

General Description

The MAX216 transceiver is designed specifically for communicating with AppleTalk™ interfaces. The MAX216 has one differential and one single-ended driver, plus one differential and two single-ended receivers, all of which meet the AppleTalk transceiver specifications.

The single-ended and differential drivers have a ±5V output voltage range when they are active, and have thermal shutdown protection against short circuits. The drivers remain in a high-impedance state when disabled or shut down.

One single-ended receiver is configured as an inverter, and the other is configured as a buffer. The input thresholds of the single-ended receivers are TTL-compatible, but the input voltages can vary between ±7V. The input thresholds of the differential receiver are ±200mV, and have a common-mode range of ±7V.

The MAX216 uses only 3mA max when fully operational. The drivers and receivers are disabled during shutdown mode, when the quiescent current is reduced to only 30µA.

Features

- Differential Driver/Receiver Compatible with RS-422
- Single-Ended Driver/Receiver Compatible with EIA/TIA-562 and EIA/TIA-232E
- Low, 3mA Max Operational Supply Current
- Low, 30µA Shutdown-Mode Supply Current

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE	
MAX216CWN	0°C to +70°C	18 Wide SO	

AppleTalk Interfaces **Apple Printer Interfaces** Apple Peripheral Interface EIA/TIA-232/562 to RS-422 Conversion

Typical Operating Circuit 0.1µF VCC TXD TXD . TXEN 16 TXD+ 15 - HSKO DTR SHDN .

MAXIM

MAX216

GND

0.1 -5V

13

12

11

10

GPI

HSKI

RXD-

RXD+

Applications

TOP VIEW TXD 1 Vcc 18 DTR 2 17 TXD-TXEN 3 16 TXD+ SHDN 4 15 **HSKO** илхім RXEN 5 14 MAX216 VFF GPI 6 13 GPI HSKI.R 7 12 HSKI SRXDO 8 RXD-11 GND 9 10 RXD+ SO

MAppleTalk is a trademark of Apple Computer, Inc.

RXEN .

GPI

HSKI.R -

6

8 SRXDO -

M/XI/M

Maxim Integrated Products 1

Pin Configuration

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642. or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V _{CC}	+7V
V _{EE}	7V
Input Voltages	
Driver Inputs	0.5V to (V _{CC} + 0.5V)
Receiver Inputs	±15V
Control Input Voltages	
Output Voltages	
Driver Outputs	±15V
Receiver Outputs	

Short-Circuit Duration	
Driver Outputs (to V _{CC} or V _{EE})	Continuous
Receiver Outputs (to V _{CC} or GND)	Continuous
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
SO (derate 9.52mW/°C above +70°C)	762mW
Operating Temperature Range	0°C to +70°C
Storage Temperature Range	65°C to +160°C
Lead Temperature (soldering, 10sec)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings'" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS – DC PARAMETERS

(V_{CC} = 5V ±5%, V_{EE} = -5V ±5%, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. See Figures 1 and 5.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
POWER SUPPLY		L				1	
Positive Supply Current		No load, SHDN = 0V		1.2	3	mA	
	lcc	No load, SHDN = V _{CC}		30	100	μA	
Negative Supply Current	IEE	No load			100	μA	
DIFFERENTIAL DRIVER		L					
	V _{IL}				0.8	N N	
TTL/CMOS Input Levels	V _{IH}	TXD, TXEN , SHDN	2.0			- V	
Input Current		TXD, TXEN, SHDN			±20	μA	
Differential Driver Output Voltage	V _{OD1}	No load, I _O = 0A, V _{D1}	8.0			v	
	V _{OD2}	R = 50Ω, V _{D2}	2.0				
Change in Magnitude of ΔV_{OD2} R = Differential Output Voltage		$R = 50\Omega, V_{D2}$			0.2	V	
Common-Mode Output Voltage V _{OC}		$R = 50\Omega, V_{D2}$			3	V	
Change in Magnitude of ΔIV _{OC} I		$R = 50\Omega, V_{D2}$			0.2	v	
Output Common-Mode Range V _{CMR}		SHDN > 2.0V or power off			±10	V	
Short-Circuit Current		$-5V \le V_{O} \le 5V$	35		450	mA	
Off-State Output Current		SHDN > 2.0V or power off, -10V < V_{O} < 10V			±100	μΑ	

ELECTRICAL CHARACTERISTICS – DC PARAMETERS (continued)

(V_{CC} = 5V ±5%, V_{EE} = -5V ±5%, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. See Figures 1 and 5.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS	
SINGLE-ENDED DRIVER		L				1	
Input High Voltage	VIH	DTR		2.0		V	
Input Low Voltage	VIL	DTR			0.8	V	
Input Current		DTR			±20	μΑ	
Output Voltage	V _{O1}	No load	DTR = 0.8V	4.0			
			DTR = 2.0V	-4.0			
Oulput voltage	V _{O2}	R _L = 400Ω	DTR = 0.8V	3.4		- V	
	VO2	NL = 40032	DTR = 2.0V	-3.4		1	
Off-State Output Current		SHDN > 2.0V or power off, -10V < V_O < 10V			±100	μA	
Output Short-Circuit Current		$-5V \le V_0 \le 5V$		35	450	mA	
DIFFERENTIAL RECEIVER						L	
		$V_{IN} = 7V$			1.5		
Receiver Input Current		$V_{IN} = -7V$			-1.5	mA	
Receiver Input Resistance		$-7V \le V_{IN} \le 7V$		12		kΩ	
Receiver Output High Voltage	V _{OH}	I _O = -4mA		3.5		V	
Receiver Output Low Voltage	V _{OL}	I _O = 4mA			0.4	V	
Receiver Short-Circuit Current		$0V \le V_O \le 5V$		7.0	85	mA	
Disabled Receiver Output Current		$0V \le V_O \le 5V$			±100	μA	
Differential Input Threshold Voltage		$-7V \le V_{CM} \le 7V$		-0.2	0.2	V	
SINGLE-ENDED RECEIVER							
Paggiver Input Current		$V_{IN} = 7V$			1.5	mA	
Receiver Input Current		$V_{IN} = -7V$			-1.5		
Receiver Input Resistance		$-7V \le V_{IN} \le 7V$		12		kΩ	
Receiver Output High Voltage	V _{OH}	$I_{O} = -4mA$		3.5		V	
Receiver Output Low Voltage	VOL	I _O = 4mA			0.4	V	
Receiver Short-Circuit Current		$0V \le V_0 \le 5V$		7	85	mA	
Disabled Receiver Output Current		$0V \le V_O \le 5V$			±100	μA	
Input Low Voltage	V _{IL}				0.8	V	
Input High Voltage	VIH			2.0		V	

ELECTRICAL CHARACTERISTICS – AC PARAMETERS

(V_{CC} = 5V ±5%, V_{EE} = -5V ±5%, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. See Figures 2 and 5.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX	UNITS	
DIFFERENTIAL DRIVER					
Driver land to Output	t _{PLH}	D 1000 0 100+E 0 100+E	120		
Driver Input to Output	t _{PHL}	$R_L = 100\Omega$, $C_{L1} = 100pF$, $C_{L2} = 100pF$	120	ns	
Driver Output to Output	^t SKEW	$R_L = 100\Omega$, $C_{L1} = 100pF$, $C_{L2} = 100pF$	30	ns	
Driver Rise Time	t _R	$R_L = 100\Omega$, $C_{L1} = 100pF$, $C_{L2} = 100pF$	60	ns	
Driver Fall Time	t _F	$R_L = 100\Omega$, $C_{L1} = 100pF$, $C_{L2} = 100pF$	60	ns	
Driver Enable to Output High	t _{ZH}	C _L = 100pF, Figure 4	150	ns	
Driver Enable to Output Low	t _{ZL}	C _L = 100pF, Figure 3	150	ns	
Driver Disable Time from Low	t _{LZ}	C _L = 15pF, Figure 3	150	ns	
Driver Disable Time from High	t _{HZ}	C _L = 15pF, Figure 4	150	ns	
SINGLE-ENDED DRIVER					
	t _{PLH}	R 4500, C 100pF	120		
Driver Input to Output	t _{PHL}	$ R_L = 450\Omega, C_L = 100 pF$	120	ns	
Driver Rise Time	t _R	$R_{L} = 450\Omega, C_{L} = 100pF$	60	ns	
Driver Fall Time	t _F	$R_{L} = 450\Omega, C_{L} = 100pF$	60	ns	
DIFFERENTIAL RECEIVER					
Paggiver Input to Output	^t PLH	C _L = 15pF	160	ns	
Receiver Input to Output	t _{PHL}		160	ns	
Receiver Disable Time from Low	t _{LZ}	C _L = 15pF, Figure 6	100	ns	
Receiver Disable Time from High	t _{HZ}	C _L = 15pF, Figure 7	100	ns	
Receiver Enable to Output High	t _{ZH}	C _L = 100pF, Figure 7	100	ns	
Receiver Enable to Output Low	t _{ZL}	C _L = 100pF, Figure 6	100	ns	
SINGLE-ENDED RECEIVER					
De sei um lanut te Outruit	t _{PLH}	0 15-5	160	ns	
Receiver Input to Output	tPHL	C _L = 15pF	160		
Receiver Disable Time from Low	t _{LZ}	C _L = 15pF, Figure 6	100	ns	
Receiver Disable Time from High	t _{HZ}	C _L = 15pF, Figure 7	100	ns	
Receiver Enable to Output High	t _{ZH}	C _L = 100pF, Figure 7	100	ns	
Receiver Enable to Output Low	t _{ZL}	C _L = 100pF, Figure 6	100	ns	

