Octal Bus Buffer/Line Driver # **Inverting with 3-State Outputs** The MC74VHCT240A is an advanced high speed CMOS octal bus buffer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. The MC74VHCT240A is an inverting 3-state buffer, and has two active-low output enables. This device is designed to be used with 3-state memory address drivers, etc. The VHCT inputs are compatible with TTL levels. This device can be used as a level converter for interfacing 3.3 V to 5.0 V, because it has full 5.0 V CMOS level output swings. The VHCT240A input and output (when disabled) structures provide protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. These input and output structures help prevent device destruction caused by supply voltage—input/output voltage mismatch, battery backup, hot insertion, etc. #### **Features** - High Speed: $t_{PD} = 5.6 \text{ ns}$ (Typ) at $V_{CC} = 5.0 \text{ V}$ - Low Power Dissipation: $I_{CC} = 4 \mu A \text{ (Max)}$ at $T_A = 25^{\circ}\text{C}$ - TTL-Compatible Inputs: $V_{IL} = 0.8 \text{ V}$; $V_{IH} = 2.0 \text{ V}$ - Power Down Protection Provided on Inputs and Outputs - Balanced Propagation Delays - Designed for 4.5 V to 5.5 V Operating Range - Low Noise: $V_{OLP} = 1.1 \text{ V (Max)}$ - Pin and Function Compatible with Other Standard Logic Families - Latchup Performance Exceeds 300 mA - ESD Performance: Human Body Model > 2000 V; Machine Model > 200 V - Chip Complexity: 110 FETs or 27.5 Equivalent Gates - These Devices are Pb-Free and are RoHS Compliant # ON Semiconductor® http://onsemi.com #### MARKING DIAGRAMS = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or ■ = Pb-Free Package (Note: Microdot may be in either location) # **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet. Figure 1. Logic Diagram | OEA [| 1● | 20 | v _{cc} | |-------|----|----|-----------------| | A1 [| 2 | 19 |) OEB | | YB4 | 3 | 18 | YA1 | | A2 [| 4 | 17 |] B4 | | YB3 | 5 | 16 | YA2 | | A3 [| 6 | 15 |] вз | | YB2 | 7 | 14 | YA3 | | A4 [| 8 | 13 |] B2 | | YB1 | 9 | 12 | YA4 | | GND [| 10 | 11 | B1 | | | | | | Figure 2. Pin Assignment ## **FUNCTION TABLE** | INP | JTS | OUTPUTS | |----------|------|---------| | OEA, OEB | A, B | YA, YB | | L | L | Н | | L | Н | L | | Н | X | Z | #### **MAXIMUM RATINGS** | Symbol | Parameter | | Value | Unit | |------------------|---|---|--|------| | V _{CC} | DC Supply Voltage | | - 0.5 to + 7.0 | V | | V _{in} | DC Input Voltage | | - 0.5 to + 7.0 | V | | V _{out} | DC Output Voltage | Output in 3–State
High or Low State | - 0.5 to + 7.0
- 0.5 to V _{CC} + 0.5 | ٧ | | I _{IK} | Input Diode Current | | - 20 | mA | | I _{OK} | Output Diode Current (V _{OUT} < GN | D; V _{OUT} > V _{CC}) | ± 20 | mA | | l _{out} | DC Output Current, per Pin | | ± 25 | mA | | I _{CC} | DC Supply Current, V _{CC} and GND | Pins | ± 75 | mA | | P _D | Power Dissipation in Still Air, | SOIC Package†
TSSOP Package† | 500
450 | mW | | T _{stg} | Storage Temperature | | - 65 to + 150 | °C | This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} . Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. # RECOMMENDED OPERATING CONDITIONS | Symbol | | Parameter | Min | Max | Unit | |---------------------------------|--------------------------|--|------|------------------------|------| | V _{CC} | DC Supply Voltage | | 4.5 | 5.5 | V | | V _{in} | DC Input Voltage | | 0 | 5.5 | V | | V _{out} | DC Output Voltage | Output in 3–State
High or Low State | 0 | 5.5
V _{CC} | V | | T _A | Operating Temperature | | - 40 | + 85 | °C | | t _r , t _f | Input Rise and Fall Time | V _{CC} =5.0V ±0.5V | 0 | 20 | ns/V | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. [†]Derating – SOIC Package: – 7 mW/°C from 65° to 125°C TSSOP Package: – 6.1 mW/°C from 65° to 125°C #### DC ELECTRICAL CHARACTERISTICS | | | | v _{cc} | T | T _A = 25° | C | T _A = - 4 | 0 to 85°C | | |------------------|---------------------------------------|---|-----------------|------|----------------------|-----------|----------------------|-----------|------| | Symbol | Parameter | Test Conditions | VCC | Min | Тур | Max | Min | Max | Unit | | V _{IH} | Minimum High-Level Input
Voltage | | 4.5 to 5.5 | 2.0 | | | 2.0 | | V | | V_{IL} | Maximum Low–Level Input
Voltage | | 4.5 to 5.5 | | | 0.8 | | 0.8 | V | | V _{OH} | Minimum High-Level Output | $I_{OH} = -50\mu A$ | 4.5 | 4.4 | 4.5 | | 4.4 | | V | | | Voltage $V_{in} = V_{IH}$ or V_{IL} | I _{OH} = - 8mA | 4.5 | 3.94 | | | 3.80 | | 1 | | V _{OL} | Maximum Low-Level Output | I _{OL} = 50μA | 4.5 | | 0.0 | 0.1 | | 0.1 | V | | | Voltage $V_{in} = V_{IH}$ or V_{IL} | I _{OL} = 8mA | 4.5 | | | 0.36 | | 0.44 | | | l _{in} | Maximum Input Leakage Current | V _{in} = 5.5 V or GND | 0 to 5.5 | | | ± 0.1 | | ± 1.0 | μА | | I _{OZ} | Maximum 3–State Leakage
Current | $V_{in} = V_{IL} \text{ or } V_{IH}$
$V_{out} = V_{CC} \text{ or GND}$ | 5.5 | | | ±
0.25 | | ± 2.5 | μА | | I _{CC} | Maximum Quiescent Supply
Current | V _{in} = V _{CC} or GND | 5.5 | | | 4.0 | | 40.0 | μΑ | | ГССТ | Quiescent Supply Current | Per Input: V _{IN} = 3.4V
Other Input: V _{CC} or GND | 5.5 | | | 1.35 | | 1.50 | mA | | I _{OPD} | Output Leakage Current | V _{OUT} = 5.5V | 0 | | | 0.5 | | 5.0 | μА | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. # AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ns}$) | | | | | Т | _A = 25° | С | T _A = - 40 |) to 85°C | | |--|---|--|------------------------------|-----|------------|--------------|-----------------------|--------------|------| | Symbol | Parameter | Test Condi | tions | Min | Тур | Max | Min | Max | Unit | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay
A to YA or B to YB | $V_{CC} = 5.0 \pm 0.5 V$ | $C_L = 15pF$
$C_L = 50pF$ | | 5.6
6.1 | 7.8
8.8 | 1.0
1.0 | 9.0
10.0 | ns | | t _{PZL} ,
t _{PZH} | Output Enable Time OEA to YA or OEB to YB | $V_{CC} = 5.0 \pm 0.5V$ $R_L = 1k\Omega$ | $C_L = 15pF$
$C_L = 50pF$ | | 7.7
8.2 | 10.4
11.4 | 1.0
1.0 | 12.0
13.0 | ns | | t _{PLZ} ,
t _{PHZ} | Output Disable Time OEA to YA or OEB to YB | $V_{CC} = 5.0 \pm 0.5V$ $R_L = 1k\Omega$ | C _L = 50pF | | 8.8 | 11.4 | 1.0 | 13.0 | ns | | t _{OSLH} ,
t _{OSHL} | Output to Output Skew | V _{CC} = 5.0 ± 0.5V
(Note 1) | C _L = 50pF | | | 1.0 | | 1.0 | ns | | C _{in} | Maximum Input Capacitance | | | | 4 | 10 | | 10 | pF | | C _{out} | Maximum Three–State Output
Capacitance (Output in
