ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

FSA2259 Low-Voltage, Dual-SPDT (0.8 Ω) Analog Switch with 16kV ESD

Features

- 0.8Ω Typical On Resistance (R_{ON}) for +3.0V Supply
- 0.40Ω Maximum R_{ON} Flatness for +3.0V Supply
- -3db Bandw idth: > 50MHz
- Low ICCT Current Over an Expanded Control Input Range
- Packaged in 10-Lead UMLP (1.4 x 1.8mm)
- Pow er-Off Protection on Common Ports
- Broad V_{CC} Operating Range: 1.65 to 4.4V
- ESD HBM JEDEC: JESD22-A114
 - I/O to GND: 8.5kV
 - Pow er to GND: 16.0kV

Applications

- Cell Phone, PDA, Digital Camera, and Notebook
- LCD Monitor, TV, and Set-Top Box

Description

The FSA2259 is a high-performance, dual, Single Pole Double Throw (SPDT) analog switch that features low R_{ON} of 0.8Ω (typical) at 3.0V V_{CC}. The FSA2259 operates over a wide V_{CC} range of 1.65V to 4.4V and is designed for breakbefore-make operation. The select input is TTL-level compatible.

The FSA2259 features very low quiescent current even when the control voltage is lower than the V_{CC} supply. This feature suits mobile handset applications by allowing direct interface with baseband processor general-purpose *VOs* with minimal battery consumption.

rdering Information

Part Number	Top Mark	Operating Temperature Range	Package
FSA2259UMX	JT	-40 to +85°C	10-Lead, Quad, Ultrathin Molded Leadless Package (UMLP), 1.4 x 1.8mm

Analog Symbol

Figure 1. FSA2259

Pin Configuration

Figure 2. 10-Pin UMLP (Top Through View)

Pin Description

Pin#	Name	Description	
1	V _{CC}	Supply Voltage	
2	1B ₁	Data Ports	
3	1A	Data Ports	
4	S1	Switch Select Pins	
5	1B ₀	Data Ports	
6	GND	Ground	
7	2B ₀	Data Ports	
8	S2	Switch Select Pins	
9	2A Data Ports		
10	2B ₁	Data Ports	

Truth Table

Control Input, Sn	Function
LOW Logic Level	nB0 Connected to nA
HIGH Logic Level	nB1 Connected to nA

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Units	
Vcc	Supply Voltage	-0.5	5.5	V	
V _{SW}	Sw itch I/O Voltage ⁽¹⁾	ch I/O Voltage ⁽¹⁾ 1B0, 1B1, 2B0, 2B1, 1A, 2A Pins			
Vin	Control Input Voltage ⁽¹⁾	S1, S2	-0.5	5.5	V
lıк	Input Clamp Diode Current			-50	mA
Isw	Switch I/O Current (Continuous)		350	mA	
ISWPEAK	Peak Switch Current (Pulsed at 1ms Durati		500	mA	
T _{STG}	Storage Temperature Range	-65	+150	°C	
TJ	Maximum Junction Temperature			+150	°C
TL	Lead Temperature (Soldering, 10 seconds)		+260	°C
		VO to GND		8.5	
ESD	Human Body Model, JEDEC: JESD22-A114	Pow er to GND		16.0	kV
ESD			8.0		
	Charged Device Model, JEDEC: JESD22-C	101		2.0	kV

Note:

1. Input and output negative ratings may be exceeded if input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Units
Vcc	Supply Voltage	1.65	4.40	V
V _{IN}	Control Input Voltage	0	V _{CC}	V
V _{SW}	Switch I/O Voltage	0	Vcc	V
T _A	Operating Temperature	-40	+85	°C

SA2259 —
Low-Voltage,
Dual-SPDT
(0.8 <u>Ω</u>
) Analog
ŝ
witch
witch with
- Low-Voltage, Dual-SPDT (0.8Ω) Analog Switch with 16kV ESD

