

E3D08065G

Silicon Carbide Schottky Diode E-Series Automotive

Features

- 650V Schottky Rectifier
- Zero Reverse Recovery Current
- Zero Forward Recovery Voltage
- High-Frequency Operation
- Temperature-Independent Switching Behavior
- Extremely Fast Switching
- Positive Temperature Coefficient on V_F

Benefits

- Higher System Level Efficiency
- Increase System Power Density
- Reduction of Heat Sink Requirements
- Parallel Devices Without Thermal Runaway

Applications

- Automotive Battery Chargers
- Boost diodes in PFC or DC/DC stages
- Free Wheeling Diodes in Inverter stages
- AC/DC Converters
- PV Inverters

Package

TO-263-2

Part Number	Package	Marking
E3D08065G	TO-263-2	E3D08065G

Symbol	Parameter	Value	Unit	Test Conditions	Note
V _{RRM}	Repetitive Peak Reverse Voltage	650	v		
V _R	DC Peak Reverse Voltage	650	V		
I _F	Continuous Forward Current	22 10 8	A	T _c =25°C T _c =135°C T _c =150°C	Fig. 3
P_{tot}	Power Dissipation	102 44	w	T _c =25°C T _c =110°C	Fig. 4
I _{FRM}	Repetitive Peak Forward Surge Current	31 18	А	T_c =25°C, t _p =10 ms, Half Sine Pulse T_c =110°C, t _p =10 ms, Half Sine Pulse	
dV/dt	Diode dV/dt ruggedness	200	V/ns	V _R =0-650V	
T_{J} , T_{stg}	Operating Junction and Storage Temperature	-55 to +175	°C		

Maximum Ratings (T_c = 25 °C unless otherwise specified)

CREE ᆃ

Electrical Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V _F	Forward Voltage	1.5 2.2	1.8 2.4	V	I _F = 8 A, T _J =25°C I _F = 8 A, T _J =175°C	Fig. 1
I _R	Reverse Current	10 12	51 204	μA	V _R = 650 V, T _J =25°C V _R = 650 V, T _J =175°C	Fig. 2
Q _c	Total Capacitive Charge	21		nC	$V_{R} = 400 \text{ V}, \text{ I}_{F} = 8\text{A}, \text{ T}_{J} = 25^{\circ}\text{C}$	Fig. 5
С	Total Capacitance	369 39 36		pF	$V_{R} = 0 V, T_{J} = 25^{\circ}C, f = 1 MHz$ $V_{R} = 200 V, T_{J} = 25^{\circ}C, f = 1 MHz$ $V_{R} = 400 V, T_{J} = 25^{\circ}C, f = 1 MHz$	Fig. 6
E _c	Capacitance Stored Energy	3.2		μJ	V _R = 400 V	

Note: This is a majority carrier diode, so there is no reverse recovery charge.

Thermal Characteristics

Symbol	Parameter	Тур.	Unit
$R_{_{ ext{ hetaJC}}}$	Thermal Resistance from Junction to Case	1.47	°C/W

Typical Performance

Typical Performance

Figure 5. Total Capacitance Charge vs. Reverse Voltage

Figure 7. Typical Capacitance Stored Energy

Figure 8. Transient Thermal Impedance

Package Dimensions

Package TO-263-2

Dim	Min	Тур	Max
A	4.32	4.445	4.57
A1		0.20	0.25
b	0.71	0.825	0.94
b2	1.15	1.275	1.4
с	0.356	0.4955	0.635
c2	1.22	1.31	1.4
D	8.89	9.145	9.4
D1	6.48	6.78	6.88
Е	10.04	10.16	10.28
E1	7.535	7.980	8.425
e	2.54		
L	14.73	15.24	15.75
L1	2.29	2.54	2.79
L2	1.15	1.27	1.39
θ	0°	4°	8°

Recommended Solder Pad Layout

Part Number	Package	Marking	
E3D08065G	TO-263-2	E3D08065G	

Note: Recommended soldering profiles can be found in the applications note here: http://www.wolfspeed.com/power_app_notes/soldering

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Wolfspeed representative or from the Product Ecology section of our website at http://www.wolfspeed.com/power/tools-and-support/product-ecology.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited
to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical
equipment, aircraft navigation or communication or control systems, or air traffic control systems.

Related Links

- Wolfspeed E-Series Family: http://wolfspeed.com/E-Series
- Wolfspeed SiC Schottky diode portfolio: http://www.wolfspeed.com/Power/Products#SiCSchottkyDiodes
- Schottky diode Spice models: http://www.wolfspeed.com/power/tools-and-support/DIODE-model-request2
- SiC MOSFET and diode reference designs: http://go.pardot.com/l/101562/2015-07-31/349i