MIXIM

4

Pin Description

PIN	NAME	FUNCTION
1	TXD	TTL-compatible differential driver input
2	DTR	TTL-compatible single-ended inverting driver input
3	TXEN	TTL-compatible differential driver output enable. A high input forces the differential driver output into a high -impedance state. A low input enables the differential driver output. This input does not affect the single-ended driver.
4	SHDN	TTL-compatible shutdown input. A high input forces the chip into shutdown, with both driver outputs forced into three-state and the supply current reduced to 20μA typ. The receivers are not functional, but their outputs remain enabled unless RXEN is pulled high. A low input forces the chip into normal operation.
5	RXEN	TTL-compatible receiver enable input. A low input enables the outputs of the receivers and a high input forces the receiver outputs into a high-impedance state. To prevent unwanted noise at the output of the receivers in shutdown mode, RXEN should be pulled high along with SHDN.
6	GPI	Inverting single-ended receiver output
7	HSKI.R	Noninverting single-ended receiver output
8	SRXDO	Differential receiver output
9	GND	Ground
10	RXD+	Noninverting input to the differential receiver. If RXD+ is greater than RXD- by more than 200mV, then the differential receiver output, SRXDO, will be high. If RXD+ is less than RXD- by more than 200mV, SRXDO will be low – meets RS-422 thresholds.
11	RXD-	Inverting input to the differential receiver – meets RS-422 thresholds.
12	HSKI	Noninverting receiver input - meets EIA/TIA-562 and EIA/TIA-232E thresholds.
13	GPI	Inverting receiver input – meets EIA/TIA-562 and EIA/TIA-232E thresholds.
14	V _{EE}	Negative supply
15	HSKO	Single-ended inverting driver output - meets EIA/TIA-562 and EIA/TIA-232E voltage levels.
16	TXD+	Noninverting differential driver output – meets RS-422 voltage levels.
17	TXD-	Inverting differential driver output – meets RS-422 voltage levels.
18	V _{CC}	Positive supply

MIXIM

MAX216

Figure 1. Differential and Common-Mode Output Voltages

Figure 2. Differential Driver Timing Test Circuit

Figure 3. Driver Enable/Disable Test Circuit 1

Figure 4. Driver Enable/Disable Test Circuit 2

Figure 5. Single-Ended Driver Timing Test Circuit

Figure 6. Receiver Enable/Disable Test Circuit 1

Figure 7. Receiver Enable/Disable Test Circuit 2

Figure 8. Differential Driver Switching Times: a) Propagation Delay and Skew; b) Rise and Fall Times; c) Enable/Disable Timing.

Figure 9. Single-Ended Driver Switching Times: a) Propagation Delay; b) Rise and Fall Times.

MIXIM

Figure 11. Single-Ended Receiver Switching Times

Figure 12. Receiver Enable/Disable Switching Times

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600 Printed USA