П

DC Electrical Characteristics

All typical values are at 25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{cc} (V)	1	A=+25º	с	T _A =-/ +8	Unit		
				Min.	Тур.	Max.	Min.	Max.		
			3.60 to 4.30				1.7			
V	Control Input Voltage High		2.70 to 3.60				1.5		V	
VIH	Control Input Voltage High		2.30 to 2.70				1.4		v	
			1.65 to 1.95				0.9			
			3.60 to 4.30					0.7		
VIL			2.70 to 3.60					0.5	., I	
	Control Input Voltage Low		2.30 to 2.70					0.4	V	
			1.65 to 1.95					0.4		
I _{IN}	Control Input Leakage (S1,S2)	$V_{IN}=0$ to V_{CC}	1.65 to 4.30				-0.5	0.5	μA	
I _{NO(0FF)} , I _{NC(OFF)}	Off Leakage Current of Port nB0 and nB1	$\begin{array}{l} nA=0.3V, V_{CC}-0.3V\\ nB0 \mbox{ or }nB1=V_{CC}-0.3V,\\ 0.3V, \mbox{ or }Floating\\ Figure \ 4 \end{array}$	1.95 to 4.30	-10		10	-50	50	nA	
I _{A(ON)}	On Leakage Current of Port nA	$\begin{array}{l} nA=0.3V, V_{CC}-0.3V\\ nB0 \ or \ nB1=V_{CC}-0.3V,\\ 0.3V, \ or \ Floating\\ Figure \ 5 \end{array}$	1.95 to 4.30	-20		20	-100	100	nA	
I _{OFF}	Power-Off Leakage Current (Common Port Only 1A, 2A)	Common Port (1A, 2A), V_{IN} =0V to 4.3V, V_{CC} =0V nB0, nB1=Floating	0V					±1	μA	
	Switch On Resistance ^(2,5)	I _{oN} =100mA, nB0 or nB1=0.7V, 3.6V Figure 3	4.30		0.50			1.00	Ω	
		I _{oN} =100mA, nB0 or nB1=0.7V, 2.3V Figure 3	3.00		0.80			1.20		
R _{on}		I _{o№} =100mA, nB0 or nB1=0V, 0.7V, 1.6V, 2.3V Figure 3	2.30		1.10					
		I _{oN} =100mA, nB0 or nB1=0V, 0.7V, 1.65V Figure 3	1.65		1.50					
			4.30		0.08			0.25		
۸D	On Resistance Matching	I _{on} =100mA, nB0 or	3.00		0.20	1	1	0.25		
ΔR_{ON}	Between Channels ^(3,5)	nB1=0.7V	2.30		0.40				Ω	
			1.65		0.50				1	
			4.30					0.4		
D	On Resistance Flatness ^(4,5)	I _{out} =100mA, nB0 or	3.00					0.4		
R _{FLAT(ON)}	On Resistance Flatness	nB1=0V to V _{CC}	2.30		0.9				Ω	
			1.65		1.2				1	
Icc	Quiescent Supply Current	$V_{IN}=0 \text{ or } V_{CC}, I_{OUT}=0$	4.30	-100		100	-500	500	nA	
L.	Increase in L. par Input	Input at 2.6V	4 20		3	1	1	7		
ICCT	Increase in I _{cc} per Input	Input at 1.8V	4.30		7			15	μA	

Notes:

2. On resistance is determined by the voltage drop betw een A and B pins at the indicated current through the switch.

3. $\Delta R_{ON} = R_{ON max} - R_{ON min}$ measured at identical V_{CC}, temperature, and voltage.

4. Flatness is defined as the difference between the maximum and minimum value of on resistance (R_{ON}) over the specified range of conditions.

5. Guaranteed by characterization, not production tested for $V_{CC}=1.65 - 3.0V$.

FSA2259 — Low-Voltage, Dual-SPDT (0.8 Ω) Analog Switch with 16kV ESD

AC Electrical Characteristics

All typical value are for V_{CC}=3.3V at 25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{cc} (V)	T _A =+25⁰C		T _A =-40 to +85°C		Unit	Figure	
				Min.	Тур.	Max.	Min.	Max.		
		nB0 or	3.60 to 4.30			55		60	ns	
ton	Turn-On	nB1=1.5V,	2.70 to 3.60			60		65		
UN	Time	R _L =50Ω,	2.30 to 2.70			65		70	115	
		C _L =35pF	1.65 to 1.95		70					Figure 6
		nB0 or	3.60 to 4.30			30	5	35		Figure 7
t	Turn-Off	nB1=1.5V,	2.70 to 3.60			35	5	40	20	
toff	Time	R∟=50Ω, C∟=35pF	2.30 to 2.70			40	5	45	ns	
			1.65 to 1.95		40					
	Break- Before-Make Time ⁽⁶⁾	nB0 or nB1=1.5V, R∟=50Ω, C∟=35pF	3.60 to 4.30		15		2		ns	Figure 8
t			2.70 to 3.60		15		2			
t _{BBM}			2.30 to 2.70		15		2			
			1.65 to 1.95		16		2			
Q	Charge Injection ⁽⁶⁾	C _L =1.0nF, V _S =0V, R _S =0Ω	1.65 to 4.30		25				рС	Figure 12
OIRR	Off Isolation ⁽⁶⁾	f=100kHz, R _L =50Ω, C _L =0pF	1.65 to 4.30		-80				dB	Figure 10
Xtalk	Crosstalk ⁽⁶⁾	f=100kHz, R _L =50Ω, C _L =0pF	1.65 to 4.30		-100				dB	Figure 11
BW	-3db Bandw idth ⁽⁶⁾	$R_L=50\Omega$, $C_L=0pF$	1.65 to 4.30		>50				MHz	Figure 9
THD+N	Total Harmonic Distortion + Noise ⁽⁶⁾	f=20Hz to 20kHz, R _L =32Ω, V _{IN} =2V _{pp}	1.65 to 4.30		.06				%	Figure 15

Notes:

6. Guaranteed by characterization, not production tested

Capacitance

All capacitance specifications are guaranteed by characterization and are not production tested.

Symbol	Parameter	Conditions		T _A =+25°C			Unit	Figure
	Falameter	Conditions	V _{CC} (V)	Min.	Тур.	Max.	Unit	Figure
CIN	Control Pin Input Capacitance	f=1MHz	0		1.5		pF	Figure 13
COFF	B Port Off Capacitance	f=1MHz	3.3		30		pF	Figure 13
CON	A Port On Capacitance	f=1MHz	3.3		50		pF	Figure 14

Test Diagrams

Figure 3. On Resistance

**Each switch port is tested separately.

Figure 4. Off Leakage (Ports Tested Separately)

Figure 7. Turn-On / Turn-Off Waveforms

Off-Isolation = 20 Log (V_{OUT} / V_{IN})

Figure 10. **Channel Off Isolation**

8

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor for saver or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor for any customer in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part classification is any divices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufa

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada. Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semic onductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative