NPN Silicon Phototransistors

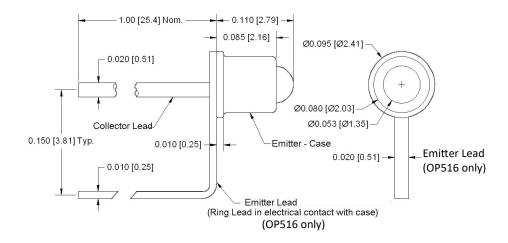
OP515A, OP515B, OP515C, OP515D, OP516A, OP516B, OP516C, OP516D

OP515 OP516

Features:

- · Variety of sensitivity ranges
- · Coaxial leaded package style
- · Small package size for space limited applications

Description:


Each device in the OP515 and OP516 series consists of NPN silicon phototransistors in a small hermetic package with an extended Collector lead. The narrow receiving angle provides excellent on-axis coupling. This device is 100% production tested using infrared light for close correlation with Optek's GaAs and GaAlAs emitters.

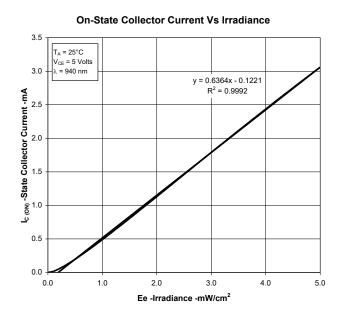
Absolute Maximum Ratings (T_A = 25 °C unless otherwise noted)

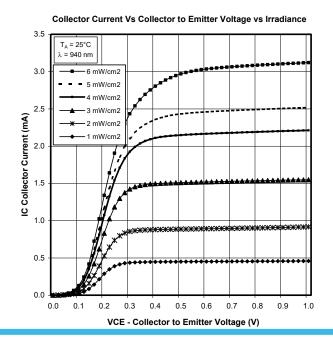
Continuous Collector Current	50 mA
Collector-Emitter Voltage	30V
Emitter-Collector Voltage (OP505 and OP506 series only)	5.0 V
Storage & Operating Temperature Range	-55 °C to + 125 °C
Lead Soldering Temperature (1/16 inch (1.6 mm) from case for 5 sec. with soldering iron)	260 °C ⁽¹⁾
Power Dissipation	100 mW ⁽²⁾

Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 seconds max. when flow soldering. Maximum 20 grams force may be applied to the leads when soldering.
- (2) Derate linearly 0.71 mW/°C above 25 °C.

NPN Silicon Phototransistors





SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
	On-State	OP515D/OP516D	0.40			mA	$V_{CE} = 5 \text{ V, } E_e = 5.0 \text{ mW/cm}^{2(3)}$
I _{C(ON)}	Collector	OP515C/OP516C	1.00				
	Current	OP515B/OP516B	3.00				
		OP515A/OP516A	6.00				
I _{CEO}	Collector-Dark Current				100	nA	$V_{CE} = 10 \text{ V}, E_e = 0^{(4)}$
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage		30			V	Ι _C = 100 μΑ
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage		5			V	I _E = 100 μA
V _{CE(SAT)}	Collector-Emitter Saturation Voltage	OP515/OP516			0.40	V	$I_C = 400 \mu A, E_e = 5.0 \text{ mW/cm}^{2(3)}$
$\Delta I_{C}/\Delta T$	Relative I _c Changes with OP505A-D and OP506A	•		1.00		%/°C	$V_{CE} = 5 \text{ V, } E_e = 1.0 \text{ mW/cm}^2$
I _{ECO}	Emitter-Reverse Curren	t			100	μΑ	V _{EC} = 0.4V

Notes:

- E_{e(APT)} is a measurement of the average apertured radiant energy incident upon a sensing area 0.250" (6.35 mm) in diameter and (1) perpendicular to and centered to the mechanical axis of the emitting surface at a distance of 0.466" (11.84 mm). E_{e(APT)} is not necessarily uniform within the measured area.
- (2)Derating linearly 0.71 mW/°C above 25 °C
- (3)Light source is an unfiltered GaAs LED with a peak emission wavelength of 935 nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the phototransistor being tested. To calculate typical collector dark current in nA, use the formula $I_{CED} = 10^{(0.040T_A^{-3.4})}$ where T_A is ambient temperature in °C.
- (4)

