STD100N3LF3 # N-channel 30 V, 0.0045 Ω 80 A, DPAK planar STripFET™ II Power MOSFET #### **Features** | Туре | v_{DSSS} | R _{DS(on)} | I _D | Pw | |-------------|-------------------|---------------------|---------------------|-------| | STD100N3LF3 | 30 V | <0.0055 Ω | 80 A ⁽¹⁾ | 110 W | - 1. Current limited by package - 100% avalanche tested - Logic level threshold #### **Applications** - Switching application - Automotive This STripFETTM II Power MOSFET technology is among the latest improvements, which have been especially tailored to minimize on-state resistance providing superior switching performance. Figure 1. Internal schematic diagram Table 1. Device summary | Order codes | Marking | Package | Packaging | |-------------|----------------------|---------|---------------| | STD100N3LF3 | STD100N3LF3 100N3LF3 | | Tape and reel | Contents STD100N3LF3 ## **Contents** | 1 | Electrical ratings | 3 | |---|---|------| | 2 | Electrical characteristics | | | | 2.1 Electrical characteristics (curves) | 6 | | 3 | Test circuits | 9 | | 4 | Package mechanical data | . 10 | | 5 | Packaging mechanical data | . 13 | | 6 | Revision history | 14 | STD100N3LF3 Electrical ratings ## 1 Electrical ratings Table 2. Absolute maximum ratings | Symbol | Parameter | Value | Unit | |--------------------------------|--|------------|------| | V _{DS} | Drain-source voltage (V _{GS} = 0) | 30 | V | | V _{GS} | Gate-source voltage | ± 20 | V | | I _D ⁽¹⁾ | Drain current (continuous) at T _C = 25 °C | 80 | Α | | I _D | Drain current (continuous) at T _C =100 °C | 70 | Α | | I _{DM} ⁽²⁾ | Drain current (pulsed) | 320 | Α | | P _{TOT} | Total dissipation at $T_C = 25$ °C | 110 | W | | | Derating factor | 0.73 | W/°C | | dv/dt (3) | Peak diode recovery voltage slope | 3.9 | V/ns | | T _{stg} | Storage temperature | -55 to 175 | °C | | T_J | Max. operating junction temperature | -55 to 175 | | - 1. Current limited by package. - 2. Pulse width limited by safe operating area - 3. $I_{SD} \le 80A$, $di/dt \le 360 A/\mu s$, $V_{DS} \le V_{(BR)DSS}$, $T_J \le T_{JMAX}$ Table 3. Thermal data | Symbol | Parameter | Value | Unit | |-------------------|--|-------|------| | R _{thJC} | Thermal resistance junction-case max | 1.36 | °C/W | | R _{thJA} | Thermal resistance junction-ambient max | 100 | °C/W | | T _I | Maximum lead temperature for soldering purpose | 275 | °C | Table 4. Avalanche characteristics | Symbol | Parameter | Value | Unit | |-----------------|---|-------|------| | I _{AR} | Not-repetitive avalanche current (pulse width limited by T _J max) | 40 | Α | | E _{AS} | Single pulsed avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AV, VDD} = 24$ V) | 500 | mJ | Electrical characteristics STD100N3LF3 ## 2 Electrical characteristics (T_{CASE}=25°C unless otherwise specified) Table 5. On/off states | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |----------------------|---|---|------|-----------------|----------------|--------------------------| | V _{(BR)DSS} | Drain-source breakdown voltage | $I_D = 250 \ \mu\text{A}, \ V_{GS} = 0$ | 30 | | | V | | I _{DSS} | Zero gate voltage drain current (V _{GS} = 0) | V _{DS} = Max rating,
V _{DS} = Max rating @125 °C | | | 1
10 | μ Α
μ Α | | I _{GSS} | Gate body leakage current (V _{DS} = 0) | V _{GS} = ±20 V | | | ±200 | nA | | V _{GS(th)} | Gate threshold voltage | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$ | 1 | | 2.5 | V | | | | $V_{GS} = 10 \text{ V}, I_D = 40 \text{ A}$
$V_{GS} = 5 \text{ V}, I_D = 20 \text{ A}$ | | 0.0045
0.008 | 0.0055
0.01 | Ω | | R _{DS(on)} | Static drain-source on resistance | V _{GS} = 10 V,
I _D = 40 A @ 125 °C
V _{GS} = 5 V, | | 0.0068 | | Ω | | | | I _D = 20 A @ 125 °C | | 0.0146 | | Ω | Table 6. Dynamic | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |--|---|--|------|-------------------|------|----------------| | 9 _{fs} ⁽¹⁾ | Forward transconductance | V _{DS} = 10 V _, I _D = 15 A | - | 31 | | S | | C _{iss}
C _{oss}
C _{rss} | Input capacitance Output capacitance Reverse transfer capacitance | $V_{DS} = 25 \text{ V, f} = 1 \text{ MHz,}$
