

1.8V 20Gbps DP2.0 Linear ReDriver with AUX Listener & Pin Strap control

Features

- 4-to-4 linear ReDriver[™] channel configuration with CTLE gain compensation up to 13.8dB @20Gbps
- Supports 4-lane DP2.0 (UHBR20/UHBR13/UHBR10)/HBR3/ HBR2/HBR/RBR
- Ultra low latency (< 300ps) for better interoperability and data throughput
- 4 level controls on CTLE Gain (7.1 to 13.8dB), Flat Gain (-4 to +2dB)
- Integrated AUX channel listener for D3 power saving mode.
- Low Power DisplayPort active 324mW typical, D3 power down mode - 1.8mW typical, Disable Power - 27uW typical
- Single Power Supply: 1.8V +/-5%
- Industrial Temperature Support: -40°C to +85°C
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/

- Packaging (Pb-free & Green):
- ^o Tiny 32-pin, WLGA (FLA) 2.85 x 4.5 mm (0.4 mm pitch, 0.7mm max height)

Applications

- Graphics Add In Cards
- Laptop, Desktop and AIO PCs
- Workstation and Servers
- **Docking Station**
- **Display Monitors**
- Gaming Console
- Active Cables

Description

The DIODES[™] PI2DPX2023 is a 20Gbps DP2.0/DP1.4 linear ReDriver in a 4-to-4 configuration operated by a 1.8V power supply. The device supports UHBR20 (DP2.0 20Gbps), UHBR13.5 (DP2.0 13.5Gbps), UHBR10 (DP2.0 10Gbps), HBR3 (DP1.4 8.1Gbps), HBR2 (DP1.2 5.4Gbps), HBR(DP1.1 2.7Gbps) and RBR(DP1.0 1.62Gbps) under various DisplayPort speeds. With the on-chip AUX channel listener, the device can automatically monitor the system operation status to enter D3 power saving mode.

The non-blocking linear redriver design ensures that the differential signals conveying pre-shoot and de-emphasis equalization waveforms from the transmitter side to the receiver side help optimize the overall channel link adjustment conducted by the system transmitter and receiver that has been equipped with DFE. The CTLE equalizers are implemented at the inputs of the redriver to compensate the channel loss and reduce the ISI jitters. The flat gain adjustments support the eye diagram opening. The CTLE EQ gains and flat gains are tuned via pin strap control.

Ordering Information

Ordering Number	Package Code	Description
PI2DPX2023FLAEX	FLA	32-Pin, W-LGA4528-32

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. E = Pb-free and Green
- 5. X suffix = Tape/Reel

DIODES is a trademark of Diodes Incorporated in the United States and other countries.

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries.

ReDriver is a trademark of Diodes Incorporated.

Revision History

Date	Revision	Description
March 2021	1	Preliminary Datasheet Release
	1	Updated Pin Description & Block Diagram
April 2021	2	Update Pin Description
		Updated Section Description, Feature
	3	Updated Section Pin Description
October 2021		Updated Section CTLE Equalization, Flat Gain, and Chip Enable Control
		Updated Section Power Consumption
		Updated Section AC/DC Specifications
		Datasheet Release
	4	Updated Graphics Add In Card Application
L-1 2022		Updated Section Pin Description
July 2022		Updated Section Part Marking
		Updated Section Packaging Mechanical
		Updated Figure 9 Channel Measurement Setup

Figure 1. Graphics Add In Card Application

Pin Configuration (Top-Side View)

Pin Description

Pin #	Pin Name	Туре	Description	
Power and GND		1		
6, 14, 22, 30	VDD	Power	1.8V power supply, ±5%	
3, 9, 19, 25, Center Pad	GND	Ground	Supply ground	
Control Pins				
12	EQ	I	Equalization selection. It is a 4-level input (See Table 3) with internal $100k\Omega$ pull-up resistor and $200k\Omega$ pull-down resistor.	
13	FG	I	Flat Gain Selection. It is a 4-level input (See Table 4) with internal $100k\Omega$ pull- up resistor and $200k\Omega$ pull-down resistor.	
			Chip Enable. With internal 300k Ω pull-up resistor.	
15	EN	I	"Low": Chip Power Down	
			"High": Normal Operation (Default)	
16	IN_HPD	I	Hot Plug Detection from Sink. With internal 300k Ω pull-down resistor.	
High Speed I/O Pin	ns	· ·		
18,	OUT3P,			
17	OUT3N		Channel CML output terminals.	
27,	OUT0P,	0	With selectable output termination between 50Ω to VDD or Hi-Z	
26	OUT0N			

Pin Description Cont.

Pin #	Pin Name	Туре	Description	
21,	OUT2P,			
20	OUT2N	0	Channel CML output terminals.	
24,	OUT1P,	0	With selectable output termination between 50 Ω to VDD or Hi-Z	
23	OUT1N			
1,	IN0P,			
2	INON	т	CML input terminals.	
10,	IN3P,	I	With selectable input termination between 50Ω to internal VbiasRx or $78k\Omega$ to internal VbiasRx.	
11	IN3N		internal voluoiex.	
4,	IN1P,			
5	IN1N	т	CML input terminals.	
7,	IN2P,	I	With selectable input termination between 50Ω to internal VbiasRx or $78k\Omega$ to internal VbiasRx.	
8	IN2N			
Side Band Sig	gnal Pins			
29, 28	NC	I/O	No connect. Leave it floating.	
31, 32	AUXP, AUXN	I/O	DisplayPort AUX CH differential signal connections	

Operation Mode

I/O Termination Resistance under Different Conditions

Symbol	Parameter	Resistance	Units
RX Terminal		· · · · · ·	
R _{in-pd}	Input res at EN=0	78k to VbiasRx	Ω
R _{in-Active}	Input res at active mode condition	50 to VbiasRx1	Ω
R _{in-DP-standby}	Input res in DP standby mode	78k to VbiasRx	Ω
R _{in-DP-active}	Input res in DP active mode	50 to VbiasRx1	Ω
R _{in-DP-D3}	Input res in DP D3 mode	78k to VbiasRx	Ω
TX Terminal			
R _{out-pd}	Output res at EN=0	78k to VbiasTx	Ω
R _{out-Active}	Output res at active mode condition	50 to VDD	Ω
Rout-DP-standby	Output res in DP standby mode	78k to VbiasTx	Ω
Rout-DP-active	Output res in DP active mode	50 to VDD	Ω
R _{out-DP-D3} Output res in DP D3 mode		78k to VbiasTx	Ω

Notes:

1) The value of Rin will be updated only after the receiver evaluation. Thus, the value can be 50Ω or $78k\Omega$.

2) The value of Rout will be updated only after the receiver evaluation. Thus, the value can be 50Ω or $6k\Omega$.

DisplayPort Mode

By default, all channels will go to active mode if HPD bit = 1. The ON/OFF of each DP channel is controlled by the Aux lane count.

Figure 2. DisplayPort Main Link Connection Diagram

DisplayPort Main Link

The electrical sub-block of a DP Main-Link consists of up to four differential pairs. The DP TX drives doubly terminated, AC-coupled differential pairs in a manner compliant with the Main-Link Transmitter electrical specification.

Figure 3. DisplayPort Operation Modes

State	Mode	Description	
1	Power Down Mode	Lowest power consumption (most circuitries are off); all outputs are high-impedance; All inputs are ignored. AUX listener is turned OFF.	
2	Standby Mode	Low power consumption (AUX listener is OFF); Main Link outputs are disabled	
3	Active Mode	Data transfer (normal operation); AUX listener is active. The AUX listener is actively monitoring for Link Training. At power-up all Main Link outputs are enabled by default.	
4	D3 Power Saving Mode	Low power consumption(AUX listener is active); Main Link outputs are disabled	

CTLE Equalization, Flat Gain and Chip Enable Controls

Table 3. CTLE Equalization Gain (Typical Values at FG = 0dB)

БО	Equalizer Setting (dB)					
EQ	@1.35GHz	@2.5GHz	@4GHz	@5GHz	@6.7GHz	@10GHz
0	-0.010	0.329	1.070	1.783	3.354	7.126
R	0.104	0.742	1.898	2.931	5.061	9.614
F	0.283	1.357	3.012	4.364	6.943	11.858
1	0.577	2.256	4.445	6.067	8.923	13.783

Note: R=0.33VDD. F=0.67VDD.

