

NTE952 Integrated Circuit Precision 2.5V Shunt

Description:

The NTE952 integrated circuit is a precision 2.5V shunt regulator diode. This monolithic IC voltage reference operates as a low temperature coefficient 2.5V zener with 0.2Ω dynamic impedance. This device is rated for operation over a 0° to +70°C temperature range and is available in a TO–92 package.

Features:

- Low Temperature Coefficient
- Wide Operating Current of 300μA to 10mA
- 0.2Ω Dynamic Impedance
- ±1% Initial Tolerance Available
- Guaranteed Temperature Stability
- Easily Trimmed for Minimum Temperature Drift
- Fast Turn–On

Absolute Maximum Ratings:

Reverse Current, I _R	. 15mA
Forward Current, I _F	. 10mA
Operating Temperature Range, Topr	+70°C
Storage Temperature Range, T _{stg} 60° to	+150°C
Lead Temperature (During Soldering, 10sec), T _L	+300°C

<u>Electrical Characteristics</u>: $(0^{\circ} \le T_A \le +70^{\circ}C, \text{ Note 1 unless otherwise specified})$

Parameter	Test Conditions	Min	Тур	Max	Unit
Reverse Breakdown Voltage	$T_A = +25^{\circ}C, I_R = 1mA$	2.390	2.490	2.590	V
Reverse Breakdown Change with Current	$T_A = +25^{\circ}C, 400\mu A \le I_R \le 10mA$	_	2.6	10	mV
Reverse Dynamic Impedance	$T_A = 25^{\circ}C, I_R = 1mA$	_	0.2	1	Ω
Temperature Stability	V _R Adjusted to 2.490V, I _R = 1mA	_	1.8	6	mV
Reverse Breakdown Change with Current	$400\mu A \le I_R \le 10mA$	_	3	12	mV
Reverse Dynamic Impedance	I _R = 1mA	_	0.4	1.4	Ω
Long Term Stability	$T_A = +25^{\circ}C \pm 0.1^{\circ}C, I_R = 1 \text{mA}$	_	_	20	ppm

Note 1 Unless otherwise specified the NTE952 is specified from $0^{\circ}\text{C} \leq T_{\text{A}} \leq +70^{\circ}\text{C}$. The maximum junction temperature is 100°C . For elevated junction temperature the derating is based on 180°C/W junction to ambient with 0.4° leads from a PC board and 160°C/W junction to ambient with 0.125° lead length to a PC board.