$V_{GS} = 0$ | - | 2060
728
67 | | pF
pF
pF | | Q _g
Q _{gs}
Q _{gd} | Total gate charge
Gate-source charge
Gate-drain charge | V_{DD} = 24 V, I_{D} = 80 A
V_{GS} = 5 V
Figure 16 on page 9 | - | 20
7
7.5 | 27 | nC
nC
nC | | R_{G} | Gate input resistance | f = 1 MHz gate DC Bias = 0
test signal level = 20 mV
open drain | - | 1.9 | | Ω | ^{1.} Pulsed: pulse duration=300µs, duty cycle 1.5% Table 7. Switching times | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |--|---|---|------|----------------------|------|----------------------| | $\begin{array}{c} t_{\rm d(on)} \\ t_{\rm r} \\ t_{\rm d(off)} \\ t_{\rm f} \end{array}$ | Turn-on delay time
Rise time
Turn-off delay time
Fall time | V_{DD} = 15 V, I_{D} = 40 A, R_{G} =4.7 Ω , V_{GS} =10 V Figure 15 on page 9 | - | 9
205
31
35 | - | ns
ns
ns
ns | Table 8. Source drain diode | Symbol | Parameter | Test conditions | Min | Тур. | Max | Unit | |--|--|---|-----|---------------|-----|---------------| | I _{SD} | Source-drain current | | - | | 80 | Α | | I _{SDM} ⁽¹⁾ | Source-drain current (pulsed) | | - | | 320 | Α | | V _{SD} ⁽²⁾ | Forward on voltage | I _{SD} = 40 A, V _{GS} = 0 | - | | 1.3 | V | | t _{rr}
Q _{rr}
I _{RRM} | Reverse recovery time Reverse recovery charge Reverse recovery current | $I_{SD} = 80 \text{ A},$
di/dt = 100 A/ μ s,
$V_{DD} = 25 \text{ V}, T_{J} = 150 ^{\circ}\text{C}$
Figure 17 on page 9 | - | 40
40
2 | | ns
µC
A | ^{1.} Pulse width limited by safe operating area ^{2.} Pulsed: pulse duration=300µs, duty cycle 1.5% Electrical characteristics STD100N3LF3 ### 2.1 Electrical characteristics (curves) Figure 2. Safe operating area Figure 3. Thermal impedance Figure 4. Output characteristics Figure 5. Transfer characteristics Figure 6. Transconductance Figure 7. Static drain-source on resistance Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations Figure 10. Normalized gate threshold voltage Figure 11. Normalized BV_{DSS} vs temperature vs temperature Figure 12. Normalized on resistance vs temperature temperature characteristics HV26620 HV26660 VsD Ros(on) (norm) 1.1 2.2 Tj=-50°C 1.0 25°C 0.9 1.4 175℃ V_Gs= 10V 1.0 0.8 0.6 0.7 0.6L 0 100 -50 0 50 150 TJ(℃) 30 60 90 (A)dzI Figure 13. Source-drain diode forward Electrical characteristics STD100N3LF3 Figure 14. Allowable lav vs time in avalanche The previous curve gives the single pulse safe operating area for unclamped inductive loads, under the following conditions: $$P_{D(AVE)} = 0.5 * (1.3 * BV_{DSS} * I_{AV})$$ $$E_{AS(AR)} = P_{D(AVE)} * t_{AV}$$ #### Where: I_{AV} is the allowable current in avalanche $P_{D(AVE)}$ is the average power dissipation in avalanche (single pulse) t_{AV} is the time in avalanche STD100N3LF3 Test circuits ## 3 Test circuits Figure 15. Switching times test circuit for resistive load Figure 16. Gate charge test circuit Figure 17. Test circuit for inductive load switching and diode recovery times # 4 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 10/14 Doc ID 13206 Rev 3 #### TO-252 (DPAK) mechanical data | DIM. | | mm. | | |------|------|------|-------| | | min. | typ | max. | | Α | 2.20 | | 2.40 | | A1 | 0.90 | | 1.10 | | A2 | 0.03 | | 0.23 | | b | 0.64 | | 0.90 | | b4 | 5.20 | | 5.40 | | С | 0.45 | | 0.60 | | c2 | 0.48 | | 0.60 | | D | 6.00 | | 6.20 | | D1 | | 5.10 | | | E | 6.40 | | 6.60 | | E1 | | 4.70 | | | е | | 2.28 | | | e1 | 4.40 | | 4.60 | | Н | 9.35 | | 10.10 | | L | 1 | | | | L1 | | 2.80 | | | L2 | | 0.80 | | | L4 | 0.60 | | 1 | | R | | 0.20 | | | V2 | 0 ° | | 8 ° | ## 5 Packaging mechanical data #### **DPAK FOOTPRINT** #### TAPE AND REEL SHIPMENT STD100N3LF3 Revision history # 6 Revision history Table 9. Document revision history | Date | Revision | Changes | |-------------|----------|---| | 07-Feb-2006 | 1 | Initial release. | | 07-May-2009 | 2 | Added V _{GS(th)} max value in <i>Table 5: On/off states</i> | | 09-Nov-2009 | 3 | Added V _{GS} parameter in <i>Table 2: Absolute maximum ratings</i> | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2009 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America 14/14 Doc ID 13206 Rev 3