Table 4. Flat Gain Setting (FG)

FG	Flat Gain Setting	
0	-4 dB	
R	-2 dB	
F	+0 dB (Default)	
1	+2 dB	

Note: R=0.33VDD. F=0.67VDD.

Table 5. Chip Enable Control

EN Pin	Channel Operation
0	Disabled
1	Enabled (Default)

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Junction Temperature +125°C
Supply Voltage to Ground Potential0.5V to VDD+0.3V
Voltage Input to High Speed Differential Pins0.5V to VDD
Voltage Input to Low Speed Pins (SCL, SDA) $\dots -0.5$ V to $+3.3$ V
Voltage Input to Low Speed Pins (AUXP/N)0.5V to 3.3V
Voltage Input to Low Speed Pins (EN)0.5V to VDD+0.3V
ESD, HBM ±4000V
ESD CDM±1000V

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Thermal Information

Symbol	Parameter	32-Pin WLGA Package	Units
Theta JA	Junction to Ambient Thermal Resistance	TBD	°C/W

Recommended Operating Conditions

Symbol	Parameter		Тур.	Max.	Units
V _{DD}	Supply Voltage	1.71	1.8	1.89	V
V _{DD_Noise}	Power Supply Noise Up to 50MHz			50	mVpp
V _{RX_CM}	Input Source Common-Mode Noise			150	mVpp
Cac_coupling	System AC Coupling Capacitance	75	_	265	nF
T _A	Ambient Temperature	-40(1)		+85	°C

Note:

1. The minimum temperature -40°C guaranteed by design

Power Consumption

Symbol	Parameter	Min.	Тур.	Max.	Units
I _{ON_4DP}	4-lane DP2.0	_	160	220	mA
I _{D3}	DisplayPort D3 power down mode	_	0.9	1.6	mA
I _{ENB}	Disabled mode (EN=Low)		8	30	uA
I _{Stdby}	IN_HPD = Low		1	1.7	mA

AC/DC Characteristics

$(VDD = 1.8 \pm 5\%, T_A = -40^{\circ}C \text{ to } 85^{\circ}C)$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{DD}	Supply Voltage	_	1.71	1.8	1.89	V

AC/DC Characteristics Cont.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Receiver (RX	$(100 \ \Omega $ Differential) Electrical S	pecification	<u> </u>			
R _{RX-DIFF-DC}	DC Differential Input Impedance		72	_	120	Ω
R _{RX-SINGLE-} DC	DC single ended input impedance to guarantee RxDet	Measured with respect to GND over a voltage of 500mV max	18	_	30	Ω
Z _{RX-HIZ-DC-} PD	DC input CM input impedance for V>0 during reset or power down	(Vcm=0 to 500mV)	25	_		kΩ
Cac_coupling	AC coupling capacitance		75	—	265	nF
V _{RX-CM-AC-P}	Rx common mode peak voltage	AC up to 5GHz	_	_	150	mVpeak
V _{RX-CM-DC-} Active-Idle- Delta-P	Common mode peak voltage Avg _{U0} (V _{TX-D+} + V _{TX-D-})/2 – Avg _{U1} (V _{TX-D+} + V _{TX-D-})/2		—	_	200	mVpeak
Transmitter	(TX) Electrical Specification					
V _{TX-DIFF-PP}	Output differential p-p voltage Swing	Differential Swing V _{TX-D+} - V _{TX-D-}	_	_	1	Vppd
R _{TX-DIFF-DC}	DC Differential TX Impedance		72	_	120	Ω
V _{TX-RCV-DET}	The amount of Voltage change al- lowed during RxDet	Type-C Tx Spec +/-60mA	_	_	600	mV
Cac-coupling	AC coupling capacitance		75	_	265	nF
R _{TX-DC-CM}	Common mode DC output Imped- ance		18	_	30	Ω
I _{TX-SHORT}	Transmitter short circuit current limit		_	_	60	mA
V _{TX-C}	Common-Mode Voltage	$ V_{TX-D+} + V_{TX-D-} /2$	VDD-1V	_	VDD	V
V _{TX-DC-CM}	Instantaneous allowed DC com- mon mode voltage at the connector side of the AC coupling capacitors	$ V_{TX-D+} + V_{TX-D-} /2$	0	_	VDD	V
V _{TX-CM-AC-} PP-Active	Active mode TX AC common mode voltage	$V_{TX-D+} + V_{TX-D-}$ for both time and amplitude	_	_	100	mVpp
V _{TX-Idle-Diff-} AC-pp	Idle mode AC common mode delta voltage V _{TX-D+} –V _{TX-D-}	Between D+ and D- in idle mode. Use the HPF to remove DC components. =1/LPF.	_	_	10	mVppd
V _{TX-Idle-Diff-} DC	Idle mode DC common mode delta voltage V _{TX-D+} –V _{TX-D-}	Between D+ and D- in idle mode. Use the LPF to remove AC components. =1/HPF.	_	_	10	mV
Channel Perf	formance					
T _{pd}	Latency	From input to output	_	25	150	ps