High–Impedance State) | | | | 9 | | | | pF | | | | Typical @ 25°C, V _{CC} = 5.0V | | Ī | |--------|--|--|----|---| | C_PD | Power Dissipation Capacitance (Note 2) | 19 | pF | | # **NOISE CHARACTERISTICS** (Input $t_r = t_f = 3.0 \text{ns}$, $C_L = 50 \text{pF}$, $V_{CC} = 5.0 \text{V}$) | | | | T _A = 25°C | | |------------------|--|-------|-----------------------|------| | Symbol | Parameter | Тур | Max | Unit | | V _{OLP} | Quiet Output Maximum Dynamic V _{OL} | 0.9 | 1.1 | V | | V _{OLV} | Quiet Output Minimum Dynamic V _{OL} | - 0.9 | - 1.1 | V | | V _{IHD} | Minimum High Level Dynamic Input Voltage | | 2.0 | V | | V _{ILD} | Maximum Low Level Dynamic Input Voltage | | 0.8 | V | Parameter guaranteed by design. t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC} / 8 (per bit). C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. Figure 3. Switching Waveform Figure 4. Switching Waveform *Includes all probe and jig capacitance Figure 5. Test Circuit *Includes all probe and jig capacitance Figure 6. Test Circuit Figure 7. Input Equivalent Circuit ## **ORDERING INFORMATION** | Device | Package | Shipping [†] | |------------------|------------------------|-----------------------| | MC74VHCT240ADWRG | SOIC-20WB
(Pb-Free) | 1000 / Tape & Reel | | MC74VHCT240ADTRG | TSSOP-20
(Pb-Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. SOIC-20 WB CASE 751D-05 **ISSUE H** **DATE 22 APR 2015** - DIMENSIONS ARE IN MILLIMETERS. INTERPRET DIMENSIONS AND TOLERANCES. - PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD - PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. - DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL | | MILLIMETERS | | | | |-----|-------------|-------|--|--| | DIM | MIN | MAX | | | | Α | 2.35 | 2.65 | | | | A1 | 0.10 | 0.25 | | | | b | 0.35 | 0.49 | | | | С | 0.23 | 0.32 | | | | D | 12.65 | 12.95 | | | | E | 7.40 | 7.60 | | | | е | 1.27 | BSC | | | | Н | 10.05 | 10.55 | | | | h | 0.25 | 0.75 | | | | L | 0.50 | 0.90 | | | | A | 0 ° | 7 ° | | | ## **RECOMMENDED SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS # **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location WL = Wafer Lot ΥY = Year WW = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repos
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|---|-------------| | DESCRIPTION: | SOIC-20 WB | | PAGE 1 OF 1 | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. 0.100 (0.004) -T- SEATING # TSSOP-20 WB CASE 948E ISSUE D **DATE 17 FEB 2016** #### NOTES: - DIMENSIONING AND TOLERANCING PER - ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. - 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. - FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K - (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. - 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE - DETERMINED AT DATUM PLANE -W- | | MILLIN | IETERS | INC | HES | |-----|--------|----------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 6.40 | 6.60 | 0.252 | 0.260 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 | BSC | 0.026 | BSC | | Н | 0.27 | 0.37 | 0.011 | 0.015 | | J | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | K | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | L | 6.40 | 6.40 BSC | | BSC | | М | 0° | 8° | 0° | 8° | # **GENERIC MARKING DIAGRAM*** = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | SOLDERING FOOTPRINT | | | |---------------------|-------------------------|--| | 7. | 06 ─── | | | 1 | ₁ | ———— PITCH | | | 16X | | | | 1.26 | DIMENSIONS: MILLIMETERS | | | DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|---|-------------| | DESCRIPTION: | TSSOP-20 WB | • | PAGE 1 OF 1 | ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. 16X 0.36 onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative