CHANGE NOTIFICATION May 22, 2014 Dear Sir/Madam: PCN# 052214 ## Subject: Notification of Change to LTM2881-3/-5 Datasheet Please be advised that Linear Technology Corporation has made a minor change to the LTM2881-3/-5 Datasheet to improve manufacturability. A datasheet change to the I_{CC2S} (V_{CC2} Short-Circuit Current) specification removes the temperature range and maximum value. The specification is changed to a typical value of 200mA as shown in the attached redlined electrical characteristics table. There were no changes to the die, and all other functional and parametric specifications are unchanged. Product shipped after July 23, 2014 will be tested to the new limits. Should you have any further questions, please feel free to contact me at 408-432-1900 ext. 2077, or by email at jason.hu@linear.com. If I do not hear from you by July 23, 2014, we will consider this change to be approved by your company. Sincerely, Jason Hu Quality Assurance Engineer **ELECTRICAL CHARACTERISTICS** The ullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. LTM2881-3 $V_{CC} = 3.3V$, LTM2881-5 $V_{CC} = 5.0V$, $V_L = 3.3V$, GND = GND2 = 0V, ON = V_L unless otherwise noted. | SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS | |------------------------|---|---|---|----------------------|------------|--|----------------| | Power Supp | ly | | | | | | | | Vcc | V _{CC} Supply Voltage | LTM2881-3
LTM2881-5 | • | 3.0
4.5 | 3.3
5.0 | 3.6
5.5 | V
V | | VL | V _L Supply Voltage | | • | 1.62 | | 5.5 | V | | ICCPOFF | V _{CC} Supply Current in Off Mode | ON = 0V | • | | 0 | 10 | μА | | I _{CCS} | V _{CC} Supply Current in On Mode | LTM2881-3 DE = 0V, \overline{RE} = V _L , No Load
LTM2881-5 DE = 0V, \overline{RE} = V _L , No Load
LTM2881-5, H/MP-Grade | • | | 20
15 | 25
19
20 | mA
mA
mA | | V _{CC2} | Regulated V _{CC2} Output Voltage,
Loaded | LTM2881-3 DE = 0V, \overline{RE} = V _L , I _{LOAD} = 100mA
LTM2881-5 DE = 0V, \overline{RE} = V _L , I _{LOAD} = 150mA
LTM2881-3, H/MP-Grade, I _{LOAD} = 90mA | • | 4.75
4.75
4.75 | 5.0
5.0 | | V
V
V | | V _{CC2NOLOAD} | Regulated V _{CC2} Output Voltage,
No Load | DE=0V, RE=VL, No Load Add typical value | | 4.8 | 5.0 | 5.35 | V | | | Efficiency | I _{CC2} = 100mA, LTM2881-5 (Note 2) | | | 62 | | % | | I _{CC2S} | V _{CC2} Short-Circuit Current | DE = 0V, RE = VL, VCC2 = 0V | • | _ | 200 | 250 | mA | | Driver | | | | Dele | te 🦯 | | | | V _{OD} | Differential Driver Output Voltage | $R = \infty \text{ (Figure 1)}$ $R = 27\Omega \text{ (RS485) (Figure 1)}$ $R = 50\Omega \text{ (RS422) (Figure 1)}$ | • | 2.1
2.1 | | V _{CC2}
V _{CC2}
V _{CC2} | V
V
V | | Δ V _{0D} | Difference in Magnitude of Driver
Differential Output Voltage for
Complementary Output States | $R=27\Omega$ or $R=50\Omega$ (Figure 1) | • | | | 0.2 | V | | V _{OC} | Driver Common Mode Output
Voltage | $R=27\Omega$ or $R=50\Omega$ (Figure 1) | • | | | 3 | V | | Δ V _{OC} | Difference in Magnitude of Driver
Common Mode Output Voltage
for Complementary Output States | $R=27\Omega$ or $R=50\Omega$ (Figure 1) | • | | | 0.2 | V | | I _{OZD} | Driver Three-State (High
Impedance) Output Current on
Y and Z | DE = 0V, (Y or Z) = -7V, +12V
DE = 0V, (Y or Z) = -7V, +12V, H/MP-Grade | • | | | ±10
±50 | μA
μA | | I _{OSD} | Maximum Driver Short-Circuit
Current | -7V ≤ (Y or Z) ≤ 12V (Figure 2) | • | -250 | | 250 | mA | | Receiver | | | | | | | | | R _{IN} | Receiver Input Resistance | $\overline{\text{RE}}$ = 0V or V _L , V _{IN} = -7V, -3V, 3V, 7V, 12V (Figure 3)
$\overline{\text{RE}}$ = 0V or V _L , V _{IN} = -7V, -3V, 3V, 7V, 12V (Figure 3),
H/MP-Grade | • | 96
48 | 125
125 | | kΩ
kΩ | | R _{TE} | Receiver Termination Resistance
Enabled | TE = V_L , $V_{AB} = 2V$, $V_B = -7V$, $0V$, $10V$ (Figure 8) | • | 108 | 120 | 156 | Ω | | I _{IN} | Receiver Input Current (A, B) | ON = 0V V_{CC2} = 0V or 5V, V_{IN} = 12V (Figure 3)
ON = 0V V_{CC2} = 0V or 5V, V_{IN} = 12V (Figure 3), H/MP-Grade | • | | | 125
250 | μА | | | | ON = 0V V_{CC2} = 0V or 5V, V_{IN} = $-7V$ (Figure 3)
ON = 0V V_{CC2} = 0V or 5V, V_{IN} = $-7V$ (Figure 3), H/MP-Grade | • | -100
-145 | | | μА | | V _{TH} | Receiver Differential Input
Threshold Voltage (A-B) | -7V ≤ B ≤ 12V | • | -0.2 | | 0.2 | V | | ΔV_{TH} | Receiver Input Failsafe Hysteresis | B = 0V | | | 25 | | mV | | | Receiver Input Failsafe Threshold | B = 0V | | -0.2 | -0.05 | 0 | V | 2881fg