | The thermal warning flag has no influence on the bus driver function | | Thermal
Shutdown | Junction temperature is higher than <i>Tjsd</i> (typ. 165°C) in a normal–power mode and V _{BAT} is not in undervoltage | Junction temperature is below <i>Tjsd</i> in a normal-power mode and falling edge on TxEN and V _{BAT} is not in undervoltage | The transmitter is disabled as long as the thermal shutdown flag is set | | TxEN
Timeout | TxEN is Low for longer than dBDTxActiveMax (typ. 1.5 ms) and bus driver is in Normal mode | TxEN is High or Normal mode is left | The transmitter is disabled as long as the timeout flag is set | | Bus Error | Transmitter is enabled and Data on bus are different from TxD signal (sampled after each TXD edge) | (Transmitter is enabled
and
Data on bus are identical to TxD signal)
or
Transmitter is disabled | The bus error flag has
no influence on the
bus driver function | | V _{BAT}
Undervoltage | ${ m V_{BAT}}$ is below the undervoltage threshold for longer than dBDUVV_BAT | V _{BAT} is above the undervoltage threshold for longer than dBDRV _{BAT} or Wake flag becomes set | | | V _{CC}
Undervoltage | V_{CC} is below the undervoltage threshold for longer than dBDUVV $_{CC}$ | V_{CC} is above the undervoltage threshold for longer than dBDRV $_{CC}$ or Wake flag becomes set or V_{BAT} undervoltage is recovered | | | V _{IO}
Undervoltage | $\rm V_{IO}$ is below the undervoltage threshold for longer than $\rm dUV_{IO}$ | $ m V_{IO}$ is above the undervoltage threshold for longer than dBDRV $_{IO}$ or Wake flag becomes set or $\rm V_{BAT}$ undervoltage is recovered | | | Error | Any of the following status bits is set: Bus error Thermal Warning Thermal Shutdown TxEN Timeout V _{BAT} Undervoltage V _{CC} Undervoltage V _{IO} Undervoltage | All of the following status bits are reset: • Bus error • Thermal Warning • Thermal Shutdown • TxEN Timeout • V _{BAT} Undervoltage • V _{CC} Undervoltage • V _{IO} Undervoltage | | ## **Operating Mode Changes Caused by Internal Flags** Changes of some internal flags described in Table 1 can force an operating mode transition complementing or overruling the operating mode control by the digital inputs STBN and EN which is shown in Figure 7: - Setting the V_{BAT} and/or VIO undervoltage flag causes a transition to Sleep mode - Setting the V_{CC} undervoltage flag, while the bus driver is not in Sleep, causes a transition to Standby mode - In case a Wake flag is set, the NCV7381B transitions to Standby mode, all undervoltage flags are cleared and the corresponding undervoltage detection timers are reset. The restart of the undervoltage detection timers allows the external power supplies to ramp—up and stabilize properly if, for example, they were previously switched off during Sleep mode - In case the V_{BAT} is recovered from undervoltage condition, the operating mode control of the chip by digital inputs STBN and EN is re-enabled, all undervoltage flags are cleared and the corresponding undervoltage detection timers are reset - $\begin{tabular}{l} \bullet & In case the V_{CC} and V_{IO} are both recovered from undervoltage while V_{BAT} is not in undervoltage condition, the operating mode control by digital inputs STBN and EN is re-enabled. \end{tabular}$ NOTE: The operating mode control state machine is not reset when an undervoltage condition is detected. Thus if Sleep mode was requested by the host prior to undervoltage condition detection and the EN pin was set Low in Sleep mode, the device stays in Sleep once the undervoltage is recovered, although STBN and EN pins are both set Low, which is otherwise considered a Standby mode request. #### FlexRay Transceiver NCV7381B contains a fully-featured FlexRay transceiver compliant with Electrical Physical Layer Specification Rev. 3.0.1. The transmitter part translates logical signals on digital inputs TxEN, BGE and TxD into appropriate bus levels on pins BP and BM. A transmission cannot be started with Data 1. In case the transmitter is enabled for longer than dBDTxActiveMax, the TxEN Timeout flag is set and the current transmission is disabled. The receiver part monitors bus pins BP and BM and signals the detected levels on digital outputs RxD and RxEN. The different bus levels are defined in Figure 9. The function of the transceiver and the related digital pins in different operating modes is detailed in Table 2 and Table 3. - The transmitter can only be enabled if the activation of the transmitter is initiated in Normal mode. - The receiver function is enabled by entering a normal-power mode. Figure 9. FlexRay Bus Signals # Table 2. TRANSMITTER FUNCTION AND TRANSMITTER-RELATED PINS | Operating Mode | BGE | TxEN | TxD | Transmitted Bus Signal | |-----------------------------|-----|------|-----|------------------------| | Standby, Go-to-sleep, Sleep | х | х | х | ldle_LP | | Receive-only | х | х | х | Idle | | Normal | 0 | х | х | Idle | | | 1 | 1 | х | Idle | | | 1 | 0 | 0 | Data_0 | | | 1 | 0 | 1 | Data_1 | # Table 3. RECEIVER FUNCTION AND
RECEIVER-RELATED PINS | Operating Mode | Signal on Bus | Wake flag | RxD | RxEN | |-----------------------------|---------------|-----------|------|------| | Standby, Go-to-sleep, Sleep | х | not set | High | High | | | х | set | Low | Low | | Normal, | Idle | х | High | High | | Receive-only | Data_0 | х | Low | Low | | | Data_1 | х | High | Low | #### **Bus Guardian Interface** The interface consists of the BGE digital input signal allowing a Bus Guardian unit to disable the transmitter and of the RxEN digital output signal used to signal whether the communication signal is Idle or not. #### **Bus Driver Voltage Regulator Control** NCV7381B provides a high-voltage output pin INH which can be used to control an external voltage regulator (see Figure 2). The pin INH is driven by a switch to V_{BAT} supply. In Normal, Receive-only, Standby and Go-to-Sleep modes, the switch is activated thus forcing a High level on pin INH. In the Sleep mode, the switch is open and INH pin remains floating. If a regulator is directly controlled by INH, it is then active in all operating modes with the exception of the Sleep mode. #### **Bus Driver Remote Wakeup Detection** During a low-power mode and under the presence of $V_{\rm BAT}$ voltage, a low-power receiver constantly monitors the activity on bus pins BP and BM. A valid remote wake-up is detected when either a wakeup pattern or a dedicated wakeup frame is received. A valid remote wake-up is also detected when wake-up pattern has been started in normal-power mode already. A wakeup pattern is composed of two Data_0 symbols separated by Data_1 or Idle symbols. The basic wakeup pattern composed of Data_0 and Idle symbols is shown in Figure 10; the wakeup pattern composed of Data_0 and Data_1 symbols — referred to as "alternative wakeup pattern" — is depicted in Figure 11. Figure 10. Valid Remote Wakeup Pattern Figure 11. Valid Alternative Remote Wakeup Pattern A remote wakeup will be also detected if NCV7381B receives a full FlexRay frame at 10 Mbit/s with the following payload data: 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF The wakeup pattern, the alternative wakeup pattern and the wakeup frame lead to identical wakeup treatment and signaling. #### **Local Wakeup Detection** The high-voltage input WAKE is monitored in low-power modes and under the condition of sufficient V_{BAT} supply level. If a falling edge is recognized on WAKE pin, a local wakeup is detected. In order to avoid false wakeups, the Low level after the falling edge must be longer than *dWakePulseFilter* in order for the wakeup to be valid. The WAKE pin can be used, for example, for switch or contact monitoring. Internal pull-up and pull-down current sources are connected to WAKE pin in order to minimize the risk of parasitic toggling. The current source polarity is automatically selected based on the WAKE input signal polarity – when the voltage on WAKE stays stable High (Low) for longer than *dWakePulseFilter*, the internal current source is switched to pull-up (pull-down). #### **ERRN Pin and Status Register** Provided V_{IO} supply is present together with either V_{BAT} or V_{CC} , the digital output ERRN indicates the state of the internal "Error" flag when in Normal mode and the state of the internal "Wake" flag when in Standby, Go-to-Sleep or Sleep. In Receive-only mode ERRN indicates either the state of the internal "Error" or the wakeup source (See Table 4). The polarity of the indication is reversed – ERRN pin is pulled Low when the "Error" flag is set. The signaling on pin ERRN functions in all operating modes. **Table 4. SIGNALING ON ERRN PIN** | STBN | EN | Conditions | Error flag | Wake flag | ERRN | |------|------|---|------------|------------|------| | High | High | - | not set | х | High | | | | | set | x | Low | | High | Low | EN has been set to High after previous wakeup | not set | х | High | | | | | set | х | Low | | | | EN has not been set to High after previous wakeup | х | Set local | High | | | | | х | Set remote | Low | | Low | х | - | х | not set | High | | | | | х | set | Low | Additionally, a full set of internal bits referred to as status register can be read through ERRN pin with EN pin used as a clock signal – the status register content is described in Table 5 while an example of the read–out waveforms is shown in Figure 12 and Figure 13. The individual status bits are channeled to ERRN pin with reversed polarity (if a status bit is set, ERRN is pulled Low) at the falling edge on EN pin (the status register starts to be shifted only at the second falling edge). As long as the EN pin toggling period falls in the dEN_{STAT} range, the operating mode is not changed and the read-out continues. As soon as the EN level is stable for more than *dBDModeChange*, the read-out is considered as finished and the operating mode is changed according the current EN value. At the same time, the status register bits S4 to S10 are reset provided the particular bits have been read-out and the corresponding flags are not set any more – see Table 5. The status register read-out always starts with bit S0 and the exact number of bits shifted to ERRN during the read-out is not relevant. **Table 5. STATUS REGISTER** | Bit Number | Status Bit Content | Note | Reset after Finished
Read-out | |------------|--------------------------------------|--|---| | S0 | Local wakeup flag | reflects directly the corresponding flag | no | | S1 | Remote wakeup flag | | | | S2 | not used; always High | | no | | S3 | Power-on status | the status bit is set if the corresponding flag | yes, if the
corresponding flag is
reset and the bit was
read-out | | S4 | Bus error status | was set previously (the respective High level of the flag is latched in its status counter-part) | | | S5 | Thermal shutdown status | | | | S6 | Thermal warning status | | | | S7 | TxEN Timeout status | | | | S8 | V _{BAT} Undervoltage status | | | | S9 | V _{CC} Undervoltage status | | | | S10 | V _{IO} Undervoltage status | | | | S11 | BGE Feedback | Normal mode: BGE pin logical state (Note 14)
Other modes: Low | - | | S12-S15 | not used; always Low | | no | | S16-S23 | Version of the NCV7381B analog part | fixed values identifying the production masks version | no | | S24-S31 | Version of the NCV7381B digital part | | | ^{14.} The BGE pin state is latched during status register read-out at rising edge of the EN pin. # **TYPICAL CHARACTERISTICS** Figure 14. RxD Low Output Characteristic Figure 15. RxD High Output Characteristic Figure 16. INH Not_Sleep Output Characteristic Figure 17. Test Setup for Dynamic Characteristics Figure 18. Test Setup for Measuring the Transient Immunity ## **ORDERING INFORMATION** | | | Temperature | | Conta | iner [†] | |----------------|---------------------------------|-----------------|---------------|-------------|-------------------| | Part Number | Description | Range | Package | Туре | Quantity | | NCV7381BDP0R2G | Clamp 30 FlexRay
Transceiver | -40°C to +125°C | SSOP 16 GREEN | Tape & Reel | 2000 | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. FlexRay is a registered trademark of Daimler Chrysler AG. SECTION C-C ## **SSOP 16** CASE 565AE-01 **ISSUE O** | DOCUMENT NUMBER: | 98AON34903E | Electronic versions are uncontrolled except when | | |------------------|---------------------------|--|--| | STATUS: | ON SEMICONDUCTOR STANDARD | accessed directly from the Document Repository. Proversions are uncontrolled except when stamped | | | REFERENCE: | | "CONTROLLED COPY" in red. | | | DESCRIPTION: | SSOP 16 | PAGE 1 OF 2 | | | ON Semiconductor® | | |-------------------|--| |-------------------|--| | DOCUMENT | NUMBER: | |------------|---------| | 98AON34903 | F | PAGE 2 OF 2 | ISSUE | REVISION | DATE | |-------|--|-------------| | 0 | RELEASED FOR PRODUCTION FROM POD #6000212 TO ON SEMICONDUCTOR. REQ. BY B. BERGMAN. | 19 SEP 2008 | ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer
purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. onsemi, ONSEMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative