
February 2023 ES0144 Rev 7 1/29

1

STM8AF52xx STM8AF62xx
Errata sheet

Device limitations for STM8AFx2xx automotive MCUs
featuring up to 128 Kbytes of flash program memory

Silicon identification

This errata sheet applies to the STMicroelectronics STM8AF526x/8x/Ax and
STM8AF6269/8x/Ax devices. The full list of part numbers is given in Table 2.

The products can be identified as shown in Table 1:

• By the revision code marked below the sales type on the device package

• By the last three digits of the Internal sales type printed on the box label

Table 1. Device identification

Sales type Revision code marked on the device(1)

1. Refer to the device datasheet for details on how to identify the revision code according to the packages.

STM8AF52xx U, T

STM8AF6269/8x/Ax U, T

Table 2. Device summary

Reference Part number

STM8AF526x/8x/Ax

(with CAN)
STM8AF5268, STM8AF5269, STM8AF5286, STM8AF5288, STM8AF5289,
STM8AF528A, STM8AF52A6, STM8AF52A8,STM8AF52A9, STM8AF52AA

STM8AF6269/8x/Ax
STM8AF62ES014469, STM8AF6286, STM8AF6288, STM8AF6289,
STM8AF628A, STM8AF62A6, STM8AF62A8, STM8AF62A9,STM8AF62AA

www.st.com

http://www.st.com

Contents STM8AF52xx STM8AF62xx

2/29 ES0144 Rev 7

Contents

1 Product evolution . 6

2 Silicon limitations . 8

2.1 Core . 8

2.1.1 Activation level (AL) bit not functional in Halt mode 8

2.1.2 JRIL and JRIH instructions not available . 8

2.1.3 Main CPU execution is not resumed after an ISR resets the AL bit 8

2.1.4 Unexpected DIV/DIVW instruction result in ISR 9

2.1.5 Wait for event instruction (WFE) not available . 9

2.1.6 Interrupt service routine (ISR) executed with priority of main process . 10

2.2 System . 10

2.2.1 HSI RC oscillator cannot be switched off in Run mode 10

2.2.2 LSI oscillator remains on in Active-halt mode when the AWU unit uses
the HSE as input clock . 10

2.2.3 Failure in CAN communication during bootloader execution 10

2.2.4 RAM modified after reset by embedded bootloader 11

2.2.5 Flash / EEPROM memory is read incorrectly after wake-up from power-
down mode . 11

2.2.6 VDD rise-time rate for 100mV < VDD < 1V . 12

2.3 Timer peripheral . 12

2.3.1 Corruption of read sequence for the 16-bit counter registers 12

2.4 I2C peripheral . 13

2.4.1 I2C event management . 13

2.4.2 Corrupted last received data in I2C Master Receiver mode 14

2.4.3 Wrong behavior of I2C peripheral in Master mode after
misplaced STOP . 15

2.4.4 Violation of I2C “setup time for repeated START condition” parameter . 15

2.4.5 In I2C slave “NOSTRETCH” mode, underrun errors may not be detected
and may generate bus errors . 16

2.4.6 I2C pulse missed . 16

2.5 UART peripheral . 18

2.5.1 PE testing issue in USART mode (UART1/UART3) 18

2.5.2 LIN mode: LIN header error when automatic resynchronization
is enabled . 18

2.5.3 LIN mode: framing error with data byte 0x00 . 18

ES0144 Rev 7 3/29

STM8AF52xx STM8AF62xx Contents

3

2.5.4 LIN mode: framing error when receiving an identifier (ID) 18

2.5.5 LIN mode: parity error when receiving an identifier (ID) 19

2.5.6 LIN mode: OR flag not correctly set in LIN Master mode 19

2.6 SPI peripheral . 19

2.6.1 Last bit too short if SPI is disabled during communication 19

2.6.2 Busy flag is unreliable when the SPI is a master simplex receive-only
mode . 20

2.6.3 CRC may be corrupted by SPI configuration or other bus transfers . . . 20

2.6.4 Anticipated communication upon SPI transit from slave receiver to
master . 20

2.6.5 BSY bit may stay high at the end of data transfer in slave mode 21

2.7 beCAN peripheral . 22

2.7.1 beCAN transmission error when sleep mode is entered during
transmission or reception . 22

2.7.2 beCAN woken up from sleep mode with automatic wake-up interrupt . 22

2.7.3 beCAN time triggered communication mode not supported 22

2.7.4 beCAN transmitted data corruption . 22

2.7.5 beCAN read error in slow mode . 24

2.7.6 Write in beCAN paged registers ignored . 24

3 Important security notice . 27

4 Revision history . 28

List of tables STM8AF52xx STM8AF62xx

4/29 ES0144 Rev 7

List of tables

Table 1. Device identification . 1
Table 2. Device summary . 1
Table 3. Product evolution summary . 6
Table 4. VDD rise-time and fall-time rates . 12
Table 5. Document revision history . 28

ES0144 Rev 7 5/29

STM8AF52xx STM8AF62xx List of figures

5

List of figures

Figure 1. 16-bit read sequence for the counter (TIMx_CNTR). 13

Product evolution STM8AF52xx STM8AF62xx

6/29 ES0144 Rev 7

1 Product evolution

Table 3 gives a summary of the fix status.

Legend for Table 3: A = workaround available; N = no workaround available; P = partial
workaround available, ‘-’ = fixed.

Table 3. Product evolution summary

Section Limitation
Rev U,
Rev T

Core

Section 2.1.1: Activation level (AL) bit not functional in Halt mode N

Section 2.1.2: JRIL and JRIH instructions not available N

Section 2.1.3: Main CPU execution is not resumed after an ISR resets
the AL bit

A

Section 2.1.4: Unexpected DIV/DIVW instruction result in ISR A

Section 2.1.5: Wait for event instruction (WFE) not available N

Section 2.1.6: Interrupt service routine (ISR) executed with priority of
main process

N

System

Section 2.2.1: HSI RC oscillator cannot be switched off in Run mode N

Section 2.2.2: LSI oscillator remains on in Active-halt mode when the
AWU unit uses the HSE as input clock

N

Section 2.2.3: Failure in CAN communication during bootloader
execution

-

Section 2.2.4: RAM modified after reset by embedded bootloader -

Section 2.2.5: Flash / EEPROM memory is read incorrectly after wake-
up from power- down mode

A

Section 2.2.6: VDD rise-time rate for 100mV < VDD < 1V N

Timer
peripheral

Section 2.3.1: Corruption of read sequence for the 16-bit counter
registers

N

I2C peripheral

Section 2.4.1: I2C event management A

Section 2.4.2: Corrupted last received data in I2C Master Receiver
mode

A

Section 2.4.3: Wrong behavior of I2C peripheral in Master mode after
misplaced STOP

A

Section 2.4.4: Violation of I2C “setup time for repeated START
condition” parameter

A

Section 2.4.5: In I2C slave “NOSTRETCH” mode, underrun errors may
not be detected and may generate bus errors

A

Section 2.4.6: I2C pulse missed -

ES0144 Rev 7 7/29

STM8AF52xx STM8AF62xx Product evolution

26

UART
peripheral

Section 2.5.1: PE testing issue in USART mode (UART1/UART3) N

Section 2.5.2: LIN mode: LIN header error when automatic
resynchronization is enabled

-

Section 2.5.3: LIN mode: framing error with data byte 0x00 N

Section 2.5.4: LIN mode: framing error when receiving an identifier (ID) N

Section 2.5.5: LIN mode: parity error when receiving an identifier (ID) N

Section 2.5.6: LIN mode: OR flag not correctly set in LIN Master mode N

SPI peripheral

Section 2.6.1: Last bit too short if SPI is disabled during communication A

Section 2.6.2: Busy flag is unreliable when the SPI is a master simplex
receive-only mode

N

Section 2.6.3: CRC may be corrupted by SPI configuration or other bus
transfers

A

Section 2.6.4: Anticipated communication upon SPI transit from slave
receiver to master

A

Section 2.6.5: BSY bit may stay high at the end of data transfer in slave
mode

A

beCAN
peripheral

Section 2.7.1: beCAN transmission error when sleep mode is entered
during transmission or reception

A

Section 2.7.2: beCAN woken up from sleep mode with automatic wake-
up interrupt

A

Section 2.7.3: beCAN time triggered communication mode not
supported

N

Section 2.7.4: beCAN transmitted data corruption -

Section 2.7.5: beCAN read error in slow mode A

Section 2.7.6: Write in beCAN paged registers ignored A

Table 3. Product evolution summary (continued)

Section Limitation
Rev U,
Rev T

Silicon limitations STM8AF52xx STM8AF62xx

8/29 ES0144 Rev 7

2 Silicon limitations

2.1 Core

2.1.1 Activation level (AL) bit not functional in Halt mode

Description

The AL bit is not supported in Halt mode. In particular, when the AL bit of the CFG_GCR
register is set, the CPU does not return to Halt mode after exiting an interrupt service routine
(ISR). It returns to the main program and executes the next instruction after the HALT
instruction. The AL bit is supported correctly in WFI mode.

Workaround

No workaround available.

No fix is planned for this limitation.

2.1.2 JRIL and JRIH instructions not available

Description

JRIL (jump if port INT pin = 0) and JRIH (jump if port INT pin = 1) are not supported by the
devices covered by this datasheet. These instructions perform conditional jumps: JRIL and
JRIH jump if one of the external interrupt lines is low and high, respectively. JRIL is
equivalent to an unconditional jump and JRIH is equivalent to a NOP.

For further details on these instructions, refer to the STM8 CPU programming manual
(PM0044) on www.st.com.

Workaround

No workaround available.

No fix is planned for this limitation.

2.1.3 Main CPU execution is not resumed after an ISR resets the AL bit

Description

If the CPU is in wait for interrupt state and the AL bit is set, the CPU returns to wait for
interrupt state after executing an ISR. To continue executing the main program, the AL bit
must be reset by the ISR. When AL is reset just before exiting the ISR, the CPU may remain
stalled.

Workaround

Reset the AL bit at least two instructions before the IRET instruction.

No fix is planned for this limitation.

http://www.st.com

ES0144 Rev 7 9/29

STM8AF52xx STM8AF62xx Silicon limitations

26

2.1.4 Unexpected DIV/DIVW instruction result in ISR

Description

In very specific conditions, a DIV/DIVW instruction may return a false result when executed
inside an interrupt service routine (ISR). This error occurs when the DIV/DIVW instruction is
interrupted and a second interrupt is generated during the execution of the IRET instruction
of the first ISR. Under these conditions, the DIV/DIVW instruction executed inside the
second ISR, including function calls, may return an unexpected result.

The applications that do not use the DIV/DIVW instruction within ISRs are not impacted.

Workaround 1

If an ISR or a function called by this routine contains a division operation, the following
assembly code should be added inside the ISR before the DIV/DIVW instruction:

push cc

pop a

and a,#$BF

push a

pop cc

This sequence should be placed by C compilers at the beginning of the ISR using
DIV/DIVW. Refer to the compiler documentation for details on the implementation and
control of automatic or manual code insertion.

Workaround 2

To optimize the number of cycles added by workaround 1, it is possible to use this
workaround instead. Workaround 2 can be used in applications with fixed interrupt priorities,
identified at the program compilation phase:

push #value

pop cc

where bits 5 and 3 of #value have to be configured according to interrupt priority given by I1
and I0, and bit 6 kept cleared.

In this case, compiler workaround 1 has to be disabled by using compiler directives.

No fix is planned for this limitation.

2.1.5 Wait for event instruction (WFE) not available

Description

The WFE instruction is not implemented in the devices covered by this errata sheet. This
instruction is used to synchronize the device with external computing resources. For further
details on this instruction, refer to the STM8 CPU programming manual (PM0044) on
www.st.com.

Workaround

No workaround available.

No fix is planned for this limitation.

http://www.st.com

Silicon limitations STM8AF52xx STM8AF62xx

10/29 ES0144 Rev 7

2.1.6 Interrupt service routine (ISR) executed with priority of main process

Description

If an interrupt is cleared or masked when the context saving has already started, the
corresponding ISR is executed with the priority of the main process. The next interrupt
request can interrupt execution of the service routine.

Workaround

At the beginning of the interrupt routine, change the current priority level in the CCR register
by software.

2.2 System

2.2.1 HSI RC oscillator cannot be switched off in Run mode

Description

The internal 16 MHz RC oscillator cannot be switched off in Run mode, even if the HSIEN
bit is programmed to 0.

Workaround

No workaround available.

No fix is planned for this limitation.

2.2.2 LSI oscillator remains on in Active-halt mode when the AWU unit uses
the HSE as input clock

Description

When the auto-wakeup unit (AWU) uses the high speed external clock (HSE) divided by the
prescaler (clock source enabled by setting the CKAWUSEL option bit), the LSI RC oscillator
is not switched off when the device operates in Active-halt mode with the main voltage
regulator (MVR) on. This causes negligible extra power consumption compared to the total
consumption of the MCU in Active-halt mode with the MVR on.

Workaround

No workaround available.

No fix is planned for this limitation.

2.2.3 Failure in CAN communication during bootloader execution

Description

The CAN filter registers are not initialized by the bootloader. This can lead to failure during
communication with the bootloader.

Workaround

No workaround available. Fixed in silicon revision T and U.

ES0144 Rev 7 11/29

STM8AF52xx STM8AF62xx Silicon limitations

26

2.2.4 RAM modified after reset by embedded bootloader

Description

After each reset, the byte located at RAM address 0x99 is modified by the embedded
bootloader even if the bootloader is disabled by option byte. So the RAM content at address
0x99 is not maintained after reset. The limitation is present only in device revision X.

Workaround

No workaround available. Do not use the byte in RAM at address 0x99 to store variables
which should be unchanged after device reset.

2.2.5 Flash / EEPROM memory is read incorrectly after wake-up from power-
down mode

Description

If flash/EEPROM memory has been put in power-down mode (IDDQ), the first read access
after wake-up could return incorrect content when the number of wait states is configured to
0.

By default, the flash/EEPROM memory is put in IDDQ mode when the MCU enters Halt
mode and depending on the FLASH_CR1 register settings made by software, the
flash/EEPROM may be forced to IDDQ mode during active halt mode.

As a consequence, the following behavior may be seen on some devices:

• After wake-up from Low-power mode, with flash memory in IDDQ mode, program
execution gets lost due to an incorrect read of the vector table.

• Code reads an incorrect value from flash/EEPROM memory, when forced in IDDQ
mode.

• Reset could be forced by an illegal opcode execution due to incorrect read of
instruction.

Note: The use of the watchdog helps the application to recover in case of failure.

Workaround 1

Keep the flash/EEPROM in operating mode when the MCU is put in Halt mode or Active-
halt mode. This is done by configuring both the HALT and AHALT bits in the FLASH_CR1
register before executing a HALT instruction to prevent the flash/EEPROM entering IDDQ
mode.

Set HALT (bit 3) to ‘1’:

0: Flash in power-down mode when MCU is in Halt mode

1: Flash in operating mode when MCU is in Halt mode

Keep AHALT (bit 2) at ‘0’:

0: Flash in operating mode when MCU is in Active-halt mode

1: Flash in power-down when MCU is in Active-halt mode

Please refer to the datasheet for details on the impact on current consumption and wake-up
time.

Silicon limitations STM8AF52xx STM8AF62xx

12/29 ES0144 Rev 7

Workaround 2

Set the number of wait states to 1.

This may be done by setting OPT7 to 0x01

2.2.6 VDD rise-time rate for 100mV < VDD < 1V

Description

The product datasheet did not specify the VDD rise-time initial conditions as the VDD rise-
time was implicitly specified for a VDD starting from 0V. Nevertheless, we observed that
some very specific applications could have a VDD starting from a residual voltage already
above 0V and thus require that we explicitly specify these conditions.

The tVDD parameter must stay below 50µs/V when VDD is rising from 100mV to 1V.

Workaround

Not applicable.

2.3 Timer peripheral

2.3.1 Corruption of read sequence for the 16-bit counter registers

Description

An 8-bit buffer is implemented for reading the 16-bit counter registers. Software must read
the MS byte first, after which the LS byte value is buffered automatically (see Figure 1). This
buffered value remains unchanged until the 16-bit read sequence is completed.

When any multicycle instruction precedes the read of the LSB, the content of the buffer is
lost, and the second read returns the immediate content of the counter directly.

Table 4. VDD rise-time and fall-time rates

Symbol Parameter Conditions Min Typ Max Unit

tVDD

VDD rise-time rate

VDD < 100mV 2(1)

1. Guaranteed by design, not tested in production.

- ∞

µs/V
100mV < VDD < 1V 2(1) - 50(1)

VDD > 1V 2(1) - ∞

VDD fall-time rate - 2(1) - ∞

ES0144 Rev 7 13/29

STM8AF52xx STM8AF62xx Silicon limitations

26

Figure 1. 16-bit read sequence for the counter (TIMx_CNTR)

Workaround

Do not use multicycle instructions before reading the LSB.

No fix is planned for this limitation.

2.4 I2C peripheral

2.4.1 I2C event management

Description

As described in the I2C section of the STM8S and STM8A microcontroller reference manual
(RM0016), the application firmware has to manage several software events before the
current byte is transferred. If the EV7, EV7_1, EV6_1, EV6_3, EV2, EV8, and EV3 events
are not managed before the current byte is transferred, problems may occur such as
receiving an extra byte, reading the same data twice, or missing data.

