

ROHS V

Typical Applications

The HMC939LP4 / HMC939LP4E is ideal for:

v01.1211

- Fiber Optics & Broadband Telecom
- Microwave Radio & VSAT
- Military Radios, Radar & ECM
- Space Applications
- Sensors
- Test & Measurement Equipment

Functional Diagram

1.0 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.1 - 33 GHz

Features

1.0 dB LSB Steps to 31 dB Single Positive Control Line Per Bit ±1.0 dB Typical Bit Error High Input IP3: +43 dBm 16mm² Leadless SMT Plastic Package

General Description

The HMC939LP4 & HMC939LP4E are broadband 5-bit GaAs IC digital attenuators in low cost leadless surface mount packages. Covering 0.1 to 33.0 GHz, the insertion loss is less than 5 dB typical. The attenuator bit values are 1.0 (LSB), 2, 4, 8, 16 for a total attenuation of 31 dB. Attenuation accuracy is excellent at ± 0.4 dB typical step error with an IIP3 of +43 dBm. Five control voltage inputs, toggled between +5V and 0V, are used to select each attenuation state.

Electrical Specifications, $T_{A} = +25^{\circ}$ C, With Vdd = +5V, Vss = -5V, P0 - P4 = 0/ +5V

Parameter		Frequency (GHz)	Min.	Тур.	Max.	Units
Insertion Loss		0.1 - 18.0 GHz 18.0 - 26.5 GHz 26.5 - 33.0 GHz		4.0 5.5 6.5	5.5 7.0 8.5	dB dB dB
Attenuation Range		0.1 - 33.0 GHz		31		dB
Return Loss (RF1 & RF2, All Atten. States)		0.1 - 33.0 GHz		12		dB
Attenuation Accuracy: (Referenced to Insertion Loss) 1.0 - 15 dB States 16 - 31 dB States 16 - 31 dB States 16 - 31 dB States		0.1 - 33.0 GHz 0.1 - 20.0 GHz 20.0 - 33.0 GHz	\pm (0.5 + 5%) of Atten. Setting Max \pm (0.5 + 5%) of Atten. Setting Max \pm (0.6 + 8%) of Atten. Setting Max		dB dB dB	
Input Power for 0.1 dB Compression		0.1 - 0.5 GHz 0.5 - 33.0 GHz		20 25		dBm dBm
Input Third Order Intercept Point (Two-Tone Input Power= 0 dBm Each Tone)		0.1 - 0.5 GHz 0.5 - 33.0 GHz		40 43		dBm dBm
Switching Characteristics tRISE, tFALL (10/90% RF) tON/tOFF (50% CTL to 10/90% RF)		0.1 - 33.0 GHz		60 90		ns ns
Idd		0.1 - 33.0 GHz	2.5	4.5	6.5	mA
lss		0.1 - 33.0 GHz	-7.0	-5.0	-3.0	mA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Insertion Loss vs. Temperature

v01.1211

Input Return Loss

(Only Major States are Shown)

Bit Error vs. Attenuation State

1.0 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.1 - 33 GHz

Normalized Attenuation

(Only Major States are Shown)

Output Return Loss

(Only Major States are Shown)

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v01.1211

Relative Phase vs. Frequency (Only Major States are Shown)

Step Attenuation vs. Attenuation State 18 - 33 GHz

Input IP3 Over Major Attenuation States

1.0 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.1 - 33 GHz

Step Attenuation vs. Attenuation State 0.1 - 18 GHz

Input Power for 0.1 dB Compression

Input IP3 vs. Temperature

(Minimum Attenuation State)

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Absolute Maximum Ratings

RF Input Power (0.1 to 33.0 GHz)	+25 dBm
Control Voltage (P0 to P4)	Vdd + 0.5V
Vdd	+7 Vdc
Vss	-7 Vdc
Channel Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 6.8 mW/°C above 85 °C)	0.451 W
Thermal Resistance	144 °C/W
Storage Temperature	-65 to + 150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

v01.1211

1.0 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.1 - 33 GHz

Bias Voltages & Currents

Vdd	+5V @ 4.5 mA
Vss	-5V @ 5 mA

Control Voltage

State	Bias Condition
Low	0 to 0.8V @ 1 µA
High	2 to 5V @ 1 μA

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.

- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]
HMC939LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ^[1]	H939 XXXX
HMC939LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>H939</u> XXXX

[1] Max peak reflow temperature of 235 °C

[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v01.1211

1.0 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.1 - 33 GHz

Truth Table

	Control Voltage Input			Attenuation		
P4 16 dB	P3 8 dB	P2 4 dB	P1 2 dB	P0 1 dB	State RF1 - RF2	
High	High	High	High	High	Reference I.L.	
High	High	High	High	Low	1 dB	
High	High	High	Low	High	2 dB	
High	High	Low	High	High	4 dB	
High	Low	High	High	High	8 dB	
Low	High	High	High	High	16 dB	
Low	Low	Low	Low	Low	31 dB	

Any Combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.

Pin Descriptions

Pad Number	Function	Description	Interface Schematic
1	Vss	Negative Bias -5V	Vss
2-4, 6-13, 15-17, 19	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
5, 14	RF1, RF2	These pins are DC coupled and matched to 50 Ohm. Blocking capacitors are required if RF line potential is not equal to 0V.	
18	Vdd	Positive Bias +5V	Vdd
20 - 24	P0 - P4	See truth table and control voltage table.	P0-P4 0
	GND	Package bottom must be connected to RF/DC ground.	

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v01.1211

1.0 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.1 - 33 GHz

Application Circuit

1.0 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.1 - 33 GHz

Evaluation PCB

ATTENUATORS - SMT

v01.1211

List of Materials for Evaluation PCB 130450 [1]

Item	Description
J1, J2, J4, J5	2.9 mm PC Mount RF Connector
J3	DC Connector
C1, C2	1000 pF Capacitor, 0402 Pkg.
U1	HMC939LP4 Digital Attenuator
PCB [2]	131909 Evaluation Board

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v01.1211

Notes:

1.0 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.1 - 33 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.