1.1 GHz Dual Modulus Prescaler ### Description The MC12026A is a high frequency, low voltage dual modulus prescaler used in phase-locked loop (PLL) applications. The MC12026A can be used with CMOS synthesizers requiring positive edges to trigger internal counters in a PLL to provide tuning signals up to 1.1 GHz in programmable frequency steps. A Divide Ratio Control (SW) permits selection of an 8/9 or 16/17 divide ratio as desired. The Modulus Control (MC) selects the proper divide number after SW has been biased to select the desired divide ratio. #### **Features** - 1.1 GHz Toggle Frequency - Supply Voltage 4.5 to 5.5 V - Low Power 4.0 mA Typical - Operating Temperature Range of -40 to 85°C - The MC12026 is Pin Compatible with the MC12022 - Short Setup Time (t_{set}) 6.0 ns Typical @ 1.1 GHz - Modulus Control Input Level is Compatible with Standard CMOS and TTL - These Devices are Pb-Free, Halogen Free and are RoHS Compliant **Table 1. FUNCTIONAL TABLE** | SW | МС | Divide Ratio | | | |----|----|--------------|--|--| | Н | Н | 8 | | | | Н | L | 9 | | | | L | Н | 16 | | | | L | L | 17 | | | SW: H = V_{CC}, L = Open. A logic L can also be applied by grounding this pin, but this is not recommended due to increased power consumption. **Table 2. MAXIMUM RATINGS** | Characteristics | Symbol | Value | Unit | |-------------------------------|------------------|-------------|------| | Power Supply Voltage, Pin 2 | V _{CC} | -0.5 to 7.0 | Vdc | | Operating Temperature Range | T _A | -40 to 85 | °C | | Storage Temperature Range | T _{stg} | -65 to 150 | °C | | Modulus Control Input, Pin 6 | MC | -0.5 to 6.5 | Vdc | | Maximum Output Current, Pin 4 | I _O | 10.0 | mA | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. NOTE: ESD data available upon request. ### ON Semiconductor[™] #### www.onsemi.com SOIC-8 NB D SUFFIX CASE 751-07 #### **MARKING DIAGRAM*** A = Assembly Location L = Wafer Lot Y = Year W = Work Week = Pb-Free Package (Note: Microdot may be in either location) ### PIN CONNECTIONS (Top View) ### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |--------------|------------------------|-----------------------| | MC12026ADG | SOIC-8 NB
(Pb-Free) | 98 Units/Tube | | MC12026ADR2G | SOIC-8 NB
(Pb-Free) | 2500/Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{2.} MC: H = 2.0 V to V_{CC} , L = GND to 0.8 V. ^{*}For additional marking information, refer to Application Note <u>AND8002/D</u>. Table 3. ELECTRICAL CHARACTERISTICS ($V_{CC} = 4.5 \text{ to } 5.5$; $T_A = -40 \text{ to } 85^{\circ}\text{C}$, unless otherwise noted.) | Characteristic | Symbol | Min | Тур | Max | Unit | |--|------------------|-------------------------|----------|-------------------------|-----------------| | Toggle Frequency (Sin Wave) | f _t | 0.1 | 1.4 | 1.1 | GHz | | Supply Current Output Unloaded (Pin 2) | I _{CC} | - | 4.0 | 5.3 | mA | | Modulus Control Input High (MC) | V _{IH1} | 2.0 | = | V _{CC} | V | | Modulus Control Input Low (MC) | V _{IL1} | GND | = | 0.8 | V | | Divide Ratio Control Input High (SW) | V _{IH2} | V _{CC} – 0.5 V | V_{CC} | V _{CC} + 0.5 V | V | | Divide Ratio Control Input Low (SW) | V_{IL2} | OPEN | OPEN | OPEN | - | | Output Voltage Swing (R _L = 560 Ω ; I _O = 5.5 mA) (Note 1) (R _L = 1.1 k Ω ; I _O = 2.9 mA) (Note 2) | V _{out} | 1.0 | 1.6 | - | V _{pp} | | Modulus Setup Time MC to Out (Note 3) | t _{SET} | - | 6.0 | 9.0 | ns | | Input Voltage Sensitivity
100-250 MHz
250-1100 MHz | V _{in} | 400
100 | -
- | 1000
1000 | mVpp | - 1. Divide Ratio of $\div 8/9$ at 1.1 GHz, $C_L=8.0$ pF. 2. Divide Ratio of $\div 16/17$ at 1.1 GHz, $C_L=8.0$ pF. 3. Assuming $R_L=560~\Omega$ at 1.1 GHz. Figure 1. Logic Diagram (MC12026A) Modulus setup time MC to out is the MC setup or MC release plus the prop delay. Figure 2. Modulus Setup Time Figure 3. AC Test Circuit Figure 4. Input Signal Amplitude Versus Input Frequency Figure 5. Output Amplitude Versus Input Frequency $(\div 8,\, 1.1 \text{ GHz Input Frequency},\, V_{CC} = 5.0,\, T_A = 25^{\circ}C,\, Output\, Loaded\,\, With\,\, 8.0 pF)$ Figure 6. Typical Output Waveform Figure 7. Typical Input Impedance Versus Input Frequency SOIC-8 NB CASE 751-07 **ISSUE AK** **DATE 16 FEB 2011** - NOTES: 1. DIMENSIONING AND TOLERANCING PER - ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. - DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. - MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE - DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. - 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. | | MILLIMETERS | | INCHES | | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.80 | 5.00 | 0.189 | 0.197 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.053 | 0.069 | | D | 0.33 | 0.51 | 0.013 | 0.020 | | G | 1.27 BSC | | 0.050 BSC | | | Н | 0.10 | 0.25 | 0.004 | 0.010 | | J | 0.19 | 0.25 | 0.007 | 0.010 | | K | 0.40 | 1.27 | 0.016 | 0.050 | | М | 0 ° | 8 ° | 0 ° | 8 ° | | N | 0.25 | 0.50 | 0.010 | 0.020 | | S | 5.80 | 6.20 | 0.228 | 0.244 | ### **SOLDERING FOOTPRINT*** ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week W = Pb-Free Package XXXXXX XXXXXX AYWW AYWW Ŧ \mathbb{H} Discrete **Discrete** (Pb-Free) XXXXXX = Specific Device Code = Assembly Location Α = Year ww = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. ### **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Rep
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | SOIC-8 NB | | PAGE 1 OF 2 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. ### SOIC-8 NB CASE 751-07 ISSUE AK ### **DATE 16 FEB 2011** | STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER | STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1 | STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1 | STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE | |--|---|--|--| | STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE | PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE | PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd | PIN 1. COLLECTOR, DIE #1 2. BASE, #1 | | STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON | STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND | STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 | STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 9. DRAIN | | STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN | STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN | STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON | STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1 | | STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC | STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN | STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 | STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN | | 3. V10UT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6 | STYLE 22: | 7. DRAIN 1 8. MIRROR 1 STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT | STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE | | STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT | STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC | STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN | STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN | | STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1 | STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1 | | | | DOCUMENT NUMBER: | 98ASB42564B | Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | SOIC-8 NB | | PAGE 2 OF 2 | | onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative