

CY7C65210

USB Billboard Controller

Features

- USB 2.0-certified, Full-Speed (12 Mbps)
 Supports native Billboard Device class driver
 Integrated USB termination resistors
- I²C interface
 Master up to 400 kHz
- General-purpose input/output (GPIO) pins: 9
- 2560 bytes flash for storing configuration parameters
- Billboard Device class specific descriptors
- Driver support for Billboard Device
 - Billboard Device class is natively supported by Windows 10 and Mac OS-X
 - Cypress provides drivers for
 - Windows 7 and Windows 8.x
 - Linux
- Clocking: Integrated 48-MHz clock oscillator
- Supports bus-/self-powered configurations
- USB Suspend mode for low power
- Operating voltage: 1.71 to 5.5 V
- Operating temperature:
 Commercial: 0 °C to 70 °C
 Industrial: -40 °C to 85 °C
- ESD protection: 2.2-kV HBM
- RoHS-compliant package
 24-pin QFN (4.0 mm × 4.0 mm, 0.55 mm, 0.5 mm pitch)
- Ordering part number
 CY7C65210-24LTXI

Block Diagram

Applications

Any Type-C Device Container that supports Alternate Mode requires Billboard Device support such as:

- Dongles for Type-C
- Docking Stations
- Monitors

Functional Description

The CY7C65210 is a Full-Speed USB controller, which enumerates as Billboard Device. It integrates a voltage regulator, an oscillator, and flash memory for storing configuration parameters, offering a cost-effective solution. CY7C65210 supports bus-powered mode and enables efficient system power management with suspend and remote wake-up signals. It is available in a 24-pin QFN package.

For a complete list of related resources, click here.

Cypress Semiconductor Corporation Document Number: 001-97082 Rev. *A 198 Champion Court •

San Jose, CA 95134-1709 • 408-943-2600 Revised July 22, 2015

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right device for your design, and to help you to quickly and effectively integrate the device into your design.

- Overview: USB Portfolio, USB Roadmap
- USB 2.0 Product Selectors: USB-Serial Bridge Controller, USB to UART Controller (Gen I), enCoRe II, enCoRe III, enCoRe V
- Code Examples: USB Full-Speed
- Models: IBIS

CY7C65210

Contents

Pin Description	4
Functional Overview	
USB and Billboard Device functionality	5
Serial Communication	
GPIO Interface	5
Memory	5
System Resources	5
Suspend and Resume	5
WAKEUP	
Internal Flash Configuration	6
Electrical Specifications	7
Absolute Maximum Ratings	7
Operating Conditions	7
Device-Level Specifications	7
GPIO	8
nXRES	9
I2C Specifications	9
Flash Memory Specifications	

Application Schematic10	0
Ordering Information1	1
Ordering Code Definitions1	
Package Information12	
Acronyms1	
Document Conventions1	
Units of Measure1	3
Document History Page14	4
Sales, Solutions, and Legal Information1	
Worldwide Sales and Design Support1	
Products1	5
PSoC® Solutions1	5
Cypress Developer Community1	5
Technical Support1	

Pin Description

Pin ^[1]	Туре	Name	Default	Description	
1	GPIO	GPIO_6	TRISTATE	GPIO	
2	GPIO	GPIO_7	TRISTATE	GPIO	
3	Power	VSSD	-	Digital Ground	
4	GPIO	GPIO_8	TRISTATE	GPIO	
5	GPIO	GPIO_9	TRISTATE	GPIO	
6	GPIO	GPIO_10	TRISTATE	GPIO	
7	GPIO	GPIO_11	POWER#	GPIO	
8	Output	SUSPEND	-	Indicates device in suspend mode. Can be configured as active low/high using the configuration utility	
9	Input	WAKEUP	_	Wakeup device from suspend mode. Can be configured as active low/high using the configuration utility	
10	USBIO	USBDP	_	USB Data Signal Plus, integrates termination resistor and a 1.5-k Ω pull-up resistor	
11	USBIO	USBDM	_	USB Data Signal Minus, integrates termination resistor	
12	Power	VCCD	_	This pin should be decoupled to ground using a $1-\mu$ F capacitor or by connecting a 1.8-V supply	
13	Power	VSSD	_	Digital Ground	
14	nXRES	nXRES	_	Chip reset, active low. Can be left unconnected or have a pull-up resistor connected if not used	
15	Power	VBUS	_	VBUS Supply, 3.15 V to 5.25 V	
16	Power	VSSD	_	Digital Ground	
17	Power	VSSA	_	Analog Ground	
18	Input	Debug I/O	-	Used for debug purpose. Should be left floating.	
19	GPIO	GPIO_1	INPUT	Can be used as wakeup source to wakeup device from Suspend mode.	
20	GPIO	GPIO_2	TRISTATE	GPIO	
21	SCB/GPIO	SCB_1/GPIO_3	SCL	I ² C SCL	
22	SCB/GPIO	SCB_2/GPIO_4	SDA	I ² C SDA	
23	GPIO	GPIO_5	TRISTATE	GPIO	
24	Power	VDDD	_	Supply to the device core and Interface, 1.71 to 5.5 V	

Table 1. GPIO Configuration

GPIO Configuration Option	Description
INPUT	Input GPIO
	This active low output signal is used to control power to an external logic through a switch to cut power off during an Unconfigured USB device and USB suspend. 0 - USB device in Configured state 1 - USB device in Unconfigured state or during USB suspend mode

Note
1. Any pin acting as an Input pin should not be left unconnected.

Functional Overview

USB and Billboard Device functionality

USB

CY7C65210 has a built-in USB 2.0 Full-Speed transceiver. The transceiver incorporates the internal USB series termination resistors on the USB data lines and a 1.5-k Ω pull-up resistor on USBDP.

Billboard Device functionality

CY7C65210 is used to communicate the Alternate Modes supported by a Device Container to a USB host system. CY7C65210 sends this information through BOS descriptor and string descriptors in human readable format. CY7C65210 supports Billboard descriptor as part of complete BOS descriptor. For further details on the device class, refer to the USB Billboard Device class specification, Rev. 1.

Serial Communication

CY7C65210 has a Serial Communication block (SCB) that implements $\mathsf{I}^2\mathsf{C}$ interface.

I²C Interface

The I²C interface implements full multi-master mode and supports up to 400 kHz. For further details on the protocol, refer to the NXP I²C specification, Rev. 5.

Notes

- I²C ports are not tolerant to higher voltages. Therefore, they cannot be hot-swapped or powered up independently when chip is not powered.
- The minimum fall time of the SCL is met (as per NXP I²C specification Rev5) when V_{DDD} is between 1.71 V and 3.0 V. When V_{DDD} is within the range of 3.0 V to 3.6 V, it is recommended to add a 50 pF capacitor on the SCL signal.

GPIO Interface

CY7C65210 has nine configurable GPIOs. The configurable options are as follows:

- INPUT: Input GPIO
- POWER#: Power control

Memory

CY7C65210 has a 2560 bytes configurable flash. Flash is used to store USB parameters, such as VID/PID, serial number, product and manufacturer descriptors, and Billboard Device class specific descriptors.

System Resources

Power System

CY7C65210 supports the USB Suspend mode to control power usage. CY7C65210 operates in bus-powered or self-powered modes over a range of 3.15 to 5.5 V.

Clock System

CY7C65210 has a fully integrated clock with no external components required. The clock system is responsible for providing clocks to all subsystems.

Internal 48-MHz Oscillator

The internal 48-MHz oscillator is the primary source of internal clocking in CY7C65210.

Internal 32-kHz Oscillator

The internal 32-kHz oscillator is primarily used to generate clocks for peripheral operation in the USB Suspend mode.

Reset

The reset block provides reliable power-on reset and brings the device back to the default known state. The nXRES (active low) pin can be used by the external devices to reset the CY7C65210.

Suspend and Resume

The CY7C65210 device asserts the SUSPEND pin when the USB bus enters the suspend state. This helps in meeting the stringent suspend current requirement of the USB 2.0 specification, while using the device in bus-powered mode. The device resumes from the suspend state under either of the two following conditions:

- 1. Any activity is detected on the USB bus
- 2. The WAKEUP pin is asserted to generate remote wakeup to the host

WAKEUP

The WAKEUP pin is used to generate the remote wakeup signal on the USB bus. The remote wakeup signal is sent only if the host enables this feature through the SET_FEATURE request. The device communicates support for the remote wakeup to the host through the configuration descriptor during the USB enumeration process.

Internal Flash Configuration

The internal flash memory can be used to store the configuration parameters provided in Table 2.