AC/DC Characteristics Cont.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
		EQ = 0		7.1		
	Peaking gain (Compensation	EQ = R		9.6		dB
Gp	at 10GHz, relative to 100MHz,	EQ = F	_	11.8	_	UD
	100mVp-p sine wave input)	EQ= 1		13.7		
		Variation around typical	-2	_	+2	dB
		FG= 0		-4		
		FG= R		-2		Π
G _F	Flat gain (100MHz, EQ<2:0>=000)	FG= F	_	0	_	dB
		FG= 1		+2		
		Variation around typical	-2	_	+2	dB
V _{sw_100M}	Output linear swing (at 100MHz)	EQ= 0	_	910	_	mVppd
V _{sw_10G}	Output linear swing (at 10GHz)	EQ= 0	_	800	_	mVppd
D _{DNEXT}	Differential near-end crosstalk	100MHz to 10GHz, Fig. 6 ⁽¹⁾	_	-30	-20	dB
D _{DFEXT} ⁽²⁾	Differential far-end crosstalk	100MHz to 10GHz, Fig. 7 ⁽¹⁾	_	-30	-20	dB
		100MHz to 10GHz, EQ=0, FG=F, Fig. 7.5	_	0.6	_	37
V _{NOISE_IN}	Input-referred noise	100MHz to 10GHz, EQ=1, FG=F, Fig. 8	_	0.3	_	mV _{RMS}
3.7		100MHz to 10GHz, EQ=0, FG=F, Fig. 8	_	0.3	_	37
V _{NOISE_OUT}	Output-referred noise	100MHz to 10GHz, EQ=1, FG=F, Fig. 8	_	0.5	_	mV _{RMS}
S11 _{DM}	Input differential mode return loss	10MHz to 10GHz differential mode	_	-11.5	-8.1	dB
S11 _{CM}	Input common mode return loss	1GHz to 10GHz common mode	_	-11.1	-5	dB
S22 _{DM}	Output differential mode return loss	10MHz to 10GHz differential mode	_	-12.7	-8.1	dB
S22 _{CM}	Output common mode return loss	1GHz to 10GHz common mode	_	-11.3	-4	dB
DisplayPort	Electrical Specification					
V _{TX-C}	Common-Mode Voltage	V _{TX-D+} + V _{TX-D-} /2	VDD-1V	_	VDD	V
V _{TX-AC-CM} _ Hbr_rbr	TX AC common mode voltage for HRB and RBR	Measured using an 8b/10b	_	_	20	mV _{RMS}
V _{TX-AC-} CM_HBR2	TX AC common mode voltage for HBR2	pattern with 50% transition			30	mV _{RMS}

AC/DC Characteristics Cont.

Symbol	Parameter Conditions		Min.	Тур.	Max.	Units
V _{TX-DIFFp-p-} Level0	Differential peak-to-peak output voltage swing Level 0	Tested with Pre-emphasis at	0.34	0.4	0.46	V
V _{TX-DIFFp-p-} Level1	Differential peak-to-peak output voltage swing Level 1	Level 0= 0dB Level 1= 3.5dB	0.51	0.6	0.68	V
V _{TX-DIFFp-p-} Level2	Differential peak-to-peak output voltage swing Level 2	Level 2= 6.0 dB	0.69	0.8	0.92	V
	UHBR20(20Gbps) TP2		_	_	0.45	UI
	UHBR13(13.5Gbps) TP2		_	_	0.45	UI
	UHBR10(10Gbps) TP2	Measured at Transmit output.	_	_	0.38	UI
Tj TX Total Iitter	HBR3 (8.1Gbps)	Prechannel loss from 2.5dB	_	_	0.27	UI
Jitter	HBR2 (5.4Gbps)	to 13dB	_	_	0.27	UI
	HBR (2.7Gbps)		_	_	0.294	UI
	RBR (1.62Gbps)		_	_	0.18	UI
AUX Listene	r Electrical Specification					
C _{in}	Input capacitance at , AUXP or AUXN		_	_	10	pF
VT _{(AUX_lis-} tener)	Threshold of the AUX listener	VCC = 1.8V	100		220	mVPPd