Workaround

When the EV7, EV7_1, EV6_1, EV6_3, EV2, EV8, and EV3 events cannot be managed
before the current byte transfer, and before the acknowledge pulse when the ACK control bit
changes, it is recommended to use I2C interrupts in nested mode and to make them
uninterruptible by increasing their priority to the highest priority in the application.

No fix is planned for this limitation.

MSv41500V1

Beginning of the sequence

At t0

At t0 + Dt

Read
MS byte

LS byte
is buffered

Read
LS byte

Returns the buffered
LS byte value at t0

Other
instructions

Sequence completed

Silicon limitations STM8AF52xx STM8AF62xx

14/29 ES0144 Rev 7

2.4.2 Corrupted last received data in I2C Master Receiver mode

Conditions

In Master Receiver mode, when the communication is closed using method 2, the content of
the last read data may be corrupted. The following two sequences are concerned by the
limitation:

• Sequence 1: transfer sequence for master receiver when N = 2
a) BTF = 1 (Data N-1 in DR and Data N in shift register)

b) Program STOP = 1

c) Read DR twice (Read Data N-1 and Data N) just after programming the STOP bit.

• Sequence 2: transfer sequence for master receiver when N > 2
a) BTF = 1 (Data N-2 in DR and Data N-1 in shift register)

b) Program ACK = 0

c) Read Data N-2 in DR

d) Program STOP bit to 1

e) Read Data N-1.

Description

The content of the shift register (data N) is corrupted (data N is shifted 1 bit to the left) if the
user software is not able to read data N-1 before the STOP condition is generated on the
bus. In this case, reading data N returns a wrong value.

Workarounds

• Workaround 1

– Sequence 1

When sequence 1 is used to close communication using method 2, mask all active
interrupts between STOP bit programming and Read data N-1.

– Sequence 2

When sequence 2 is used to close communication using method 2, mask all active
interrupts between Read data N-2, STOP bit programming and Read data N-1.

• Workaround 2

Manage I2C RxNE and TxE events with interrupts of the highest priority level, so that
the condition BTF = 1 never occurs.

ES0144 Rev 7 15/29

STM8AF52xx STM8AF62xx Silicon limitations

26

2.4.3 Wrong behavior of I2C peripheral in Master mode after
misplaced STOP

Description

The I2C peripheral does not enter Master mode properly if a misplaced STOP is generated
on the bus. This can happen in the following conditions:

• If a void message is received (START condition immediately followed by a STOP): the
BERR (bus error) flag is not set, and the I2C peripheral is not able to send a START
condition on the bus after writing to the START bit in the I2C_CR2 register.

• In the other cases of a misplaced STOP, the BERR flag is set in the IC2_CR2 register.
If the START bit is already set in I2C_CR2, the START condition is not correctly
generated on the bus, and can create bus errors.

Workaround

In the I2C standard, it is not allowed to send a STOP before the full byte is transmitted (8 bits
+ acknowledge). Other derived protocols like CBUS allow it, but they are not supported by
the I²C peripheral.

In case of noisy environment in which unwanted bus errors can occur, it is recommended to
implement a timeout to ensure that the SB (start bit) flag is set after the START control bit is
set. In case the timeout has elapsed, the peripheral must be reset by setting the SWRST bit
in the I2C_CR2 control register. The I2C peripheral should be reset in the same way if a
BERR is detected while the START bit is set in I2C_CR2.

No fix is planned for this limitation.

2.4.4 Violation of I2C “setup time for repeated START condition” parameter

Description

In case of a repeated Start, the “setup time for repeated START condition” parameter
(named tSU(STA) in the datasheet and Tsu:sta in the I2C specifications) may be slightly
violated when the I2C operates in Master Standard mode at a frequency ranging from 88 to
100 kHz. tSU(STA) minimum value may be 4 µs instead of 4.7 µs.

The issue occurs under the following conditions:

1. The I2C peripheral operates in Master Standard mode at a frequency ranging from 88
to 100 kHz (no issue in Fast mode)

2. and the SCL rise time meets one of the following conditions:

– The slave does not stretch the clock and the SCL rise time is more than 300 ns
(the issue cannot occur when the SCL rise time is less than 300 ns).

– or the slave stretches the clock.

Workaround

Reduce the frequency down to 88 kHz or use the I2C Fast mode if it is supported by the
slave.

Silicon limitations STM8AF52xx STM8AF62xx

16/29 ES0144 Rev 7

2.4.5 In I2C slave “NOSTRETCH” mode, underrun errors may not be detected
and may generate bus errors

Description

The data valid time (tVD;DAT, tVD;ACK) described by the I2C specifications may be violated as
well as the maximum current data hold time (tHD;DAT) under the conditions described below.
In addition, if the data register is written too late and close to the SCL rising edge, an error
may be generated on the bus: SDA toggles while SCL is high. These violations cannot be
detected because the OVR flag is not set (no transmit buffer underrun is detected).

This issue occurs under the following conditions:

1. The I2C peripheral operates In Slave transmit mode with clock stretching disabled
(NOSTRETCH=1)

2. and the application is late to write the DR data register, but not late enough to set the
OVR flag (the data register is written before the SCL rising edge).

Workaround

If the master device supports it, use the clock stretching mechanism by programming the bit
NOSTRETCH=0 in the I2C_CR1 register.

If the master device does not support it, ensure that the write operation to the data register
is performed just after TXE or ADDR events. The user can use an interrupt on the TXE or
ADDR flag and boost its priority to the higher level.

Using the “NOSTRETCH” mode with a slow I2C bus speed can prevent the application from
being late to write the DR register (second condition).

Note: The first data to be transmitted must be written into the data register after the ADDR flag is
cleared, and before the next SCL rising edge, so that the time window to write the first data
into the data register is less than tLOW.

If this is not possible, a possible workaround can be the following:

1. Clear the ADDR flag

2. Wait for the OVR flag to be set

3. Clear OVR and write the first data.

The time window for writing the next data is then the time to transfer one byte. In that case,
the master must discard the first received data.

2.4.6 I2C pulse missed

Description

When the I2C interface is used for long transmit/receive transactions, the MCU may return a
NACK somewhere during the transaction instead of returning an ACK for all data. The
received data may also be corrupted. In Master mode the I2C may not detect an incoming
ACK. This is due to a weakness in the noise filter of the I/O pad which in certain conditions
may cause the STM8 I2C to miss a pulse.

The workaround described below is not a clean solution. However, the limitation is fixed in
revisions T and U.

ES0144 Rev 7 17/29

STM8AF52xx STM8AF62xx Silicon limitations

26

Workaround

Since data corruption is caused by noise generated by the CPU, CPU activity should be
minimized during data reception and/or transmission. This is done by performing physical
data transmission (Master mode) and reception (slave mode) in WFI state (wait for
interrupt).

To allow the device to be woken up from WFI, I2C transmission and reception routines must
be implemented through interrupt routines instead of polling mechanisms. Receive and
transmit interrupts (received data processing) must be triggered only by the BTF bit flag
(byte transfer finished) in the I2C_SR1 register. This flag indicates that the I2C is in
stretched state (data transfers are stretched on the bus).

Clock stretching must be enabled to allow data transfers from the slave to be stopped and to
allow the CPU to be woken up to read the received byte.

To recover from possible errors, periodically check if the I2C does not remain in busy state
for too long (BUSY bit set in I2C_SR3 register). If so, it should be reinitialized.

Example of I2C slave code:

//...

//---

void main()

{

 Init_I2C(); // init I2C to use interrupts: ITBUFEN=0, ITEVTEN=1,
ITERREN=1

 while(1)

Silicon limitations STM8AF52xx STM8AF62xx

18/29 ES0144 Rev 7

2.5 UART peripheral

2.5.1 PE testing issue in USART mode (UART1/UART3)

Description

When the RXNE flag is not polled, the device is in overrun condition, and the PE flag does
not rise in case of a parity error. The flag rises only for the last data which have been
correctly received.

Workaround

No workaround available.

No fix is planned for this limitation.

2.5.2 LIN mode: LIN header error when automatic resynchronization
is enabled

Description

If UART3 is configured in LIN slave mode (LSLV bit set in UART3_CR6 register) and the
automatic resynchronization is enabled (LASE bit set in UART3_CR6), the LHE flag may be
set instead of LHDF flag when receiving a valid header.

This limitation is fixed in silicon revision U and T.

Workaround

No workaround available.

2.5.3 LIN mode: framing error with data byte 0x00

Description

If the UART3 interface is configured in LIN slave mode, and the active mode with break
detection length is set to 11 (LBDL bit of UART3_CR4 register set to 1), FE and RXNE flags
are not set when receiving a 0x00 data byte with a framing error, followed by a recessive
state. This occurs only if the dominant state length is between 9.56 and 10.56 times the
baud rate.

Workaround

The LIN software driver can handle this exceptional case by implementing frame timeouts to
comply with the LIN standard. This method has been implemented in ST LIN 2.1 driver
package which passed the LIN compliance tests.

2.5.4 LIN mode: framing error when receiving an identifier (ID)

Description

If an ID framing error occurs when the UART3, configured in LIN mode, is in active mode,
both the LHE and LHDF flags are set at the end of the LIN header with an ID framing error.

ES0144 Rev 7 19/29

STM8AF52xx STM8AF62xx Silicon limitations

26

Workaround

The LIN software driver can handle this case by checking both LHE and LHDF flags upon
header reception.

2.5.5 LIN mode: parity error when receiving an identifier (ID)

Description

If an ID parity error occurs, the UART3, configured in LIN mode, wakes up from mute mode
and both LHE and LHDF are set at the end of the LIN header with parity error. The PE flag is
also set.

Workaround

The LIN software driver can handle this case by checking all flags upon header reception.

No fix is planned for this limitation.

2.5.6 LIN mode: OR flag not correctly set in LIN Master mode

Description

When the UART operates in LIN Master mode, the OR flag is not set if an overrun condition
occurs. This is valid for UART1 and UART3.

Workaround

The LIN software driver can detect this case through a LIN protocol error.

No fix is planned for this limitation.

2.6 SPI peripheral

2.6.1 Last bit too short if SPI is disabled during communication

Description

When the SPI interface operates in Master mode and the baud rate generator prescaler is
equal to 2, the SPI is disabled during ongoing communications, and the data and clock
output signals are switched off at the last strobing edge of the SPI clock.

As a consequence, the length of the last bit is out of range and its reception on the bus is not
ensured.

Workaround

Check if a communication is ongoing before disabling the SPI interface. This can be done
by monitoring the BSY bit in the SPI_SR register.

Silicon limitations STM8AF52xx STM8AF62xx

20/29 ES0144 Rev 7

2.6.2 Busy flag is unreliable when the SPI is a master simplex receive-only
mode

Description

When the master is simplex receive-only mode, it provides the clock immediately after
setting the SPE bit in the SPI_CR1 register. In this case, the clock is provided until the SPE
bit is cleared, meaning that the SPI is always busy because it is in receive-only mode and
continuously receives data. As a result, the BSY flag of the SPI_SR register is unreliable to
detect the SPI status when the SPI is in master receive-only mode.

Workaround

None. The reference manual has been updated to explain how to handle this mode.

2.6.3 CRC may be corrupted by SPI configuration or other bus transfers

Description

When the CRC is enabled (CRCEN bit set in the SPI_CR2 register), the CRC calculation
may be corrupted, or unreliable if one of the following conditions is met:

• The CPHA bit, the CPOL bit, or the CRCPOLY bitfield is configured.

• The value of the polynomial programmed in the CRCPOLY bitfield of the SPI_CRCPR
register is even.

• A bus transfer is ongoing with another slave, or parasitic pulses are observed on the
SCK output when the SPI is enabled in slave mode but not selected for
communication.

Workaround

Both the master and slave must reset and resynchronize their CRC calculation just before
starting a new transfer secured by CRC.

Apply the following measures:

• Always configure the CPHA bit, the CPOL bit, and the CRCPOLY bitfield before setting
the CRCEN bit.

• Always program an odd polynomial value in the CRCPOLY bitfield of the SPI_CRCPR
register (bit 0 set).

• Before starting any transfer secured by CRC calculation, clear and set again the
CRCEN bit while the SPI is disabled.

2.6.4 Anticipated communication upon SPI transit from slave receiver to
master

Description

The communication clock starts upon setting the MSTR bit even though the SPI is disabled,
if transiting from the enabled slave receive-only mode (RXONLY = 1) to whatever master
mode.

ES0144 Rev 7 21/29

STM8AF52xx STM8AF62xx Silicon limitations

26

Workaround

Set the MSTR and SPE bits of the SPI_CR1 register simultaneously, which forces the
immediate start of the communication clock.

If the master is configured in transmitter mode (full-duplex or simplex), load the first data into
the SPI_DR data register before configuring the SPI_CR1 register.

2.6.5 BSY bit may stay high at the end of data transfer in slave mode

Description

The BSY flag may sporadically remain high at the end of a data transfer in slave mode. The
issue appears when an accidental synchronization happens between the internal CPU clock
and the external SCK clock provided by the master.

This is related to the end of data transfer detection while the SPI is enabled in slave mode.

As a consequence, the end of the data transaction may be not recognized when the
software needs to monitor it (for example at the end of a session before entering the low-
power mode or before the direction of the data line has to be changed at half duplex
bidirectional mode). The BSY flag is unreliable to detect the end of any data sequence
transaction.

Workaround

Depending on SPI operating mode, use the following means for detecting the end of
transaction:

• When NSS hardware management is applied and NSS signal is provided by master,
use NSS input.

• In SPI receiving mode, use the corresponding RXNE event flag.

• In SPI transmit-only mode, use the BSY flag in conjunction with a timeout expiry event.
Set the timeout such as to exceed the expected duration of the last data frame and
start it upon TXE event that occurs with the second bit of the last data frame. The end
of the transaction corresponds to either the BSY flag becoming low or the timeout
expiry, whichever happens first.

Prefer one of the first two measures to the third as they are simpler and less constraining.
Alternatively, apply the following sequence to ensure reliable operation of the BSY flag in
SPI transmit mode:

1. Write the last data to the data register.

2. Poll TXE until it becomes high to ensure the data transfer has started.

3. Disable SPI by clearing SPE while the last data transfer is still ongoing.

4. Poll the BSY bit until it becomes low.

5. The BSY flag works correctly and can be used to recognize the end of the transaction.

Note: This sequence can be used only when the CPU has enough performance to disable the SPI
after a TXE event is detected, while the data frame transfer is still ongoing. It is impossible to
achieve it when the ratio between CPU and SPI clock is low. In this specific case, the BSY
check timeout can be measured by executing a fixed number of dummy instructions (such
as NOP), corresponding to the time necessary to complete the data frame transaction.

Silicon limitations STM8AF52xx STM8AF62xx

22/29 ES0144 Rev 7

2.7 beCAN peripheral

2.7.1 beCAN transmission error when sleep mode is entered during
transmission or reception

Description

If beCAN Sleep operating mode entry is requested while a transmission or reception is
ongoing, or a transmission request is pending, the CAN_TX pin may have a spurious
behavior, incompliant with the CAN protocol in case an error occurs on the bus.

No error frame will be sent and the device will enter Sleep mode.

Workaround

Before requesting Sleep mode, request Initialization mode and wait until Initialization mode
is entered.

2.7.2 beCAN woken up from sleep mode with automatic wake-up interrupt

Description

Waking up the beCAN from sleep mode using the automatic wake-up interrupt triggers an
interrupt on each CAN Rx falling edge until the bus is idle.

Workaround

To have a wakeup interrupt triggered only on the first falling edge of the CAN Rx pin,
perform the following actions:

1. Disable the automatic wakeup interrupt.

2. Clear the WKUI flag.

3. Disable the sleep mode in the ISR.

2.7.3 beCAN time triggered communication mode not supported

Description

The time triggered communication mode described in the STM8S and STM8A reference
manual (RM00016) is not supported.

TTCM bit must be kept at 0 in the CAN_MCR register (time triggered communication mode
disabled).

Workaround

None.

2.7.4 beCAN transmitted data corruption

Description

The TGT bit can be set to 1 (CAN_MTSRH and CAN_MTSRL registers sent) even if the
device is not in time triggered communication mode (TTCM set to 1). This is due to the fact

ES0144 Rev 7 23/29

STM8AF52xx STM8AF62xx Silicon limitations

26

that the CAN_MDLCR register reset value is undefined, causing the TGT bit to be set to 1
whatever the value of TTCM. This leads to the corruption of last two data bytes sent.

Workaround

TGT bit in CAN_MDLCR must be initialized to 0 (CAN_MTSRH and CAN_MTSRL registers
not sent).

Silicon limitations STM8AF52xx STM8AF62xx

24/29 ES0144 Rev 7

2.7.5 beCAN read error in slow mode

Description

The read byte may be corrupted when the CPU is in slow mode and a FIFO read operation
is performed while a message transmission is ongoing. This happens because the
transmission mailboxes and the receive FIFOs share the same address/data lines for read
and write operations.

Workaround

To prevent this problem from occurring, the CPU clock must be the master clock
(CLK_CKDIVR[2:0] = 000b) when the user application starts reading the FIFO (CPU clock
divider changed to /1). After the FIFO read operation is complete, the CPU clock divider
(slow mode) could be applied again.

2.7.6 Write in beCAN paged registers ignored

Description

In very specific conditions, a write to the beCAN paged registers may be ignored. This
occurs when the CPU is writing twice or more into beCAN paged registers in consecutive
master clock cycles, and during the second or further writes, the CAN 2.0B active core is
accessing (read or write) one of the paged registers.

A typical case is when the CPU is writing constants into paged registers (typically a mailbox
for transmission) while the CAN 2.0B active core is reading the filters during a frame
reception, or writing the FIFO after a frame reception. The beCAN paged registers range is
from address 0x5428 to address 0x5437.

Note: CAN 2.0B active core does not access the paged registers as long as the beCAN is in
initialization mode. Therefore, the issue cannot occur while the software is writing into the
paged registers to initialize the beCAN (filter configuration, for example).

The CPU write into two paged registers in two consecutive master clock cycles may only
happen in case of consecutive single-cycle load and transfer instructions or single-cycle bit
operation instructions, when the destination is an address within the range 0x5428 to
0x5437 inside the beCAN peripheral. The instructions are single-cycle if the source is a
constant (embedded in instruction opcode) or in the A accumulator (when the same value
has to be stored in two or more CAN registers).

List of instructions:

MOV longmem, #byte ; LD longmem, A ; CLR longmem

ES0144 Rev 7 25/29

STM8AF52xx STM8AF62xx Silicon limitations

26

Examples:

• Consecutive MOV instructions with immediate addressing mode

MOV 0x5429, #0x08

MOV 0x542a, #0x0d

MOV 0x542b, #0x40

• Consecutive LD instructions with A register as source

LD 0x542d, A

LD 0x542e, A

• CLR instruction followed by another single-cycle instruction

CLR 0x542d

MOV 0x542e, #0x40

• Mix of single-cycle instructions

LD 0x5429, A

MOV 0x542a, #0x0d

Consecutive single-cycle bit instruction BSET, BRST, BCPL might also generate the case.

List of instructions:

BSET longmem, n ; BRES longmem, n ; BCPL longmem, n

Another very unlikely case is indirect or indexed addressing with beCAN address loaded in
X or Y registers, which also generates single-cycle instructions.

List of instructions:

LD (X), A ; LD (shortoff,X),A ; LD (longoff,X),A ; LD (Y), A ; LD (shortoff,
Y) ; LD (longoff, Y) ; CLR (X) ; CLR (shortoff,X) ; CLR (longoff,X) ; CLR
(Y) ; CLR (shortoff,Y) ; CLR (longoff,Y) ; CLR (shortoff, SP)

This can also happen with a single 2-cycle LDW instruction, if two consecutive registers are
written with a 16-bit data, with X or Y register as source.

List of instructions:

LDW longmem, X ; LDW longmem, Y

Example:

LDW 0x542a, X ; with X containing 0x0d40.

Silicon limitations STM8AF52xx STM8AF62xx

26/29 ES0144 Rev 7

The issue may happen typically if the software is filling paged registers with constants.

Example:

#define MY_ID (unsigned int) 0x0350

[…]

CAN_MDLCR = 0x08;

CAN_MIDR1 = (MY_ID >> 6) & 0x1F;

CAN_MIDR2 = (MY_ID << 2) & 0xFC;

This generates the following code:

35085429 mov 0x5429, #8

350d542a mov 0x542a, #13

3540542b mov 0x542b, #64

If the beCAN paged registers are not written with constants, and if beCAN paged registers
are written with the value of an 8-bit variable, this is very unlikely to fall into one of these
cases, as either 2-cycle instructions are generated by the compiler or an additional
instruction is inserted between two beCAN accesses (loading the variable into the A
accumulator).

Impact on application

When all the specific conditions are met, a corrupted frame may be sent to the CAN bus.

Workaround

In the case that the user needs to write consecutively into paged registers, insert a NOP
instruction in between each write. The user can make use of inline assembly in C code.

Example:

#define MY_ID (unsigned int) 0x0350

[…]

CAN_P1 = 0x08;

_asm(nop");

CAN_P2 = (MY_ID >> 6) & 0x1F;

_asm(nop");

CAN_P3 = (MY_ID << 2) & 0xFC;

No fix is planned for this limitation.

ES0144 Rev 7 27/29

STM8AF52xx STM8AF62xx Important security notice

27

3 Important security notice

The STMicroelectronics group of companies (ST) places a high value on product security,
which is why the ST product(s) identified in this documentation may be certified by various
security certification bodies and/or may implement our own security measures as set forth
herein. However, no level of security certification and/or built-in security measures can
guarantee that ST products are resistant to all forms of attacks. As such, it is the
responsibility of each of ST's customers to determine if the level of security provided in an
ST product meets the customer needs both in relation to the ST product alone, as well as
when combined with other components and/or software for the customer end product or
application. In particular, take note that:

• ST products may have been certified by one or more security certification bodies, such
as Platform Security Architecture (www.psacertified.org) and/or Security Evaluation
standard for IoT Platforms (www.trustcb.com). For details concerning whether the ST
product(s) referenced herein have received security certification along with the level
and current status of such certification, either visit the relevant certification standards
website or go to the relevant product page on www.st.com for the most up to date
information. As the status and/or level of security certification for an ST product can
change from time to time, customers should re-check security certification status/level
as needed. If an ST product is not shown to be certified under a particular security
standard, customers should not assume it is certified.

• Certification bodies have the right to evaluate, grant and revoke security certification in
relation to ST products. These certification bodies are therefore independently
responsible for granting or revoking security certification for an ST product, and ST
does not take any responsibility for mistakes, evaluations, assessments, testing, or
other activity carried out by the certification body with respect to any ST product.

• Industry-based cryptographic algorithms (such as AES, DES, or MD5) and other open
standard technologies which may be used in conjunction with an ST product are based
on standards which were not developed by ST. ST does not take responsibility for any
flaws in such cryptographic algorithms or open technologies or for any methods which
have been or may be developed to bypass, decrypt or crack such algorithms or
technologies.

• While robust security testing may be done, no level of certification can absolutely
guarantee protections against all attacks, including, for example, against advanced
attacks which have not been tested for, against new or unidentified forms of attack, or
against any form of attack when using an ST product outside of its specification or
intended use, or in conjunction with other components or software which are used by
customer to create their end product or application. ST is not responsible for resistance
against such attacks. As such, regardless of the incorporated security features and/or
any information or support that may be provided by ST, each customer is solely
responsible for determining if the level of attacks tested for meets their needs, both in
relation to the ST product alone and when incorporated into a customer end product or
application.

• All security features of ST products (inclusive of any hardware, software,
documentation, and the like), including but not limited to any enhanced security
features added by ST, are provided on an "AS IS" BASIS. AS SUCH, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, ST DISCLAIMS ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, unless the
applicable written and signed contract terms specifically provide otherwise.

Revision history STM8AF52xx STM8AF62xx

28/29 ES0144 Rev 7

4 Revision history

Table 5. Document revision history

Date Revision Changes

31-Jan-2011 1 Initial release.

29-Nov-2011 2 Added revision code ‘T’.

20-Mar-2012 3
Added Section 2.7.6: Write in beCAN paged registers
ignored.

08-Mar-2013 4

Added STM8AF62A6 part number to Table 2: Device
summary.
Modified Section 2.7.1: beCAN transmission error when
sleep mode is entered during transmission or reception.

06-Dec-2013 5

Added Section 2.1.6: Interrupt service routine (ISR)
executed with priority of main process.

Added Section 2.2.4: RAM modified after reset by
embedded bootloader.

Added Section 2.2.5: Flash / EEPROM memory is read
incorrectly after wake-up from power- down mode.

Added Section 2.3.1: Corruption of read sequence for
the 16-bit counter registers.

12-Apr-2016 6

Added Section 2.2.6: VDD rise-time rate for 100mV <
VDD < 1V.

Updated Table 2: Device summary to delete revision X
products.

Deleted Appendix A.

22-Feb-2023 7

Updated Table 3: Product evolution summary (updated
Section 2.6.2 title, added Section 2.6.3, Section 2.6.4
and Section 2.6.5)
“Limitations” removed in section titles

Modified order of sections (position of USART section
changed)

Updated Section 2.6.2: Busy flag is unreliable when the
SPI is a master simplex receive-only mode
Added Section 2.6.3: CRC may be corrupted by SPI
configuration or other bus transfers, Section 2.6.4:
Anticipated communication upon SPI transit from slave
receiver to master, and Section 2.6.5: BSY bit may stay
high at the end of data transfer in slave mode

Added Section 3: Important security notice

ES0144 Rev 7 29/29

STM8AF52xx STM8AF62xx

29

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

	Table 1. Device identification
	Table 2. Device summary
	1 Product evolution
	Table 3. Product evolution summary

	2 Silicon limitations
	2.1 Core
	2.1.1 Activation level (AL) bit not functional in Halt mode
	2.1.2 JRIL and JRIH instructions not available
	2.1.3 Main CPU execution is not resumed after an ISR resets the AL bit
	2.1.4 Unexpected DIV/DIVW instruction result in ISR
	2.1.5 Wait for event instruction (WFE) not available
	2.1.6 Interrupt service routine (ISR) executed with priority of main process

	2.2 System
	2.2.1 HSI RC oscillator cannot be switched off in Run mode
	2.2.2 LSI oscillator remains on in Active-halt mode when the AWU unit uses the HSE as input clock
	2.2.3 Failure in CAN communication during bootloader execution
	2.2.4 RAM modified after reset by embedded bootloader
	2.2.5 Flash / EEPROM memory is read incorrectly after wake-up from power- down mode
	2.2.6 VDD rise-time rate for 100mV < VDD < 1V
	Table 4. VDD rise-time and fall-time rates

	2.3 Timer peripheral
	2.3.1 Corruption of read sequence for the 16-bit counter registers
	Figure 1. 16-bit read sequence for the counter (TIMx_CNTR)

	2.4 I2C peripheral
	2.4.1 I2C event management
	2.4.2 Corrupted last received data in I2C Master Receiver mode
	2.4.3 Wrong behavior of I2C peripheral in Master mode after misplaced STOP
	2.4.4 Violation of I2C “setup time for repeated START condition” parameter
	2.4.5 In I2C slave “NOSTRETCH” mode, underrun errors may not be detected and may generate bus errors
	2.4.6 I2C pulse missed

	2.5 UART peripheral
	2.5.1 PE testing issue in USART mode (UART1/UART3)
	2.5.2 LIN mode: LIN header error when automatic resynchronization is enabled
	2.5.3 LIN mode: framing error with data byte 0x00
	2.5.4 LIN mode: framing error when receiving an identifier (ID)
	2.5.5 LIN mode: parity error when receiving an identifier (ID)
	2.5.6 LIN mode: OR flag not correctly set in LIN Master mode

	2.6 SPI peripheral
	2.6.1 Last bit too short if SPI is disabled during communication
	2.6.2 Busy flag is unreliable when the SPI is a master simplex receive-only mode
	2.6.3 CRC may be corrupted by SPI configuration or other bus transfers
	2.6.4 Anticipated communication upon SPI transit from slave receiver to master
	2.6.5 BSY bit may stay high at the end of data transfer in slave mode

	2.7 beCAN peripheral
	2.7.1 beCAN transmission error when sleep mode is entered during transmission or reception
	2.7.2 beCAN woken up from sleep mode with automatic wake-up interrupt
	2.7.3 beCAN time triggered communication mode not supported
	2.7.4 beCAN transmitted data corruption
	2.7.5 beCAN read error in slow mode
	2.7.6 Write in beCAN paged registers ignored

	3 Important security notice
	4 Revision history
	Table 5. Document revision history

