Metal-Oxide Varistors (MOVs) Industrial High Energy Terminal Varistors > HA Series # **HA Varistor Series** # **Agency Approvals** | Agency | Agency Approval | Agency File Number | | |-----------------|-----------------|--------------------|--| | c FL °us | UL1449 | E320116 | | #### **Additional Information** Resources Samples ### **Description** HA Series transient surge suppressors are industrial high energy Metal-Oxide Varistors (MOVs). They are designed to provide secondary surge protection in the outdoor and service entrance environment (distribution panels) of buildings, and also in industrial applications for motor controls and power supplies used in the oil-drilling, mining, and transportation fields. The design of the HA Series of MOVs provide rigid terminals for screw mounting. Also available in a clipped lead version for through hole board placement or to accommodate soldered leads designation "HC." See Ratings and Specifications Table for part number and brand information. #### **Features** - Lead-free, Halogen-Free and RoHS compliant. - Wide operating voltage range V_{M(AC)RMS} 110V to 750V - Two disc sizes available 32mm and 40mm - High energy absorption capability W_{TM} = 170J to 1050J - High peak pulse current capability, ITM = 25,000A to 40,000A - Rigid terminals for secure mounting - Available in trimmed version for through hole board mounting – Designation "HC" - No derating up to 85°C ambient # **Absolute Maximum Ratings** • For ratings of individual members of a series, see Device Ratings and Specifications chart | Continuous | HA Series | Units | |---|------------------|-------| | Steady State Applied Voltage: | | | | AC Voltage Range (V _{M/ACIRMS}) | 110 to 750 | V | | DC Voltage Range (V _{MIDC}) | 148 to 970 | V | | | | | | Peak Pulse Current (I _{TM}) | | | | For 8/20µs Current Wave (See Figure 2) | 25,000 to 40,000 | А | | Single Pulse Energy Range | | | | For 2ms Current Squarewave (W _{TM}) | 160 to 1050 | J | | Operating Ambient Temperature Range (T _A) | -55 to +85 | °C | | Storage Temperature Range (T _{STG}) | -55 to +125 | °C | | Temperature Coefficient (a ^V) of Clamping Voltage (V _c) at Specified Test Current | <0.01 | %/°C | | Hi-Pot Encapsulation (COATING Isolation Voltage Capability) (Dielectric must withstand indicated DC voltage for one minute per MIL-STD 202, Method 301) | 2500 | V | | COATING Insulation Resistance | 1000 | ΜΩ | **CAUTION:** Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. # Metal-Oxide Varistors (MOVs) # **HA Series Ratings & Specifications** | | | Maximum | Rating (85°C) | | | Specifications (25°C) | | | | | |----------------------|--|--------------------|-----------------|-----------------|--------------|-----------------------------------|--|-------------------------|-------------|--| | Part
Number | Continuous V _{RMS} V _{DC} | | Energy | | | stor Voltage at
DC Test Curren | Maximum
Clamping Volt V _c
at 200A Current | Typical
Capaci-tance | | | | Device Branding | RMS | DC | (2ms) | 8 x 20µs | | | | (8/20µs) | f = 1MHz | | | | V _{M(AC)} | V _{M(DC)} | W _{TM} | I _{TM} | Min | V _{N(DC)} | Max | V _c | С | | | | (V) | (V) | Energy | (A) | (V) | (V) | (V) | (A) | (pF) | | | V111HA32
V111HA40 | 110
110 | 148
148 | 160
220 | 25000 40000¹ | 156
156 | 173
173 | 190
190 | 293