Note:

1. Measured using a vector-network analyzer (VNA) with -30dBm power level applied to the adjacent input. The VNA detects the signal at the output of the victim channel. All other inputs and outputs are terminated with 50Ω .

2. Subtract the channel gain from the total gain to derive the actual crosstalk

Control Pin Specifications

$(VDD = 1.8 \pm 5)$	5% , $T_{\Delta} = -40^{\circ}C$	to 85°C)
---------------------	-------------------------------------	----------

Symbol	Parameter	Min.	Тур.	Max.	Units
2-level Control	Pins		<u>.</u>	· · · · · · · · · · · · · · · · · · ·	
V _{IH}	DC input logic high	VDD*0.65			V
V _{IL}	DC input logic low	_		VDD*0.35	V
I _{IH}	Input high current	_		50	uA
I _{IL}	Input Low current	-50			uA
4-level Control	Pins				
V _{IH}	DC input logic "High"	0.92*VDD	VDD	_	V
V _{IF}	DC input logic "Float"F	0.59*VDD	0.67*VDD	0.75*VDD	V
V _{IR}	DC input logic "With Rext to GND" R	0.25*VDD	0.33*VDD	0.41*VDD	V
V _{IL}	DC input logic "Low"	_	GND	0.08*VDD	V
I _{IH}	Input high current			50	uA

Control Pin Specifications Cont.

Symbol	Parameter	Min.	Тур.	Max.	Units
I _{IL}	Input Low current	-75	_	_	uA
Rext	External resistance connects to GND (+/-5%)	64.6	68	71.4	kΩ
IN_HPD Input P	ins				
V _{IH}	DC input logic high	2	_	_	V
V _{IL}	DC input logic low		_	0.8	V
Rin	Termination to GND	100	_		kΩ

Figure 4. Definition of Peak-to-peak Differential Voltage

Figure 6. NEXT Channel-isolation Test Configuration

Figure 7. NEXT Channel-isolation Test Configuration

Figure 8. Noise Test Configuration

Figure 9. Channel Measurement Setup

Figure 10. High-speed Channel Test Circuit

Figure 11. Intra and Inter-pair Differential Skew Definition

Application Schematics

Packaging Mechanical

32-WLGA (FLA)

For latest package information:

See http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/.com/design/support/packaging/pericom-packaging/packaging/packaging-mechanicals-and-thermal-characteristics/.com/design/support/packaging/packa

Device Naming Information

Part Marking

A Product Line of Diodes Incorporated

PI2DPX2023

Tape & Reel Materials and Design

Carrier Tape

The pocketed carrier tape is made of conductive polystyrene plus carbon material (or equivalent). The surface resistivity is $106\Omega/sq$. maximum. Pocket tapes are designed so that the component remains in position for automatic handling after cover tape is removed. Each pocket has a hole in the center for automated sensing if the pocket is occupied or not, thus facilitating device removal. Sprocket holes along the edge of the center tape enable direct feeding into automated board assembly equipment. See figures 3 and 4 for carrier tape dimensions.

Cover Tape

Cover tape is made of anti-static transparent polyester film. The surface resistivity is $107\Omega/sq$. Minimum to $1011\Omega/sq$. maximum. The cover tape is heat-sealed to the edges of the carrier tape to encase the devices in the pockets. The force to peel back the cover tape from the carrier tape shall be a MEAN value of 20gm to 80gm (2N to 0.8N).

Reel

The device loading orientation is in compliance with EIA-481, current version (Figure 2). The loaded carrier tape is wound onto either a 13-inch reel (Figure 4) or 7-inch reel. The reel is made of Antistatic High-Impact Polystyrene. The surface resistivity $107\Omega/sq$. minimum to $1011\Omega/sq$. maximum.

Tape & Reel Label Information

Tape Leader and Trailer Pin 1 Orientations

Standard Embossed Carrier Tape Dimensions

Tape & Reel Dimensions

Constant Di	mensions	

TAPE SIZE	D ₀	D ₁ (Min)	E1	P ₀	P ₂	R ⁽²⁾	S ₁ (Min)	T (Max)	T ₁ (Max)
8mm		1.0 2.0 ± 0.05 25							
12mm					2.0 ± 0.03		0.6		
16mm	15.0100	1.5	175 - 01	4.0 + 0.1		30	0.0	0.6	0.1
24mm	1.5 +0.1-0.0		1.75 ± 0.1	4.0 ± 0.1	2.0 ± 0.1				
32mm		2.0				50	N/A ⁽³⁾		
44mm		2.0			2.0 ± 0.15	50	IN/A (*)		

Variable Dimensions

TAPE SIZE	P1	B ₁ (Max)	E ₂ (Min)	F	So	T ₂ (Max)	W (Max)	A ₀ , B ₀ &K ₀
8mm	Specific per package	4.35	6.25	3.5 ± 0.05		2.5	8.3	
12mm	type. Refer to FR-0221 (Tape and Reel Packing	8.2	10.25	5.5 ± 0.05	N/A ⁽⁴⁾	6.5	12.3	
16mm	Information) or visit	10.1	14.25	7.5 ± 0.1	N/A (7	8.0	16.3	
24mm	www.diodes.com/assets/	20.1	22.25	11.5 ± 0.1		12.0	24.3	See Note 1
32mm	MediaList-Attachments/ Diodes-Tape-Reel-Tube.	23.0	N/A	14.2 ± 0.1	28.4 ± 0.1	12.0	32.3	
44mm	pdf	35.0	N/A	20.2 ± 0.15	40.4 ± 0.1	16.0	44.3	

NOTES:

A₀, B₀, and K₀ are determined by component size. The cavity must restrict lateral movement of component to 0.5mm maximum for 8mm and 12mm wide tape and 1. to 1.0mm maximum for 16mm, 24mm, 32mm, and 44mm wide carrier. The maximum component rotation within the cavity must be limited to 200 maximum for 8 and 12 mm carrier tapes and 100 maximum for 16mm through 44mm.

2. Tape and components will pass around reel with radius "R" without damage.

 S_1 does not apply to carrier width \ge 32mm because carrier has sprocket holes on both sides of carrier where $D_0 \ge S_1$. 3.

4. S₀ does not exist for carrier ≤32mm because carrier does not have sprocket hole on both side of carrier.

Reel Dimensions By Tape Size

TAPE SIZE	Α	N (Min) ⁽¹⁾	W ₁	W ₂ (Max)	W3	B (Min)	С	D (Min)
8mm	178 ± 2.0mm or 330 ± 2.0mm	60 ± 2.0mm or 100 ± 2.0mm	8.4 +1.5/-0.0mm	14.4mm	Shall Accommodate Tape Width Without Interference	1.5mm	13.0 +0.5/-0.2 mm	20.2mm
12mm			12.4 +2.0/-0.0mm	18.4mm				
16mm	330 ± 2.0mm	100 ± 2.0mm	16.4 +2.0/-0.0mm	22.4mm				
24mm			24.4 +2.0/-0.0mm	30.4mm				
32mm			32.4 +2.0/-0.0mm	38.4mm				
44mm			44.4 +2.0/-0.0mm	50.4mm				

NOTE:

1. If reel diameter A=178 ±2.0mm, then the corresponding hub diameter (N(min) will by 60 ±2.0mm. If reel diameter A=330±2.0mm, then the corresponding hub diameter (N(min)) will by 100±2.0mm.

IMPORTANT NOTICE

DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IM-1. PLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IM-PI IFD WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELL ECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION)

2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.

Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from 3. time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.

Products described herein may be covered by one or more United States, international or foreign patents and pending pat-4. ent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.

5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/termsand-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

6 Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.

7 While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.

8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice

DIODES is a trademark of Diodes Incorporated in the United States and other countries. The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. © 2022 Diodes Incorporated. All Rights Reserved.

www.diodes.com