Table 2. Internal Flash Configuration

Parameter	Default Value	Description							
	USB Configuration								
USB Vendor ID (VID)	0x04B4	Default Cypress VID. Can be configured to customer VID.							
USB Product ID (PID)	0x5210	Default Cypress PID. Can be configured to customer PID.							
Manufacturer string	Cypress Semiconductor	Can be configured with any string up-to 126 characters ^[2] .							
Product string	Billboard Device	Can be configured with any string up-to 126 characters ^[2] .							
Serial string	0001	Can be configured with any string up-to 126 characters ^[2] .							
Power mode	Bus powered	Can be configured to bus-powered or self-powered mode.							
Max current draw	100 mA	Can be configured to any value from 0 to 500 mA. The configuration descriptor will be updated based on this.							
Remote wakeup	Enabled	Can be disabled. Remote wakeup is initiated by asserting the WAKEUP or GPIO_1 pin.							
bcdDevice	0x00	Can be configured with specific binary coded decimal number.							
	GPIO C	onfiguration							
GPIO_1	Input								
GPIO_2	Tristate								
GPIO_3	Tristate	1							
GPIO_4	Tristate								
GPIO_5	Tristate								
GPIO_6	Tristate	GPIO can be configured as shown in Table 1 on page 4.							
GPIO_7	Tristate								
GPIO_8	Tristate								
GPIO_9	Tristate								
GPIO_10	Tristate								
GPIO_11	POWER#								
	Billboard Device class	Descriptor Configuration							
iAdditionalInfoURL	www.cypress.com/Type-C	Can be configured with any string up-to 126 characters ^[2] .							
bNumberOfAlternateModes	0x01	Can be configured with any value from 0x01 to 0x08.							
bPreferredAlternateMode	0x00	Can be configured with any value from 0x00 to 0x07.							
VCONN Power	0x0000	Can be configured with any value from 0x0000 to 0x0006 or it can be configured with value 0x8000.							
SVID	0xFF01	Can be configured to specific SVID.							
bAlternateMode	0x01	Can be configured with any value from 0x01 to 0x08.							
iAlternateModeString	Type-C to Display adapter. For further assistance, see http://help.vesa.org/dp-usb-type-c	Can be configured with any string up-to 126 characters ^[2] .							

Note

2. Maximum available configuration space for all string descriptors is 1920 bytes. Each string descriptor can be configured up to 126 characters.

Electrical Specifications

Absolute Maximum Ratings

Supply voltage to ground potential	
V _{DDD}	
V _{BUS}	
V _{CCD} 1.95 V	
V _{GPIO} V _{DDD} + 0.5 V	

Static discharge voltage ESD protection levels:

2.2-KV HBM per JESD22-A114	
Latch-up current	140 mA
Current per GPIO	. 25 mA

Operating Conditions

T _A (ambient tempera	ture under bias) 0 °C to 70 °C
	40 °C to +85 °C
V _{BUS} supply voltage	3.15 V to 5.50 V
V _{DDD} supply voltage	1.71 V to 5.50 V
V_{CCD} supply voltage	1.71 V to 1.89 V

Device-Level Specifications

All specifications are valid for –40 °C \leq T_A \leq 85 °C, T_J \leq 100 °C, and 1.71 V to 5.50 V, except where noted.

Table 3. DC Specifications

Parameter	Description	Min	Тур	Max	Units	Details/Conditions
		3.15	3.30	3.45	V	Set and configure the correct
V _{BUS}	V _{BUS} supply voltage	4.35	5.00	5.5	V	voltage range using a configuration utility for V _{BUS} . Default 5 V.
		1.71	1.80	1.89	V	Used to set I/O and core voltage. Set
V _{DDD}	V _{DDD} supply voltage	2.0	3.3	5.5	V	and configure the correct voltage range using a configuration utility for V_{DDD} . Default 3.3 V.
V _{CCD}	Output voltage (for core logic)	_	1.80	_	V	$\begin{array}{l} \text{Do not use this supply to drive the} \\ \text{external device.} \\ \bullet \ 1.71 \ V \leq V_{DDD} \leq 1.89 \ V: \ Short \\ \text{the } V_{CCD} \ \text{pin with the } V_{DDD} \ \text{pin} \\ \bullet \ V_{DDD} > 2 \ V - \ Connect \ a \ 1-\mu F \\ capacitor \ (Cefc) \ between \ the \\ V_{CCD} \ \text{pin and ground} \end{array}$
Cefc	External regulator voltage bypass	1.00	1.30	1.60	μF	X5R ceramic or better
I _{DD1}	Operating supply current	_	20	-	mA	USB 2.0 FS, UART at 1-Mbps single channel, no GPIO switching.
I _{DD2}	USB Suspend supply current	_	5	_	μA	Does not include current through a pull-up resistor on USBDP.