288 | 5450 11600 | | | V131HA32 | 130 | 175 | 200 | 25000 40000² | 184.5 | 205 | 225.5 | 350 | 4700 10000 | | | V131HA40 | 130 | 175 | 270 | | 184.5 | 205 | 225.5 | 345 | | | | V141HA32
V141HA40 | 140
140 | 188
188 | 210
290 | 25000 40000³ | 198
198 | 220
220 | 242
242 | 380
375 | 4230 9000 | | | V151HA32
V151HA40 | 150
150 | 200
200 | 220
300 | 25000 400004 | 216
216 | 240
240 | 264
264 | 410
405 | 4000 8000 | | | V181HA32
V181HA40 | 180
180 | 240
240 | 240
330 | 25000 40000 | 254
254 | 282
282 | 310
310 | 475
468 | 3200 6800 | | | V201HA32
V201HA40 | 200 | 265
265 | 260
350 | 25000 40000 | 283
283 | 314
314 | 345
345 | 540
533 | 3180 6350 | | | V251HA32
V251HA40 | 250
250 | 330
330 | 330
370 | 25000 40000 | 351
351 | 390
390 | 429
429 | 650
630 | 2500 5000 | | | V271HA32
V271HA40 | 275
275 | 369
369 | 360
400 | 25000 40000 | 387
387 | 430
430 | 473
473 | 710
690 | 2200 4500 | | | V301HA32
V301HA40 | 300
300 | 410
410 | 370
430 | 25000 40000 | 423
423 | 470
470 | 517
517 | 795
780 | 2050 4100 | | | V321HA32
V321HA40 | 320
320 | 420
420 | 390
460 | 25000 40000 | 459
459 | 510
510 | 561
561 | 845
825 | 1900 3800 | | | V331HA32
V331HA40 | 330
330 | 435
435 | 385
475 | 25000 40000 | 467
467 | 518.5
518.5 | 570
570 | 860
843 | 1870 3750 | | | V351HA32
V351HA40 | 350
350 | 460
460 | 390
500 | 25000 40000 | 495
495 | 549.5
549.5 | 604
604 | 910
894 | 1800 3600 | | | V391HA32
V391HA40 | 385
385 | 510
510 | 395
550 | 25000 40000 | 545
545 | 604
604 | 663
663 | 1020
1000 | 1750 3500 | | | V421HA32
V421HA40 | 420
420 | 560
560 | 400
600 | 25000 40000 | 612
612 | 680
680 | 748
748 | 1120
1100 | 1500 3000 | | | V441HA32
V441HA40 | 440
440 | 585
585 | 420
630 | 25000 40000 | 622
622 | 690
690 | 758
758 | 1200
1147 | 1450 2900 | | | V481HA32
V481HA40 | 480
480 | 640
640 | 450
650 | 25000 40000 | 675
675 | 750
750 | 825
825 | 1290
1230 | 1300 2700 | | | V511HA32
V511HA40 | 510
510 | 675
675 | 500
700 | 25000 40000 | 738
738 | 820
820 | 902
902 | 1355
1295 | 1200 2500 | | | V551HA32
V551HA40 | 550
550 | 710
710 | 530
755 | 25000 40000 | 778
778 | 863.5
863.5 | 949
949 | 1515
1430 | 1190 2390 | | | V571HA32
V571HA40 | 575
575 | 730
730 | 550
770 | 25000 40000 | 819
819 | 910
910 | 1001
1001 | 1570
1480 | 1100 2200 | | | V661HA32
V661HA40 | 660
660 | 850
850 | 600
900 | 25000 40000 | 945
945 | 1050
1050 | 1155
1155 | 1820
1720 | 1000 2000 | | | V681HA32
V681HA40 | 680
680 | 875
875 | 610
925 | 25000
40000 | 962
962 | 1067.5
1067.5 | 1173
1173 | 1830
1780 | 850
1900 | | | V751HA32
V751HA40 | 750
750 | 970
970 | 700
1050 | 25000
40000 | 1080
1080 | 1200
1200 | 1320
1320 | 2050
2000 | 800
1800 | | Note: Average power dissipation of transients not to exceed 2.0W per varistor Averlage power dissipation of transients not to exceed 2-ow per Varistor 40kA capability depends on applications rated up to 97Vrms. 30kA applies if > 97 Vrms. 40kA capability depends on applications rated up to 115Vrms. 30kA applies if > 115 Vrms. 40kA capability depends on applications rated up to 123Vrms. 30kA applies if > 123 Vrms. 40kA capability depends on applications rated up to 132Vrms. 30kA applies if > 132Vrms. # **Power Dissipation Ratings** Should transients occur in rapid succession, the average power dissipation required is simply the energy (watt-seconds) per pulse times the number of pulses per second. The power so developed must be within the specifications shown on the Device Ratings and Specifications table for the specific device. Furthermore, the operating