October 1987 Revised January 2004

MM74C154

4-Line to 16-Line Decoder/Demultiplexer

General Description

FAIRCHILD

SEMICONDUCTOR

The MM74C154 one of sixteen decoder is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement transistors. The device is provided with two strobe inputs, both of which must be in the logical "0" state for normal operation. If either strobe input is in the logical "1" state, all 16 outputs will go to the logical "1" state.

To use the product as a demultiplexer, one of the strobe inputs serves as a data input terminal, while the other strobe input must be maintained in the logical "0" state. The information will then be transmitted to the selected output as determined by the 4-line input address.

Features

- Supply voltage range: 3V to 15V
- Tenth power TTL compatible: Drive 2 LPTTL loads
- High noise margin: 1V guaranteed
- High noise immunity: 0.45 V_{CC} (typ.)

Applications

- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Alarm systems
- Industrial electronics
- Remote metering
- Computers

Ordering Code:

Order Number	Package Number	Package Description
MM74C154N	N24A	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-011, 0.600" Wide

Connection Diagram

www.fairchildsemi.com

MM74C154 4-Line to 16-Line Decoder/Demultiplexe

Truth Table

		Inpu	Its			Outputs															
G1	G2	D	С	В	Α	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
L	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	L	L	н	н	L	н	н	н	н	н	н	н	н	Н	н	н	н	н	Н
L	L	L	L	н	L	н	н	L	н	н	н	н	н	н	н	Н	н	н	н	н	Н
L	L	L	L	н	н	н	н	н	L	н	н	н	н	н	н	Н	н	н	н	н	Н
L	L	L	н	L	L	н	н	н	н	L	н	н	н	н	н	Н	н	н	н	н	Н
L	L	L	н	L	н	н	н	н	н	н	L	н	н	н	н	н	н	н	н	н	Н
L	L	L	н	н	L	н	н	н	н	н	н	L	н	н	н	н	н	н	н	н	Н
L	L	L	н	н	н	н	н	н	н	н	н	н	L	н	н	н	н	н	н	н	Н
L	L	н	L	L	L	н	н	н	н	н	н	н	н	L	н	Н	н	н	н	н	Н
L	L	н	L	L	н	н	н	н	н	н	н	н	н	н	L	Н	н	н	н	н	н
L	L	н	L	н	L	н	н	н	н	н	н	н	н	н	н	L	н	н	н	н	Н
L	L	н	L	н	н	н	н	н	н	н	н	н	н	н	н	Н	L	н	н	н	н
L	L	н	н	L	L	н	н	н	н	н	н	н	н	н	н	н	н	L	н	н	Н
L	L	н	н	L	н	н	н	н	н	н	н	н	н	н	н	н	н	н	L	н	Н
L	L	н	н	н	L	н	н	н	н	н	н	н	н	н	н	Н	н	н	н	L	Н
L	L	н	н	н	н	н	н	н	н	н	н	н	Н	н	н	н	н	н	н	н	L
L	н	х	Х	Х	Х	н	н	н	н	н	н	н	Н	н	н	н	н	н	н	н	н
н	L	Х	Х	Х	Х	н	н	н	н	н	н	н	Н	н	н	н	н	н	н	н	н
н	н	х	х	Х	Х	н	н	н	Н	н	н	н	н	н	н	н	н	н	н	н	н
K = "Doi	n't Care"	Condi	tion			1															

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 1)

Voltage at Any Pin	–0.3V to V _{CC} + 0.3V
Operating Temperature Range	$-55^{\circ}C$ to $+125^{\circ}C$
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$
Maximum V _{CC} Voltage	18V
Power Dissipation	
Dual-In-Line	700 mW
Small Outline	500 mW
Operating V _{CC} Range	3V to 15V
Lead Temperature	
(Soldering, 10 seconds)	260°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

DC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	смоз		• •	,		
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5.0V$	3.5			V
		$V_{CC} = 10V$	8.0			v
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5.0V$		1.5		V
		$V_{CC} = 10V$			2.0	v
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0V, I_{O} = -10\mu A$	4.5			V
		$V_{CC} = 10V, I_{O} = -10 \ \mu A$	9.0			v
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5.0V, I_{O} = 10\mu A$			0.5	V
		$V_{CC}=10V,I_O=10\;\mu A$			1.0	v
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μA
I _{CC}	Supply Current	$V_{CC} = 15V$		0.05	300	μA
CMOS TO	LPTTL INTERFACE		•			
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 4.75V$	V _{CC} – 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 4.75V$			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75 V$, $I_O = -100 \ \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75 V$, $I_{O} = 360 \ \mu A$			0.4	V
OUTPUT D	RIVE (See Family Characteristics	Data Sheet) (Short Circuit Current)	•			
ISOURCE	Output Source Current	$V_{CC} = 5.0V, V_{IN(0)} = 0V$	-1.75			mA
		$T_A = 25^{\circ}C, V_{OUT} = 0V$				
ISOURCE	Output Source Current	$V_{CC} = 10V, V_{IN(0)} = 0V$	-8.0			mA
		$T_A = 25^{\circ}C, \ V_{OUT} = 0V$				
I _{SINK}	Output Sink Current	$V_{CC} = 5.0V, V_{IN(1)} = 5.0V$	1.75			mA
		$T_A = 25^{\circ}C, V_{OUT} = V_{CC}$				
I _{SINK}	Output Sink Current	$V_{CC} = 10V, V_{IN(1)} = 10V$	8.0			mA
		$T_A = 25^{\circ}C, V_{OUT} = V_{CC}$				

MM74C154

www.fairchildsemi.com

54
-
C
4
N
5
~
5
~

AC Electrical Characteristics (Note 2)

T 0500	$C_{\rm L} = 50 \rm pE$ unless otherwise noted
$1 \wedge = 25^{-1}$	u = 50 DE UNIESS OTREFWISE NOTED

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
t _{pd0}	Propagation Delay to a Logical	$V_{CC} = 5.0V$		275	400	ns		
	"0" from Any Input to Any Output	$V_{CC} = 10V$		100	200	115		
t _{pd0}	Propagation Delay to a Logical	$V_{CC} = 5.0V$		275	400	ns		
	"0" from G1 or G2 to Any Output	$V_{CC} = 10V$		100	200	115		
t _{pd0}	Propagation Delay to a Logical	$V_{CC} = 5.0V$		265	400	ns		
	"0" from Any Input to Any Output	$V_{CC} = 10V$		100	200	115		
t _{pd1}	Propagation Delay to a Logical	$V_{CC} = 5.0V$		265	400	ns		
	"1" from G1 or G2 to Any Output	or G2 to Any Output $V_{CC} = 10V$ 100 200				115		
CIN	Input Capacitance	(Note 3)		5.0		pF		
C _{PD}	Power Dissipation Capacitance	(Note 4)		60		pF		

Note 2: AC Parameters are guaranteed by DC correlated testing.

Note 3: Capacitance is guaranteed by periodic testing.

Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics Application Note AN-90.

Switching Time Waveforms

 $t_r = t_f = 20 \text{ ns}$

www.fairchildsemi.com