Note

Usage above the Absolute Maximum conditions may cause permanent damage to the device. Exposure to Absolute Maximum conditions for extended periods of
time may affect device reliability. When used below Absolute Maximum conditions but above normal operating conditions, the device may not operate to specification.

Table 4. AC Specifications

Parameter	Description	Min	Тур	Max	Units	Details/Conditions
Fall Time_FS	FS USB Fall Time	_	7.815	-	ns	90% to 10% of full swing, 50pF load
Rise Time_FS	FS USB Rise Time	-	8.367	-	ns	10% to 90% of full swing, 50pF load
TRFM_FS	FS Rise/Fall Matching	_	107.024	-	%	-
VCRS_FS	FS Crossover Voltage	-	1.797	-	V	_
TDJ1	FS Driver Jitter (next)	-	-0.339	-	ns	-
TDJ2	FS Driver Jitter (paired)	-	-0.285	-	ns	-
TFDEOP	FS Differential to EOP Skew	-	-0.076	-	ns	-
F1	Frequency	47.04	48	48.96	MHz	Non-USB mode
F2		47.88	48	48.12	MHz	USB mode
Zout	USB driver output impedance	28	-	44	Ω	-
Twakeup	Wakeup from USB Suspend mode	_	25	_	μs	_

GPIO

Table 5. GPIO DC Specification

Parameter	Description	Min	Тур	Max	Units	Details/Conditions
V _{IH} ^[4]	Input voltage high threshold	0.7 × V _{DDD}	-	-	V	CMOS Input
V _{IL}	Input voltage low threshold	-	-	$0.3 \times V_{DDD}$	V	CMOS Input
V _{IH} ^[4]	LVTTL input, V _{DDD} < 2.7 V	$0.7 \times V_{DDD}$	-	_	V	-
V _{IL}	LVTTL input, V _{DDD} < 2.7V	_	-	$0.3 \times V_{DDD}$	V	-
V _{IH} ^[4]	LVTTL input, $V_{DDD} \ge 2.7V$	2	-	_	V	-
V _{IL}	LVTTL input, $V_{DDD} \ge 2.7V$	_	-	0.8	V	-
V _{OH}	CMOS output voltage high level	V _{DDD} – 0.4	-	_	V	I _{OH} = 4 mA, V _{DDD} = 5 V +/- 10%
V _{OH}	CMOS output voltage high level	V _{DDD} – 0.6	-	_	V	I _{OH} = 4 mA, V _{DDD} = 3.3 V +/- 10%
V _{OH}	CMOS output voltage high level	V _{DDD} – 0.5	-	-	V	I _{OH} = 1 mA, V _{DDD} = 1.8 V +/- 5%
V _{OL}	CMOS output voltage low level	-	-	0.4	V	I _{OL} = 8 mA, V _{DDD} = 5 V +/- 10%
V _{OL}	CMOS output voltage low level	-	-	0.6	V	I _{OL} = 8 mA, V _{DDD} = 3.3 V +/- 10%
V _{OL}	CMOS output voltage low level	-	-	0.6	V	I _{OL} = 4 mA, V _{DDD} = 1.8 V +/- 5%
Rpullup	Pull-up resistor	3.5	5.6	8.5	kΩ	-
Rpulldown	Pull-down resistor	3.5	5.6	8.5	kΩ	-
IIL	Input leakage current (absolute value)	-	-	2	nA	25 °C, V _{DDD} = 3.0 V
C _{IN}	Input capacitance	-	-	7	pF	-
Vhysttl	Input hysteresis LVTTL; V _{DDD} > 2.7 V	25	40	С	mV	-
Vhyscmos	Input hysteresis CMOS	$0.05 \times V_{DDD}$	_	-	mV	-

Table 6. GPIO AC Specification

Parameter	Description	Min	Тур	Max	Units	Details/Conditions
T _{RiseFast1}	Rise Time in Fast mode	2	-	12	ns	V _{DDD} = 3.3 V/ 5.5 V, Cload = 25 pF
T _{FallFast1}	Fall Time in Fast mode	2	-	12	ns	V _{DDD} = 3.3 V/ 5.5 V, Cload = 25 pF
T _{RiseSlow1}	Rise Time in Slow mode	10	-	60	ns	V _{DDD} = 3.3 V/ 5.5 V, Cload = 25 pF
T _{FallSlow1}	Fall Time in Slow mode	10	-	60	ns	V _{DDD} = 3.3 V/ 5.5 V, Cload = 25 pF
T _{RiseFast2}	Rise Time in Fast mode	2	-	20	ns	V _{DDD} = 1.8 V, Cload = 25 pF
T _{FallFast2}	Fall Time in Fast mode	20	-	100	ns	V _{DDD} = 1.8 V, Cload = 25 pF
T _{RiseSlow2}	Rise Time in Slow mode	2	-	20	ns	V_{DDD} = 1.8 V, Cload = 25 pF
T _{FallSlow2}	Fall Time in Slow mode	20	-	100	ns	V_{DDD} = 1.8 V, Cload = 25 pF