values need to be derated at high temperatures as shown in above. Because varistors can only dissipate a relatively small amount of average power they are, therefore, not suitable for repetitive applications that involve substantial amounts for average power dissipation. # **Peak Pulse Current Test Waveform** 0, = Virtual Origin of Wave T = Time from 10% to 90% of Peak $T_1 = Rise Time = 1.25 \times T$ T_2 = Decay Time **Example** - For an 8/20 μ s Current Waveform: $8\mu s = T_1 = Rise Time$ $20\mu s = T_2 = Decay Time$ ### **Maximum Clamping Voltage for 32mm Parts** #### V111HA32-V751HA32 # **Maximum Clamping Voltage for 40mm Parts** #### V111HA40-V751HA40 # Industrial High Energy Terminal Varistors > HA Series # **Repetitive Surge Capability for 32mm Parts** #### V111HA32 - V751HA32 # **Repetitive Surge Capability for 40mm Parts** #### V111HA40 - V751HA40 # **Wave Solder Profile** # Non Lead-free Profile # Lead-free Profile # **Physical Specifications** | Lead Material | Tin-plated Copper | |------------------------------|--| | Soldering
Characteristics | Solderability per MIL-STD-202, Method 208 | | Insulating Material | Cured, flame retardant epoxy polymer meets UL94V–0 requirements. | | Device Labeling | LF, Part Number and date code | # **Environmental Specifications** | Operating Temperature | -55°C to +85°C/ | |-----------------------|--| | Storage Temperature | -55°C to +125°C | | Humidity Aging | +85°C, 85% RH, 1000 hours
+/- 10% typical resistance change | | Thermal Shock | +85°C to -40°C 5 times
+/- 10% typical resistance change | | Solvent Resistance | MIL-STD-202, Method 215 | | Moisture Sensitivity | Level 1, J-STD-020 | # **Metal-Oxide Varistors (MOVs)** Industrial High Energy Terminal Varistors > HA Series # **Dimensions** #### **HA Series Outline Specifications** (Dimensions in Millimeters) | | D | Н | В | Х | Т | T1 | øΑ | s | |------|------|-------|-----|-----|-----|------|-----|------------------------------| | | Max | Max | Min | Nom | Nom | Max | Max | Offset | | HA32 | 35.5 | 50.00 | 3.0 | 25 | 9.3 | 10.4 | 4.2 | Depends on
Device Voltage | | HA40 | 42.5 | 5700 | 3.0 | 25 | 9.3 | 10.4 | 4.2 | (See Table Below) | # **HC Series Outline Specifications** (Dimensions in Millimeters) | | D | Н | В | X | Т | R | S _c | |------|------|-------|-----|-----|------|-----|------------------------------| | | Max | Max | Min | Nom | Nom | Max | Offset | | HC32 | 35.5 | 50.00 | 5.0 | 25 | 9.30 | 1.0 | Depends on
Device Voltage | | HC40 | 42.5 | 57.00 | 5.0 | 25 | 9.30 | 1.0 | (See Table Below) | # **HA Series Maximum Thickness and Terminal Offsets** (Dimensions in Millimeters) | Valtana | Thickne | ess "W" | Dimension "S" (-/+1mm) | | | |-------------|---------|---------|------------------------|------|--| | Voltage | HA32 | HA40 | HA32 | HA40 | | | V111 - V351 | 9.00 | 9.00 | 3.90 | 3.90 | | | V391 - V511 | 11.00 | 11.00 | 2.60 | 2.60 | | | V551 - V751 | 13.00 | 13.00 | 1.00 | 1.00 | | # **HC Series Maximum Thickness and Terminal Offsets** (Dimensions in Millimeters) | Voltage | Thickne | ess "W" | Dimension "S _c " (-/+1mm) | | | |-------------|---------|---------|--------------------------------------|-------|--| | voitage | HC32 | HC40 | HC32 | HC40 | | | V111 - V351 | 9.00 | 9.00 | 6.00 | 6.00 | | | V391 - V511 | 11.00 | 11.00 | 7.30 | 8.10 | | | V551 - V751 | 13.00 | 13.00 | 8.90 | 10.00 | | # **Part Numbering System**