nXRES

Table 7. nXRES DC Specifications

Parameter	Description	Min	Тур	Max	Units	Details/Conditions
V _{IH}	Input voltage high threshold	$0.7 \times V_{DDD}$	-	-	V	_
V _{IL}	Input voltage low threshold	_	-	$0.3 \times V_{DDD}$	V	_
Rpullup	Pull-up resistor	3.5	5.6	8.5	kΩ	-
C _{IN}	Input capacitance	-	5	-	pF	_
Vhysxres	Input voltage hysteresis	-	100	-	mV	_

Table 8. nXRES AC Specifications

Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
Tresetwidth	Reset pulse width	1	_	-	μs	_

I²C Specifications

Table 9. I²C AC Specifications

Parameter	Description	Min	Тур	Max	Units	Details/Conditions
F _{I2C}	I ² C frequency	1	-	400	kHz	_

Flash Memory Specifications

Table 10. Flash Memory Specifications

Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
Fend	Flash endurance	100K	-	-	cycles	_
	Flash retention. $T_A \le 85$ °C, 10 K program/erase cycles	10	_	-	years	-

Application Schematic

Figure 1 shows the application schematic for CY7C65210. Refer to the Pin Description on page 4 for signal details.

Ordering Information

Table 11 lists the key package features and ordering codes of the CY7C65210. For more information, contact your local sales representative.

Table 11. Key Features and Ordering Information

Package	Ordering Code	Operating Range
24-pin QFN (4.00 × 4.00 × 0.55 mm, 0.5 mm pitch) (Pb-free)	CY7C65210-24LTXI	Industrial
24-pin QFN (4.00 × 4.00 × 0.55 mm, 0.5 mm pitch) (Pb-free) – Tape and Reel	CY7C65210-24LTXIT	Industrial

Ordering Code Definitions

Package Information

Figure 2. 24-pin QFN 4 mm × 4 mm × 0.55 mm LQ24A 2.65 × 2.65 EPAD (Sawn)

NOTES :

- 1. 🕅 HATCH IS SOLDERABLE EXPOSED METAL.
- 2. REFERENCE JEDEC # MO-248
- 3. PACKAGE WEIGHT : 29 ± 3 mg 4. ALL DIMENSIONS ARE IN MILLIMETERS

001-13937 *F

Table 12. Package Characteristics

Parameter	Description	Min	Тур	Max	Units
T _A	Operating ambient temperature	-40	25	85	°C
THJ	Package θ_{JA}	-	18.4	-	°C/W

Table 13. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
24-pin QFN	260 °C	30 seconds

Table 14. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
24-pin QFN	MSL 3

Acronyms

Table 15. Acronyms Used in this Document

Acronym	Description
BOS	binary device object store
ESD	electrostatic discharge
GPIO	general purpose input/output
HBM	human-body model
I ² C	inter-integrated circuit
MCU	microcontroller unit
OSC	oscillator
PID	product identification
SCB	serial communication block
SCL	I ² C serial clock
SDA	I ² C serial data
SIE	serial interface engine
SVID	standard or vendor ID
USB	Universal Serial Bus
VID	vendor identification

Document Conventions

Units of Measure

Table 16. Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
DMIPS	Dhrystone million instructions per second
kΩ	kilo-ohm
KB	kilobyte
kHz	kilohertz
kV	kilovolt
Mbps	megabits per second
MHz	megahertz
mm	millimeter
V	volt

Document History Page

Document Title: CY7C65210, USB Billboard Controller Document Number: 001-97082						
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
**	4715309	MVTA	04/10/2015	New datasheet.		
*A	4839996	MVTA	07/22/2015	Updated Features, Block Diagram, Pin Description, GPIO Interface, and Memory. Updated Table 2. Updated Figure 2 (spec 001-13937 *E to *F) in Package Information.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction of failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-97082 Rev. *A

Revised July 22, 2015

All products and company names mentioned in this document may be the trademarks of their respective holders.